最新初二上学期初二数学动点问题练习含答案
- 格式:doc
- 大小:422.50 KB
- 文档页数:7
初二数学动点练习题1. 题目描述:在二维坐标系中,有一个动点P,起始坐标为(3, 2),经过以下规则的移动:每次向上移动一格,或向右移动一格。
现有以下几组指令,请计算指定指令下动点P的坐标。
a) 指令1:向上移动3格,向右移动5格,再向上移动2格。
b) 指令2:向上移动4格,向右移动2格,再向下移动1格。
c) 指令3:向右移动7格,向上移动1格。
2. 解题过程及计算:a) 指令1:- 向上移动3格:由于起始坐标为(3, 2),所以移动后坐标为(3, 2 + 3) = (3, 5)。
- 向右移动5格:移动后坐标为(3 + 5, 5) = (8, 5)。
- 再向上移动2格:移动后坐标为(8, 5 + 2) = (8, 7)。
指令1执行后动点P的坐标为(8, 7)。
b) 指令2:- 向上移动4格:由于起始坐标为(3, 2),所以移动后坐标为(3, 2 + 4) = (3, 6)。
- 向右移动2格:移动后坐标为(3 + 2, 6) = (5, 6)。
- 再向下移动1格:移动后坐标为(5, 6 - 1) = (5, 5)。
指令2执行后动点P的坐标为(5, 5)。
c) 指令3:- 向右移动7格:由于起始坐标为(3, 2),所以移动后坐标为(3 + 7, 2) = (10, 2)。
- 向上移动1格:移动后坐标为(10, 2 + 1) = (10, 3)。
指令3执行后动点P的坐标为(10, 3)。
3. 答案总结:根据指令执行结果,动点P的坐标如下:- 指令1执行后动点P的坐标为(8, 7)。
- 指令2执行后动点P的坐标为(5, 5)。
- 指令3执行后动点P的坐标为(10, 3)。
注:以上计算过程以及答案仅供参考,具体计算时请以实际情况为准。
初二数学动点练习题1. 直线上的动点问题- 题目:在直线AB上,点C是动点,当点C沿着直线AB移动时,求证∠ACB是一个恒定的角度。
2. 圆上的动点问题- 题目:圆O的半径为5,点P是圆上的动点。
求证:无论点P在圆上如何移动,OP的长度始终为5。
3. 动点与线段的关系- 题目:线段AB的长度为10,点C是线段AB上的动点。
当点C从A向B移动时,求线段AC的长度与线段BC的长度之和是否恒定。
4. 动点与三角形的面积- 题目:三角形ABC的面积为30平方单位,点D是边AB上的动点。
求证:无论点D在AB上如何移动,三角形ACD的面积始终是三角形ABC面积的一半。
5. 动点与平行四边形的对角线- 题目:平行四边形ABCD中,点E是边AB上的动点,点F是边CD 上的动点,且EF始终是平行四边形的对角线。
求证:无论点E和点F如何移动,EF的长度始终等于AB和CD的长度之和。
6. 动点与圆的切线- 题目:圆O的半径为6,点P是圆O外的一点,点Q是圆O上的动点。
当点Q沿着圆O移动时,求证:点P到圆O的切线长度始终等于点P到点Q的距离。
7. 动点与相似三角形- 题目:三角形ABC与三角形DEF相似,点G是三角形ABC的动点,点H是三角形DEF的动点,且GH始终是三角形ABC和三角形DEF的对应边的平行线。
求证:无论点G和点H如何移动,三角形AGH与三角形DEF始终相似。
8. 动点与坐标系- 题目:在平面直角坐标系中,点A的坐标为(2,3),点B的坐标为(5,6)。
点C是线段AB上的动点,其坐标为(x,y)。
求证:无论点C如何移动,x和y的和始终等于点A和点B坐标的和。
练习题答案提示:- 对于直线上的动点问题,可以利用角度的恒定性,结合直线的性质来证明。
- 对于圆上的动点问题,可以利用圆的半径性质来证明。
- 对于动点与线段的关系问题,可以利用线段长度的加法性质来证明。
- 对于动点与三角形的面积问题,可以利用三角形面积的计算公式来证明。
1、如图1,梯形ABCD 中,AD ∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开始沿AD 边以1cm/秒的速度移动,点Q 从C 开始沿CB 向点B 以2 cm/秒的速度移动,如果P ,Q 分别从A ,C 同时出发,设移动时间为t 秒。
当t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD 的边长为4,点M 在边DC 上,且DM=1,N 为对角线AC 上任意一点,则DN+MN 的最小值为 53、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由. 解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC 是菱形.∵∠α=∠ACB=900,∴BC //ED . ∵CE //AB , ∴四边形EDBC 是平行四边形 在Rt △ABC 中,∠ACB =900,∠B =600,BC =2, ∴∠A =300.∴AB =4,AC =23. ∴AO =12AC=3 .在Rt △AOD 中,∠A =300,∴AD =2.∴BD =2. ∴BD =BC . 又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形4、在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.O E CDA α lOCA (备用图) CB AE D 图1 N M A B C D E M N 图2A CB E D N M 图3解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 解:(1)正确. 证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值AD FGB 图1 A D FC G E B 图3A D FGB 图2A D F C GE B M A D FG B N7、在等腰梯形ABCD 中,AD ‖BC,E 为AB 的中点,过点E 作EF ‖BC 交CD 于点F.AB=4,BC=6, ∠ B=60°。
动态问题之袁州冬雪创作所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.处理这类问题的关键是动中求静,矫捷运用有关数学知识处理问题.关键:动中求静.数学思想:分类思想 数形连系思想 转化思想1、如图1,梯形ABCD 中,AD ∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开端沿AD 边以1cm/秒的速度移动,点Q 从C 开端沿CB 向点B 以2 cm/秒的速度移动,如果P ,Q 分别从A ,C 同时出发,设移动时间为t 秒. 当t=时,四边形是平行四边形;6 当t=时,四边形是等腰梯形. 82、如图2,正方形ABCD 的边长为4,点M 在边DC 上,且DM=1,N 为对角线AC 上任意一点,则DN+MN 的最小值为53、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开端,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α=度时,四边形EDBC 是等腰梯形,此时AD 的长为;②当α=度时,四边形EDBC 是直角梯形,此时AD 的长为;(2)当90α=°时,断定四边形EDBC 是否为菱形,并O E CDAα lOCA(备用图)说明来由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC 是菱形.∵∠α=∠ACB=900,∴BC //ED . ∵CE //AB , ∴四边形EDBC 是平行四边形在Rt △ABC 中,∠ACB =900,∠B =600,BC =2, ∴∠A =300. ∴AB =4,AC∴AO在Rt △AOD 中,∠A =300,∴AD =2.∴BD =2. ∴BD =BC . 又∵四边形EDBC 是平行四边形, ∴四边形EDBC 是菱形4、在△ABC 中,∠ACB =90°,AC=BC ,直线MN 颠末点C ,且AD ⊥MN于D ,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.解:(1)①∵∠ACD=∠ACB=90°∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90°∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB②∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90°∴∠ACD=∠CBE 又∵AC=BCCBAE D图1 N MA B CDE M N图2ACB EDNM图3∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等)∵∠ADC=∠CEB=∠ACB=90°∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD. 5、数学课上,张教师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BCEF 行线CF 于点F ,求证:AE =EF .颠末思考,小明展示了一种正确的解题思路:取AB 的中点M ,毗连ME ,则AM=EC在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那末结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明来由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明来由.解:(1)正确.ADF C GE B图1ASA ).(2)正确.ASA ).6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的间隔为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t.求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB为直角三角形的t 值7、如图1求:(1间隔;(2ADFC GE B图3ADFGB 图2ADFC G E BN23明来由解(1)如图1,于点∵为的中点,(2不发生改变.图1A DEBFCGA DEBFC图4(备A DEBFC图5(备A DEBFC图1 图2A DEBFCPNM图3A DEBFCPNM(第25题)如图2cos30︒=中,PN的周长=PM在线段DC等边三角形.3当时,如图4548中点.图3A D E BFCPN M图4A D EBF CP MN 图5A D EBF CMN GGRG图2A D E BF CPNMG H(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动①若点Q的运动速度与点P的运动速度相等,颠末1②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B P与点Q解:(1∴②∵,∴,又∵,,则/秒.(2)设颠末秒后点与点第一次相遇,由题意,得上相遇,∴颠末803秒点P与点Q第一次在边AB上相遇.9、如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C.D重合.(1)证明不管E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF 的面积是否发生变更?如果不变,求出这个定值;如果变更,求出最大(或最小)值.【答案】解:(1)证明:如图,毗连AC∵四边形ABCD为菱形,∠BAD=120°,∠BAE+∠EAC=60°,∠FAC+∠EAC=60°,∴∠BAE=∠FAC.∵∠BAD=120°,∴∠ABF=60°.∴△ABC和△ACD为等边三角形.∴∠ACF=60°,AC=AB.∴∠ABE=∠AFC.∴在△ABE和△ACF中,∵∠BAE=∠FAC,AB=AC,∠ABE=∠AFC,∴△ABE≌△ACF(ASA).∴BE=CF.(2)四边形AECF 的面积不变,△CEF 的面积发生变更.来由如下:由(1)得△ABE ≌△ACF ,则S △ABE =S △ACF .∴S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC ,是定值.作AH ⊥BC 于H 点,则BH =2,22AECF ABC 11S S BC AH BC AB BH 4322∆==⋅⋅=⋅-=四形边.由“垂线段最短”可知:当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.故△AEF 的面积会随着AE 的变更而变更,且当AE最短时,正三角形AEF 的面积会最小,又S △CEF =S 四边形AECF ﹣S △AEF ,则此时△CEF 的面积就会最大.∴S △CEF =S四边形AECF ﹣S △AEF()()221432323332=-⋅⋅-=.∴△CEF 的面积的最大值是3.【考点】菱形的性质,等边三角形的断定和性质,全等三角形的断定和性质,勾股定理,垂直线段的性质.【分析】(1)先求证AB =AC ,进而求证△ABC 、△ACD 为等边三角形,得∠ACF =60°,AC =AB ,从而求证△ABE ≌△ACF ,即可求得BE =CF .(2)由△ABE ≌△ACF 可得S △ABE =S △ACF ,故根据S四边形AECF =S △AEC +S △ACF =S △AEC +S △AB E =S △ABC 即可得四边形AECF 的面积是定值.当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.△AEF 的面积会随着AE的变更而变更,且当AE最短时,正三角形AEF的面积会最小,根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.10、如图,在△AOB中,∠AOB=90°,OA=OB=6,C为OB上一点,射线CD⊥OB交AB于点D,OC=2.点P从点A出发以每秒个单位长度的速度沿AB方向运动,点Q从点C出发以每秒2个单位长度的速度沿CD方向运动,P、Q两点同时出发,当点P到达到点B时停止运动,点Q也随之停止.过点P作PE⊥OA于点E,PF⊥OB于点F,得到矩形PEOF.以点Q为直角顶点向下作等腰直角三角形QMN,斜边MN∥OB,且MN=QC.设运动时间为t(单位:秒).(1)求t=1时FC的长度.(2)求MN=PF时t的值.(3)当△QMN和矩形PEOF有重叠部分时,求重叠(阴影)部分图形面积S与t的函数关系式.(4)直接写出△QMN的边与矩形PEOF的边有三个公共点时t的值.考点:相似形综合题.分析:(1)根据等腰直角三角形,可得,OF=EP=t,再将t=1代入求出FC的长度;(2)根据MN=PF,可得关于t的方程6﹣t=2t,解方程即可求解;(3)分三种情况:求出当1≤t≤2时;当2<t≤时;当<t≤3时;求出重叠(阴影)部分图形面积S与t的函数关系式;(4)分M在OE上;N在PF上两种情况讨论求得△QMN的边与矩形PEOF的边有三个公共点时t的值.解答:解:(1)根据题意,△AOB、△AEP都是等腰直角三角形.∵,OF=EP=t,∴当t=1时,;(2)∵AP=t,AE=t,PF=OE=6﹣t∴6﹣t=2t解得t=2.故当t=2时,MN=PF;(3)当1≤t≤2时,S=2t2﹣4t+2;当2<t≤时,S=﹣t2+30t﹣32;当<t≤3时,S=﹣2t2+6t;(4)△QMN的边与矩形PEOF的边有三个公共点时t=2或.点评:程思想,分类思想的运用,有一定的难度.。
初中八年级上册数学动点问题试卷附答案
一、选择题
1. 一辆汽车以每小时60千米的速度向东行驶,经过2小时后改变方向,以每小时40千米的速度向北行驶,求其位移。
A. 40千米
B. 80千米
C. 100千米
D. 120千米
答案:D. 120千米
2. 一辆自行车向前行驶30分钟后,记下此时的位置。
然后车辆停下来,待30分钟后,以相同的时间和速度往后倒退,到达原点。
求此自行车的位移。
A. 0千米
B. 5千米
C. 10千米
D. 15千米
答案:A. 0千米
二、填空题
1. 一个物体从A点出发,以每秒2米的速度向东行驶10秒,
然后改变方向,以每秒3米的速度向南行驶15秒,最后以每秒4
米的速度向西行驶20秒。
求物体的位移为______米。
答案:-20
2. 一架飞机以每秒200米的速度向东飞行30秒,然后改变方向,以每秒300米的速度向南飞行40秒,最后以每秒400米的速
度向西飞行50秒。
求飞机的位移为______米。
答案:-4000
三、解答题
1. 一个人从原点出发,以每小时5千米的速度向西行驶1小时,然后改变方向,以每小时8千米的速度向南行驶2小时,最后以每
小时10千米的速度向东行驶3小时。
求此人的位移和位移方向。
答案:位移为-23千米,位移方向为东南方向。
2. 一个物体以每秒10米的速度向北行驶30秒,然后改变方向,以每秒15米的速度向东行驶40秒,最后以每秒20米的速度向南
行驶50秒。
求物体的位移和位移方向。
答案:位移为20米,位移方向为南方。
初二数学动点问题练习题
阅读理解:
一、小明和小红在操场上正在进行100米短跑比赛。
小明以每秒8
米的速度跑,小红以每秒7米的速度跑。
问题1:如果小红比小明晚出发2秒,那么小红能否赢得比赛?为
什么?
问题2:如果小红比小明晚出发3秒,那么小红能否赢得比赛?为
什么?
问题3:如果小红比小明晚出发4秒,那么小红能否赢得比赛?为
什么?
问题4:如果小红比小明晚出发5秒,那么小红能否赢得比赛?为
什么?
问题5:假设小红以每秒7米的速度跑,在小明出发后多少秒出发,小红才能与小明同时到达终点?
解答:
问题1:小红不能赢得比赛。
因为小明比小红每秒跑得快1米,所
以无论小红比小明晚出发多久,小明总能比他先到达终点。
问题2:小红不能赢得比赛。
由于小明每秒比小红多跑1米,小红
比小明晚出发3秒后,小明已经比小红多跑了3米,所以小明会先到
达终点。
问题3:小红不能赢得比赛。
小明每秒比小红多跑1米,小红比小明晚出发4秒后,小明已经比小红多跑了4米,所以小明会先到达终点。
问题4:小红能赢得比赛。
当小红晚出发5秒后,小明已经比小红多跑了5米,但小明距离终点还有95米,而小红每秒可以追赶小明1米,所以小红能在小明到达终点之前追赶上他。
问题5:小红在小明出发后5秒出发,才能与小明同时到达终点。
此时小明已经跑了40米(5秒×8米/秒),小红出发后每秒可以追赶小明1米,所以小红需要跑60米(100米-40米)才能追上小明,所以小红需要跑60米÷7米/秒≈8.57秒,约等于8.6秒。
1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4、刘军和张强付同样多的钱买了同一种铅笔,刘军要了13支,张强要了7支,刘军又给张强0.6元钱。
每支铅笔多少钱?5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6、学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10、一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11、某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。
运后结算时,共付运费4400元。
托运中损坏了多少箱玻璃?12、五年级一中队和二中队要到距学校20千米的地方去春游。
第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。
人教版八年级上册数学期末动点问题训练题(1)若点在线段上,如图所示,且,则______(2)若点在边上运动,如图所示,则、、之间的关系为(3)如图,若点在斜边的延长线上运动,请写出(1)求证:;(2)探究与的数量关系,并证明你的结论.(3)若,直接写出的值为__________P AB ①50α∠=︒12∠+∠=P AB ②α∠1∠2∠③P BA ()CE CD <α∠AF EF =AD CF 2AD CD =CF(1)求的面积;(2)如图1,若,,作交于,平分,平分交求出(用表示);(3)如图2.若,轴于,点从点出发,在射线(1)如图1,若,则_______°ABO V 60ACB ∠=︒180NFC FCN FNC ∠+∠+∠=︒GF AB ∥AC F FP GFC ∠FN AFP ∠BAC ∠α()36P ,PC x ⊥C M P 15α=︒CBA ∠'=(2)如图2,点P 在延长线上,且.①连接,试探究,,之间是否存在一定数量关系,猜想并说明理由.②连接,若,C ,P 三点共线,,,求的长.6.如图1,,,,.(1)求C 点的坐标;(2)如图2,P 为y 轴负半轴上一个动点,当P 点在y 轴负半轴上向下运动时,始终保持,,过D 作轴于E 点,求的值;(3)如图3,已知点F 坐标为,当G 在y 轴的负半轴上沿负方向运动时,作,始终保持,与y 轴负轴交于点,与x 轴正半轴交于点,当G 点在y 轴的负半轴上沿负方向运动时,求的值.7.如图,中,,,,,若动点从点开始,按的路径运动,且速度为每秒.设运动的时间为秒.(1)当点在上时,______时,把的周长分成相等的两部分?(2)当点在上时,______时,把的面积分成相等的两部分?(3)当点在所有运动过程中,连接或,求当为何值时,的面积为12?BD DAP DBC α∠=∠=CP AP BP CP CA 'A '10BP =1CP =CA '2OA =4OB =90BAC ∠=︒AB AC =PA PD =90APD ∠=︒DE x ⊥OP DE -(44)--,Rt FGH V 90GFH ∠=︒FG (0)G m ,FH (0)H n ,m n +ABC V 90C ∠=︒8cm AC =6cm BC =10cm AB =P C C A B C →→→2cm t P AB t =CP ABC V P AB t =CP ABC V P PC PB t BCP V(1)请直接写出,两点的坐标;(2)如图,分别以,为直角边向右侧作等腰交轴于点,连接,求证:;(3)如图,点为y 轴上一动点,点在直线侧作等腰,若连接E ,,三点按逆时针顺序排列B C 1AB BC Rt x M BM BM DE ⊥2F (),33G m m -+Rt BCE V F G ((1)如图1,当点D 在边上时.①求证:;②直接判断结论,,的关系 (2)如图2,当点D 在边的延长线上时,其他条件不变,请写出(1)求的度数;(2)当点运动到使时,求(3)当点运动时,与BC ABD ACE ≌△△BC DC CE BC CBD ∠P ACB ABD =∠∠P APB ∠ADB ∠(1)如图①,动点在轴负半轴上,且交于点、交于点,求证:.(2)如图,在(1)的条件下,连接,求证:.(3)如图③,E 为的中点,动点G 在轴上,,,连接,作交轴于F ,猜想,、之间的数量关系,并说明理由.13.已知中.(1)如图1、2,若点是上一点,且,点是上的动点,将沿对折,点的对应点为(点和点在直线的异侧),与交于点.①当时,求的度数.②当是等腰三角形时,求的度数.(2)如图3,若点是上一点,且,是线段上的动点,以为直角构造等腰直角(三点顺时针方向排列),在点的运动过程中,直接写出的最小值.14.在平面直角坐标系中,点B 、C 的坐标分别为、,点A 在第一象限,且是等边三角形.点D 的坐标为,E 是边上一动点,连接,以为边在右侧作等边,连接.(1)求出A 点坐标;(2)当点F 落在边上时,与全等吗?若全等,请给予证明;若不全等,请说明理由;(3)当以为腰的是等腰三角形时,的长为_________.C x AH BC ⊥BC H OB P △≌△AOP BOC ②OH 2OHP AHB ∠=∠AB y (0,)G n 0n <GE EF GE ⊥x GB OB AF Rt ABC △90930∠︒∠︒C BC B =,且=,=D CB 2CD =E AB DBE V DE B B'B'C AB 'DB AB H 20∠=︒'B EA EDB ∠B HE 'V DEB ∠D CB 2CD =M AC MDN ∠DMN V D M N ,,M CN NB +(0,0)(12,0)ABC V (4,0)AB DE DE DE DEF V CF AC CDF V BED V DF CDF V BE(1)若,① ,②判断线段,之间有怎样的位置关系并说明理由;(2)设,,则x ,y 之间的数量关系为(3)如图2,当时,若线段,90BAC ∠=︒BCA ∠=BC CE BAC x ∠=︒BCE y ∠=︒CE AB ∥3BC =ABC V______.17.已知:如图,在平面直角坐标系中,点B是x轴上的动点,点,点,轴于点D.(1)当点B坐标为时,求证:;(2)在(1)的条件下,探究并证明和的位置关系;(3)当的周长最小时,求点B的坐标.()0,2A()5,3CCD x⊥()3,0OAB DBC≌△△AB BCABCV参考答案:(4)17. (2),(3)CEP DBP BPB +∠∠=∠AB BC ⊥()2,0B。
eandr动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;6当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC∴AO=12AC.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等AA(备用图)CBAED图1NMA BCDEMN图2ACBEDNM图3量关系,并加以证明.解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等)∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC ,∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠= ,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.解:(1)正确.证明:在AB 上取一点M ,使AM EC =,连接ME .BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠.90AEB BAE ∠+∠= °,90AEB CEF ∠+∠=°,∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=.(2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°.四边形ABCD 是正方形, AD BE ∴∥.DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ).AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t.求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值AD F C GB图1ADFC GEB图3A DFC GB 图2AD FC GE B MADFGE BNAllthisinth7、如图1,在等腰梯形ABCD中,AD BC∥,E是AB的中点,过点E作EF BC∥交CD于点F.46AB BC==,,60B=︒∠.求:(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PM EF⊥交BC于点M,过M作MN AB∥交折线ADC于点N,连结PN,设EP x=.①当点N在线段AD上时(如图2),PMN△的形状是否发生改变?若不变,求出PMN△的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使PMN△为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由解(1)如图1,过点E作EG BC⊥于点G.∵E为AB的中点,∴122BE AB==.在Rt EBG△中,60B=︒∠,∴30BEG=︒∠.∴112BG BE EG====,.即点E到BCA DA DEBFC图4(备用)A DEBFC图5(备用)A DEBFC图1图2A DEBFCPNM图3A DEBFCPNM(第25题)si(2)①当点N在线段AD上运动时,PMN△的形状不发生改变.∵PM EF EG EF⊥⊥,,∴PM EG∥.∵EF BC∥,∴EP GM=,PM EG==同理4MN AB==.如图2,过点P作PH MN⊥于H,∵MN AB∥,∴6030NMC B PMH==︒=︒∠∠,∠.∴12PH PM==∴3cos302MH PM=︒=A.则35422NH MN MH=-=-=.在Rt PNH△中,PN===∴PMN△的周长=4PM PN MN++=++.②当点N在线段DC上运动时,PMN△的形状发生改变,但MNC△恒为等边三角形.当PM PN=时,如图3,作PR MN⊥于R,则MR NR=.类似①,32MR=∴23MN MR==.∵MNC△是等边三角形,∴3MC MN==.此时,6132x EP GM BC BG MC===--=--=.当MP MN=时,如图4,这时MC MN MP===此时,615x EP GM===--=当NP NM=时,如图5,30NPM PMN==︒∠∠.则120PMN=︒∠,又60MNC=︒∠,∴180PNM MNC+=︒∠∠.因此点P与F重合,PMC△为直角三角形.∴tan301MC PM=︒=A.此时,6114x EP GM===--=.综上所述,当2x=或4或(5时,PMN△为等腰三角形.8、如图,已知ABC△中,10AB AC==厘米,8BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与CQP△是否全等,请说明理由;图3A DEBFCPNM图4A DEBFCPMN图5A DEBF(PCMNGGRG图2A DEBFCPNMGH②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =.又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△.②∵P Qv v ≠,∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒。
人教版八年级数学上册数学动点问题专题练习(详细参考答案附后)1、在△ABC中,BC=12cm,AC=9,点P为一动点,沿着C→B→A→C的路径运动(返回C点时则停止运动),已经点P的运动速度为2cm/秒,试求:(1)AB的取值范围;(2)若∠C=90度,AB=15cm①当P点在CB上运动时,经过多长时间PC=AC;②经过多长时间后,点P与△ABC某一顶点的连线将把△ABC的周长分成相等的两部分.③当P从运动开始,几秒后点P与△ABC某一顶点的连线将这个△ABC分成面积相等的两部分;2、点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交AB 于点E,交CA的延长线于点F。
(1)如图(1),请观察AF与AE,它们相等吗?并证明你的猜想。
(2)如图(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB 的延长线上时,(1)中所得的结论还成立吗?请你在图(2)中完成图形,并给予证明。
3、如图,己知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点。
如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3)。
(1)用的代数式表示PC的长度;(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD 与△CQP全等?人教版八年级数学上册数学动点问题专题练习参考答案1、在△ABC中,BC=12cm,AC=9,点P为一动点,沿着C→B→A→C的路径运动(返回C点时则停止运动),已经点P的运动速度为2cm/秒,试求:(1)AB的取值范围;(2)若∠C=90度,AB=15cm①当P点在CB上运动时,经过多长时间PC=AC;②经过多长时间后,点P与△ABC某一顶点的连线将把△ABC的周长分成相等的两部分.③当P从运动开始,几秒后点P与△ABC某一顶点的连线将这个△ABC分成面积相等的两部分;解:(1)根据三角形三边之间的关系可知AB> BC -AC AB<AC+BC∴AB> 12 -9 AB<12+9即:3<AB<21(2)①∵PC=AC=9 t=v÷s=9÷2=4.5(秒)②△ABC的周长一半=(AB+ AC+BC)÷2=(15+9+12)÷2=36÷2=18(cm)当P从点C往点B运动至9cm处时,点P与点A的连线恰好将△ABC的周长分成相等的两部分。
动点问题(综合测试)(人教版)一、单选题(共6道,每道16分)1.如图,在平行四边形ABCD中,AB=1,BC=3.动点P从点A出发,沿AD方向以每秒3个单位的速度向点D匀速运动;同时动点Q从点C出发,沿CD方向以每秒1个单位的速度向点D匀速运动.连接QP并延长,交BA的延长线于点M,设运动的时间为t秒,则当t=( )时,四边形AQDM是平行四边形.A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:动点问题2.如图,在等腰梯形ABCD中,AD∥BC,AB=DC=50,AD=75,BC=135.点P从点B出发沿折线段BA-AD以每秒5个单位长的速度向点D匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度向点B匀速运动;点P,Q同时出发,当点P与点D重合时停止运动,点Q也随之停止,设点P的运动时间为t秒.(1)当点P在BA边上运动时,过点P作PN∥BC交DC于点N,作PM⊥BC,垂足为M,连接NQ,易证△PBM与△NCQ全等.①若PN=3PM,则t的值为__________.②四边形PMQN能否为正方形?(若能则填能,并求出t的值;若不能就填不能)( )A.;能,t=13.5B.9;能,t=13.5C.;不能D.9;不能答案:C解题思路:试题难度:三颗星知识点:动点问题3.(上接试题2)(2)当点P在AD边上运动时,当PQ=DC时,t的值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:动点问题4.如图,梯形ABCD中,AD∥BC,AB=DC=AD=4,BD⊥CD,E是BC的中点.(1)∠DBC的度数为( )A.30°B.25°C.45°D.60°答案:A解题思路:试题难度:三颗星知识点:动点问题5.(上接试题4)(2)BC的长为( )A.4B.5C.6D.8答案:D解题思路:试题难度:三颗星知识点:动点问题6.(上接试题4,试题5)(3)点P从点B出发沿B→C以每秒3个单位的速度向点C匀速运动,同时点Q从点E出发沿E→D以每秒1个单位的速度向点D匀速运动,当其中一点到达终点时,另一点也停止运动.设运动时间为t(s),连接PQ.当t等于( )秒时,△PEQ 为等腰三角形.A.1B.1或C.1或2D.2答案:C解题思路:试题难度:三颗星知识点:动点问题。
初⼆动点问题(含答案解析)动态问题所谓“动点型问题”是指题设图形中存在⼀个或多个动点,它们在线段、射线或弧线上运动的⼀类开放性题⽬.解决这类问题的关键是动中求静,灵活运⽤有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平⾏四边形;6当t= 时,四边形是等腰梯形. 82、如图2,正⽅形ABCD的边长为4,点M在边DC上,且DM=1,N为对⾓线AC上任意⼀点,则DN+MN的最⼩值为 53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转⾓为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直⾓梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平⾏四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC∴AO=12AC.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. ⼜∵四边形EDBC是平⾏四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(备⽤图)CBED图1NMA BCDEMACBEDNM图3(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.解:(1)①∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB②∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE ⼜∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE ,⼜∵AC=BC ,∴△ACD ≌△CBE ,∴AD=CE ,CD=BE ,∴DE=CD-CE=BE-AD.5、数学课上,张⽼师出⽰了问题:如图1,四边形ABCD 是正⽅形,点E 是边BC 的中点.90AEF ∠=,且EF 交正⽅形外⾓DCG ∠的平⾏线CF 于点F ,求证:AE =EF .经过思考,⼩明展⽰了⼀种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进⼀步的研究:(1)⼩颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意⼀点”,其它条件不变,那么结论“AE =EF ”仍然成⽴,你认为⼩颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)⼩华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意⼀点,其他条件不变,结论“AE =EF ”仍然成⽴.你认为⼩华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.解:(1)正确.证明:在AB 上取⼀点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外⾓平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°,∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=.(2)正确.证明:在BA 的延长线上取⼀点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°.四边形ABCD 是正⽅形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外⼀点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB ⽅向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三⾓形的t 值;(2)△ PAB 为直⾓三⾓形的t 值;(3)若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直⾓三⾓形的t 值AD FC G E B 图1 AD FG B 图3A D FC GE B 图2A D F C GB M A D FC G B N7、在等腰梯形ABCD中,AD‖BC,E为AB的中点,过点E作EF‖BC交CD于点F.AB=4,BC=6, ∠B=60°。
动态问题之答禄夫天创作创作时间:贰零贰壹年柒月贰叁拾日所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 数形结合思想 转化思想1、如图1,梯形ABCD 中,AD ∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开始沿AD 边以1cm/秒的速度移动,点Q 从C 开始沿CB 向点B 以2 cm/秒的速度移动,如果P ,Q 分别从A ,C 同时出发,设移动时间为t 秒。
当t=时,四边形是平行四边形;6 当t=时,四边形是等腰梯形. 82、如图2,正方形ABCD 的边长为4,点M 在边DC 上,且DM=1,N 为对角线AC 上任意一点,则DN+MN 的最小值为53、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α=度时,四边形EDBC 是等腰梯形,此时AD 的长为;(2理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC∴AO在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.解:(1)①∵∠ACD=∠ACB=90°∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90°(备用图)CBAED图1NMA BCDEMN图2ACBEDNM图3∴∠CAD=∠BCE ∵AC=BC∴△ADC≌△CEB②∵△ADC≌△CEB∴CE=AD,CD=BE ∴DE=CE+CD=AD+BE(2) ∵∠ADC=∠CEB=∠ACB=90°∴∠ACD=∠CBE又∵AC=BC∴△ACD≌△CBE ∴CE=AD,CD=BE∴DE=CE-CD=AD-BE(3) 当MN旋转到图3的位置时,DE=BE-AD(或AD=BE-DE,BE=AD+DE等)∵∠ADC=∠CEB=∠ACB=90°∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD是正方EF形,点E是边BC经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.解:(1)正确.ASA ).(2)正确.四边形ASA ).6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t.求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值7、如图1 ADFC GE B图1ADFC GE B图3ADFC GE B图2ADFG BN求:(1)求点(223在,请说明理由解(1)如图1∴在中,∴∴A DE FA DEBFC图4(备A DEBFC图5(备A DEBFC图1 图2A DEBFCPNM图3A DEBFCPNM(第25题)(2如图2cos30︒=中,PN的周长=PM在线段DC恒为等边三角形.3∵是等边三角形,∴当时,如图4,这时此时,当时,如图5,则又图3A DEBFCPNM图4A DEBFCPMN图5A DEBFCMNGGRG图2A DEBFCPNMGH48(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA上由C 点向A 点运动①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B间点P 与点Q解:(1又∵厘米, ∴厘米, ∴②又则∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒。
《勾股定理--动点问题》一、单选题1.如图,在△ABC 中,AB =6,BC =8,∠B =90°,若P 是AC 上的一个动点,则AP+BP+CP 的最小值是( )A .14.8B .15C .15.2D .162.如图,Rt △ACB 中,∠ACB =90°,AB =25cm ,AC =7cm ,动点P 从点B 出发沿射线BC 以2cm/s 的速度运动,设运动时间为ts ,当△APB 为等腰三角形时,t 的值为( )A .62596或252B .252或24或12C .62596或24或12D .62596或252或243.如图,在四边形ABCD 中,∠B =∠D =90°,连接AC ,∠BAC =45°,∠CAD =30°,CD =2,点P 是四边形ABCD 边上的一个动点,若点P 到AC 的距离为3,则点P 的位置有( )A .4处B .3处C .2处D .1处4.如图,在等腰三角形ABC 中,AC =BC =5,AB =8,D 为底边上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,则DE+DF =( )A .5B .8C .13D .4.85.已知Rt △BCE 和Rt △ADE 按如图方式摆放,∠A =∠B =90°,A 、E 、B 在一条直线上,AD =3,AE =4,EB =5,BC =12,M 是线段AD 上的动点,N 是线段BC 上的动点,MN 的长度不可能是( )A .9B .12C .14D .16二、填空题6.如图,已知∠AOM=45°,OA=2,点B是射线OM上的一个动点.当△AOB为等腰三角形时,线段OB的长度为 .7.如图,在△ABC中,已知AB=AC=6,BC=8,P是BC边上的一动点(P不与点B、C重合),∠B=∠APE,边PE与AC交于点D,当△APD为等腰三角形时,则PB的长为 .8.如图,在△ABC中,OA=4,OB=3,C点与A点关于直线OB对称,动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.当△PQB为等腰三角形时,OP的长度是 .9.如图,在三角形△ABC中,∠A=45°,AB=8,CD为AB边上的高,CD=6,点P为边BC上的一动点,P1,P2分别为点P关于直线AB,AC的对称点,连接P1P2,则线段P1P2长度的取值范围是 .三、解答题10.如图,∠AOB=90°,点C在OA边上,OA=36cm,OB=12cm,点P从点A出发,沿着AO方向匀速运动,点Q同时从点B出发,以相同的速度沿BC方向匀速运动,P、Q两点恰好在C 点相遇,求BC的长度?11.如图,在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm.点P从点A出发沿AB方向以1cm/s 的速度向终点B运动,点Q从点B出发沿BC方向以6cm/s的速度向终点C运动,P,Q两点同时出发,设点P的运动时间为t秒.(1)求BC的长;(2)当t=2时,求P,Q两点之间的距离;(3)当AP=CQ时,求t的值?12.如图,在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm,点P从点A沿AB方向以1cm/s的速度运动至点B,点Q从点B沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发,设运动时间为t秒.(1)求BC的长;(2)运动几秒后,△PBQ是等腰三角形;(3)运动过程中,直线PQ能否平分△ABC的周长,若能,求出t的值,若不能,请说明理由.13.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,动点P从点B出发,以2cm/秒的速度沿BC移动至点C,设运动时间为t秒.(1)求BC的长;(2)在点P的运动过程中,是否存在某个时刻t,使得点P到边AB的距离与点P到点C的距离相等?若存在,求出t的值;若不存在,请说明理由.14.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,同时停止.(1)P、Q出发4秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,出发几秒钟后,△CQB能形成直角三角形?15.某校机器人兴趣小组在如图所示的三角形场地上开展训练.已知:△ABC中,∠C=90°,AB=5,BC=3;机器人从点C出发,沿着△ABC边按C→B→A→C的方向匀速移动到点C停止;机器人移动速度为每秒1个单位,移动至拐角处调整方向需要0.5秒(即在B、A处拐弯时分别用时0.5秒).设机器人所用时间为t秒时,其所在位置用点P表示(机器人大小不计).(1)点C到AB边的距离是 ;(2)是否存在这样的时刻,使△PBC为等腰三角形?若存在,求出t的值;若不存在,请说明理由.16.如图1,Rt△ABC中,AC⊥CB,AC=15,AB=25,点D为斜边上动点.(1)如图2,过点D作DE⊥AB交CB于点E,连接AE,当AE平分∠CAB时,求CE;(2)如图3,在点D的运动过程中,连接CD,若△ACD为等腰三角形,求AD.17.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C 的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长;(2)当t为几秒时,BP平分∠ABC;(3)问t为何值时,△BCP为等腰三角形?18.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.连接AP.(1)当t=3秒时,求AP的长度(结果保留根号);(2)当△ABP为等腰三角形时,求t的值;(3)过点D作DE⊥AP于点E.在点P的运动过程中,当t为何值时,能使DE=CD?个单位长度的速度运动.设点P的运动时间为t秒(t>0).(1)求AC的长及斜边AB上的高;(2)①当点P在AC延长线上运动时,CP的长为 ;(用含t的代数式表示)②若点P在∠ABC的角平分线上,则t的值为 ;(3)在整个运动中,直接写出△ABP是等腰三角形时t的值.度的速度沿折线A﹣B﹣C运动.设点P的运动时间为t秒(t>0).(1)求AC的长.(2)求斜边AB上的高.(3)①当点P在BC上时,PC的长为 .(用含t的代数式表示)②若点P在∠BAC的角平分线上,则t的值为 .(4)在整个运动过程中,直接写出△PBC是等腰三角形时t的值.答案一、单选题1.【思路点拨】利用勾股定理求出AC,根据垂线段最短,求出BP的最小值即可解决问题.【解题过程】解:∵∠B=90°,AB=6,BC=8,∴AC=AB2+BC2=62+82=10,∵AP+BP+PC=BP+AC=BP+10,根据垂线段最短可知,当BP⊥AC时,BP的值最小,最小值BP=AB⋅BCAC =245= 4.8,∴AP+BP+CP的最小值=10+4.8=14.8,故选:A.2.【思路点拨】当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.【解题过程】解:∵∠C=90°,AB=25cm,AC=7cm,∴BC=24cm.①当BP=BA=25时,∴t=252.②当AB=AP时,BP=2BC=48cm,∴t=24.③当PB=PA时,PB=PA=2t cm,CP=(24﹣2t)cm,AC=7cm,在Rt△ACP中,AP2=AC2+CP2,∴(2t)2=72+(24﹣2t)2,解得t=62596.综上,当△ABP为等腰三角形时,t=252或24或62596,3.【思路点拨】根据勾股定理,可以求得AC、AD、BC和AB的长,然后即可得到点D到AC的距离和点B到AC 的距离,从而可以得到满足条件的点P有几处,本题得以解决.【解题过程】解:∵∠CAD=30°,CD=2,∠D=90°,∴AC=4,AD=AC2−C D2=42−22=23,∴在Rt△ADC中,斜边AC上的高是:AD⋅CDAC =23×24=3,∵AC=4,∠B=90°,∠BAC=45°,∴AB=BC=22,∴在Rt△ABC中,斜边AC上的高是:BC⋅ABAC =22×224=2,∵3<2,点P是四边形ABCD边上的一个动点,点P到AC的距离为3,∴点P的位置在点D处,或者边BC上或者边AB上,即满足条件的点P有3处,故选:B.4.【思路点拨】连接CD,过C点作底边AB上的高CG,根据S△ABC=S△ACD+S△DCB不难求得DE+DF的值.【解题过程】解:连接CD,过C点作底边AB上的高CG,∵AC=BC=5,AB=8,∴BG=4,CG=BC2−B G2=52−42=3,∵S△ABC=S△ACD+S△DCB,∴AB•CG=AC•DE+BC•DF,∴8×3=5×(DE+DF)∴DE+DF=4.8.故选:D.5.【思路点拨】根据已知条件易求AB=9,AD∥BC,再确定MN的最大值及最小值可求出MN的取值范围,进而可求解.【解题过程】解:∵AE=4,EB=5,∴AB=AE+EB=4+5=9,∵∠DAE=∠B=90°,∴∠DAE+∠B=180°,∴AD∥BC,当M点与A点重合,N点与C点重合时,如图,∵∠B=90°,BC=12,∴MN=AB2+BC2=92+122=15;当M点与A点重合,N点与B点重合时,如图,MN=AB=9,∴9≤MN≤15,∴MN的长度不可能是16,故选:D.二、填空题6.【思路点拨】分三种情况,当OB=AB,OA=AB,OA=OB时,由等腰三角形的性质可求出答案.【解题过程】解:当△AOB为等腰三角形时,分三种情况:①如图,OB=AB,∴∠O=∠OAB,∵∠AOM=45°,∴∠ABO=90°,∴OB=1;②如图,OA=OB=2;③如图,OA=AB,∴∠O=∠ABO=45°,∴∠A=90°,∴OB=OA2+AB2=2+2=2.综上所述,OB的长为1或2或2.故答案为:1或2或2.7.【思路点拨】需要分类讨论:①当AP=PD时,易得△ABP≌△PCD.②当AD=PD时,根据等腰三角形的性质,勾股定理以及三角形的面积公式求得答案.③当AD=AP时,点P与点B重合.【解题过程】解:①当AP=PD时,则△ABP≌△PCD,则PC=AB=6,故PB=2.②当AD=PD时,∴∠PAD=∠APD,∵∠B=∠APD=∠C,∴∠PAD=∠C,∴PA=PC,过A作AG⊥BC于G,∴CG=4,∴AG=AC2−C G2=62−42=25,过P作PH⊥AC于H,∴CH=3,设PC=x,∴S△APC=12AG•PC=12AC•PH,∴5x=3×PH,x,∴PH=53∵PC2=PH2+CH2,∴x2=(5x)2+9,3(负值舍去),解得:x=92∴PC=9,2∴PB=7;2③当AD=AP时,点P与点B重合,不合题意..综上所述,PB的长为2或72故答案为:2或7.28.【思路点拨】分为三种情况:①PQ=BP,②BQ=QP,③BQ=BP,由等腰三角形的性质和勾股定理即可求解.【解题过程】解:∵OA=8,OB=6,C点与A点关于直线OB对称,∴BC=AB=42+32=5,分为3种情况:①当PB=PQ时,∵C点与A点关于直线OB对称,∴∠BAO=∠BCO,∵∠BPQ=∠BAO,∴∠BPQ=∠BCO,∵∠APB=∠APQ+∠BPQ=∠BCO+∠CBP,∴∠APQ=∠CBP,在△APQ与△CBP中,{∠QAP=∠PCB∠APQ=∠CBP,QP=PB∴△APQ≌△CBP(AAS),∴PA=BC,此时OP=5﹣4=1;②当BQ=BP时,∠BPQ=∠BQP,∵∠BPQ=∠BAO,∴∠BAO=∠BQP,根据三角形外角性质得:∠BQP>∠BAO,∴这种情况不存在;③当QB=QP时,∠QBP=∠BPQ=∠BAO,∴PB=PA,设OP=x,则PB=PA=4﹣x,在Rt△OBP中,PB2=OP2+OB2,∴(4﹣x)2=x2+32,解得:x=7;8∵点P在AC上,∴点P在点O左边,此时OP=7.8.∴当△PQB为等腰三角形时,OP的长度是1或78故答案为:1或7.89.【思路点拨】如图,连接AP1,AP,AP2,作AH⊥BC于H.证明△P1AP2是等腰直角三角形,推出P1P2=2 PA,求出PA的取值范围即可解决问题.【解题过程】解:如图,连接AP1,AP,AP2,作AH⊥BC于H.∵P1,P2分别为点P关于直线AB,AC的对称点,∴AP=AP1=AP2,∠PAB=∠BAP1,∠PAC=∠CAP2,∵∠BAC=45°,∴∠P1AP2是等腰直角三角形,∴P1P2=2AP2=2PA.∵CD⊥AB,∴∠ADC=90°,∠DAC=∠DCA=45°,∴AD=DC=6,∴AC=62>AB,∵AB=8,∴BD=2,BC=BD2+CD2=4+36=210,∵S△ABC=12•BC•AH=12•AB•CD,∴AH=8×6210=12510,∵12105≤PA≤62,∴2455≤P1P2≤12.故答案为2455≤P1P2≤12.三、解答题10.解:∵点P、Q同时出发,且速度相同,∴BC=CA,设BC=xcm,则CA=xcm,∵OA=36cm∴OC=(36﹣x)cm,∵∠AOB=90°∴OB2+OC2=BC2,∴122+(36﹣x)2=x2,解得:x=20,∴BC=20cm.11.解:(1)在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm,∴BC=AC2−A B2=24cm.(2)如图,连接PQ,BP=7﹣2=5,BQ=6×2=12,在直角△BPQ中,由勾股定理得到:PQ=BP2+BQ2=13(cm);(3)设t秒后,AP=CQ.则t=24﹣6t,.解得 t=247秒,AP=CQ.答:P、Q两点运动24712.解:(1)由勾股定理得,BC=AC2−A B2=252−72=24(cm);(2)∵△PBQ是等腰三角形,∠B=90°,∴BP=BQ,则7﹣1×t=6t,解得t=1,∴运动1秒后,△PBQ是等腰三角形;(3)假设直线PQ能平分△ABC的周长,则BP+BQ=12(AB+BC+AC)=12(7+24+25)=28(cm),则7﹣1×t+6t=28,解得t=215,当t=215时,点Q的运动路程为6×215=25.2>24,∴直线PQ不能平分△ABC的周长.13.解:(1)在Rt△ABC中,由勾股定理得:BC=AB2−A C2=102−62=8(cm);(2)存在,理由如下:如图,当点P恰好运动到∠BAC平分线上时,点P到直线AB的距离与点P到点C的距离相等,由已知可得:BP=2tcm,PC=BC﹣BP=(8﹣2t)cm,连接AP,过点P作PE⊥AB于E,如图所示:则PE=PC=(8﹣2t)cm,在△AEP与△ACP中,{∠PAE=∠PAC∠AEP=∠C=90°AP=AP,∴△AEP≌△ACP(AAS),∴AE=AC=6cm,∴BE=AB﹣AE=10﹣6=4(cm),在Rt△BEP中,由勾股定理得:BP2=BE2+PE2,即(2t)2=42+(8﹣2t)2,解得:t=52,即当t的值为52时,点P到边AB的距离与点P到点C的距离相等.14.解:(1)∵运动时间为4秒,∴BQ=2×4=8(cm),BP=AB﹣AP=16﹣1×4=12(cm),在Rt△PQB中,根据勾股定理得:PQ=BQ2+BP2=82+122=413(cm);(2)设运动时间为t秒,则BQ=2t(cm),BP=(16﹣t)(cm),根据题意得:2t=16﹣t,解得:t=163,即出发163秒钟后,△PQB能形成等腰三角形;(3)当点Q在CA边上,且△CQB形成直角三角形时,过点B作CA的垂线,垂足即为点Q.在Rt△ABC中,根据勾股定理得:AC=AB2+BC2=162+122=20(cm),根据三角形面积公式可得:BQ=AB⋅BCAC =12×1620=485(cm),在Rt△BCQ中,根据勾股定理得:CQ=BC2−B Q2=122−(485)2=365(cm),(12+365)÷2=9.6(秒),当点Q运动到点A时,△CQB也形成直角三角形,(12+20)÷2=16(秒).∴当点Q在边CA上运动时,出发9.6或16秒钟后,△CQB能形成直角三角形.15.解:(1)△ABC中,∠C=90°,∴AB2=AC2+BC2,∵AB=5,BC=3,∵52=AC2+32,∴AC=4,∴点C到AB边的距离=AC⋅BCAB =3×45= 2.4;故答案为:2.4;(2)存在,使△PBC为等腰三角形时,P在AB上或在AC上,当P在AB上时,①BC=BP,如图1,∵BP=t﹣0.5﹣3,∴t﹣0.5﹣3=3,解得:t=6.5;②CB=CP,如图2,过点C作CD⊥AB于D,则BD=PD,由(1)知:CD=2.4,∵BC=3,∴BD=32−2.42=1.8,∴BP=3.6,∴t=3.6+3+0.5=7.1;③PB=CP,如图3,∴∠B=∠PCB,∵∠ACP+∠PCB=∠A+∠B=90°,∴∠ACP=∠A,∴AP=CP=BP=2.5,∴t=2.5+0.5+3=6;当P在AC上,如图4,CB=CP=3,∴t=3+5+0.5+0.5+4﹣3=10.综上所述,t的值为6.5或7.1或6或10.16.解:(1)∵AC⊥CB,AC=15,AB=25∴BC=20,∵AE平分∠CAB,∴∠EAC=∠EAD,∵AC⊥CB,DE⊥AB,∴∠EDA=∠ECA=90°,∵AE=AE,∴△ACE≌△ADE(AAS),∴CE=DE,AC=AD=15,设CE=x,则BE=20﹣x,BD=25﹣15=10在Rt△BED中∴x2+102=(20﹣x)2,∴x=7.5,∴CE=7.5.(2)①当AD=AC时,△ACD为等腰三角形∵AC=15,∴AD=AC=15.②当CD=AD时,△ACD为等腰三角形∵CD=AD,∴∠DCA=∠CAD,∵∠CAB+∠B=90°,∠DCA+∠BCD=90°,∴∠B=∠BCD,∴BD=CD,∴CD=BD=DA=12.5,③当CD=AC时,△ACD为等腰三角形,如图1中,作CH⊥BA于点H,则12•AB•CH=12•AC•BC,∵AC=15,BC=20,AB=25,∴CH=12,在Rt△ACH中,AH=AC2−C H2=9,∵CD=AC,CH⊥BA,∴DH=HA=9,∴AD=18.17.解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴由勾股定理得PB=210cm∴△ABP的周长为:AP+PB+AB=6+10+210=(16+210)cm;(2)如图2所示,过点P作PD⊥AB于点D,∵BP平分∠ABC,∴PD=PC.在Rt△BPD与Rt△BPC中,{PD=PCBP=BP,∴Rt△BPD≌Rt△BPC(HL),∴BD=BC=6 cm,∴AD=10﹣6=4 cm.设PC=x cm,则PA=(8﹣x)cm在Rt△APD中,PD2+AD2=PA2,即x2+42=(8﹣x)2,解得:x=3,∴当t=3秒时,AP平分∠CAB;(3)若P在边AC上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P在AB边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,所以用的时间为12s,故t=12s时△BCP为等腰三角形;②若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③若BP=CP时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC ∴PA=PB=5cm∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.∴t=6s或13s或12s或 10.8s 时△BCP为等腰三角形.18.解:(1)根据题意,得BP=2t,PC=16﹣2t=16﹣2×3=10,AC=8,在Rt△APC中,根据勾股定理,得AP=AC2+PC2=164=241.答:AP的长为241.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB=64+256=320=85若BA=BP,则 2t=85,解得t=45;若AB=AP,则BP=32,2t=32,解得t=16;若PA=PB,则(2t)2=(16﹣2t)2+82,解得t=5.答:当△ABP为等腰三角形时,t的值为45、16、5.(3)①点P在线段BC上时,过点D作DE⊥AP于E,如图1所示:则∠AED=∠PED=90°,∴∠PED=∠ACB=90°,∴PD平分∠APC,∴∠EPD=∠CPD,又∵PD=PD,∴△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=16﹣2t,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+16﹣2t=20﹣2t,在Rt△APC中,由勾股定理得:82+(16﹣2t)2=(20﹣2t)2,解得:t=5;②点P在线段BC的延长线上时,过点D作DE⊥AP于E,如图2所示:同①得:△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=2t﹣16,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+2t﹣16=2t﹣12,在Rt△APC中,由勾股定理得:82+(2t﹣16)2=(2t﹣12)2,解得:t=11;综上所述,在点P的运动过程中,当t的值为5或11时,能使DE=CD.19.解:(1)在△ABC中,∠ACB=90°,AB=5,BC=3,由勾股定理得:AC=4.设斜边AB上的高为h,∵12AB•h=12AC•BC,∴5h=3×4,∴h=2.4.∴AC的长为4,斜边AB上的高为2.4;(2)已知点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B﹣A运动,①当点P在CB上时,点P运动的长度为:AC+CP=2t,∵AC=4,∴CP=2t﹣AC=2t﹣4.故答案为:2t﹣4.②若点P在∠ABC的角平分线上,则:设PM=PC=y,则AP=4﹣y,在Rt△APM中,AM2+PM2=AP2,∴22+y2=(4﹣y)2,解得y=32,(4−32)÷2=54,即若点P在∠ABC的角平分线上,则t的值为54.故答案为:54.(3)当AB作为底边时,如图所示:∵APAM =AP2.5=54,∴AP=3.125,此时t=3.125÷2=1.5625;当AB作为腰时,如图所示:AP1=AB=5,此时t=5÷2=2.5;AP2=2AC=8,此时t=4,综上,t的值为1.5625或2.5或4.20.解:(1)∵在△ABC中,∠ACB=90°,AB=10,BC=6,∴AC=AB2−B C2=102−62=8;(2)设边AB上的高为h则S△ABC =12AC⋅BC=12AB⋅h,∴12×6×8=12×10⋅h,∴h=245,答:斜边AB上的高为245;(3)①当点P在BC上时,点P运动的长度为AB+BP=2t,则PC=BC﹣BP=6﹣(2t﹣10)=6﹣2t+10=16﹣2t;②当点P'在∠BAC的角平分线上时,过点P作PD⊥AB,如图:∵AP平分∠BAC,PC⊥AC,PD⊥AB,∴PD=PC,有①知,PC=16﹣2t,BP=2t﹣10,∴PD=16﹣2t,在Rt△ACP和Rt△ADP中,{AP=APPD=PC,∴Rt△ACP≌Rt△ADP(HL),∴AD=AC=8,又∵AB=10,∴BD=2,在Rt△BDP中,由勾股定理得:22+(16﹣2t)2=(2t﹣10)2,解得:t=20.3.故答案为:①16﹣2t;②203(4)由图可知,当△BCP是等腰三角形时,点P必在线段AB上,①当点P在线段AB上时,若BC=BP,则点P运动的长度为AP=2t,∵AP=AB﹣BP=10﹣6=4,∴2t=4,∴t=2;②若PC=BC,如图,过点C作CH⊥AB于点H,则BP=2BH,在△ABC中,∠ACB=90°,AB=10,BC=6,AC=8,∴AB•CH=AC•BC,∴10CH=8×6,∴CH=245,在Rt△BCH中,由勾股定理得:BH=BC2−C H2=62−(245)2=185= 3.6,∴BP=2BH=7.2,∴点P运动的长度为:AP=AB﹣BP=10﹣7.2=2.8,∴2t=2.8,∴t=1.4;③若PC=PB,如图所示,过点P作PQ⊥BC于点Q,则BQ=CQ=12×BC=3,∠PQB=90°,∴∠ACB=∠PQB=90°,∴PQ∥AC,∴PQ为△ABC的中位线,∴PQ=12×AC=12×8=4,在Rt△BPQ中,由勾股定理得:BP=BQ2+PQ2=32+42=5,点P运动的长度为AP=2t,AP=AB﹣BP=10﹣5=5,∴2t=5,∴t=2.5.综上,t的值为1.4或2或2.5.。
动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒当t= 时,四边形是平行四边形;6当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为 53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC=23. ∴AO=12AC=3.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.OE CDAαlOCA(备用图)CEDNM CDMCEM(1)当直线MN 绕点C 旋转到图1的位置时,求证①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.解(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=o,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证AE =EF .经过思考,小明展示了一种正确的解题思路取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究(1)小颖提出如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 解(1)正确. 证明在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF Q 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=Q °,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. Q 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值AD FG B 图1 A D FC G E B 图3A D FGB 图2A D F C G EB M A D FG B N7、在等腰梯形ABCD 中,AD ‖BC,E 为AB 的中点,过点E 作EF ‖BC 交CD 于点F.AB=4,BC=6, ∠ B=60° (1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM ⊥EF 交BC 于点M ,过M 作MN ‖AB 交折线ADC 于点N ,连接PN ,设EP=x①当点N 在线段AD 上时,△PMN 的形状是否发生改变?若不变,求出△PMN 的周长;若改变,请说明理由②当点N 在线段DC 上时,是否存在点P ,使△PMN 为等腰三角形?若存在,请求出所有满足要求的X 的值,若不存在,请说明理由① ②1°① ②1° 2°3°2° 3°8、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ②∵P Qv v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒(2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得1532104x x =+⨯,解得803x =秒. ∴点P 共运动了803803⨯=厘米. ∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇, ∴经过803秒点P 与点Q 第一次在边AB 上相遇.7、如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.求(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由解(1)如图1,过点E 作EG BC ⊥于点G . ∵E 为AB 的中点, ∴122BE AB ==.在Rt EBG △中,60B =︒∠, ∴30BEG =︒∠.∴112BG BE EG ====,即点E 到BC(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.∵PM EF EG EF ⊥⊥,, ∴PM EG ∥. ∵EF BC ∥, ∴EP GM =,PM EG == 同理4MN AB ==. 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴122PH PM == ∴3cos302MH PM =︒=g . 则35422NH MN MH =-=-=.图1A D E BF CG 图2A D EBFCPNMG HA D E BF C图4(备用)AD EBF C 图5(备用)A D E BF C图1 图2A D E BF C PNM图3A D EBF C PN M (第25题)在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=.②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=.当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-= 当NP NM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠. 因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=g . 此时,6114x EP GM ===--=. 综上所述,当2x =或4或(5-时,PMN △为等腰三角形.图3A D E BFCPN M 图4A D EBF CP MN 图5A DEBF (P ) CM NGGRG。