水泵工作点的调节ppt
- 格式:pptx
- 大小:1.84 MB
- 文档页数:20
第五章叶片泵的运行工况与调节水泵出水池进水池抽水装置示意图工作点:水泵和抽水装置的稳定运行点H(扬程)0Q (流量)水泵特性曲线第节水泵运行工况的确定第一节提供能量出水池进水池Hr H=H (扬程)工作点= 平衡点=Hr H??水泵特性曲线Q (流量)出水池2P1进水池1h p p 12−V V22−=w Hs ρgg 212+++Hr净扬程水头损失=0≈02SQh w =2SQH H st r +=HrHstQQ ~H r(装置需要扬程曲线)HrHHsQQ ~H rQQ ~H(装置需要扬程曲线)(水泵特性曲线)(1)Graphic solution method (图解法)Duty point (工作点)H (扬程)Hr =H H HrH Q HsQ (流量)(2)Numerical solution method (数解法)2SQ Hs Hr +=Q ~ Hr :H2=Q ~ H :QQ 210Qa Q a a H ++QHrH =ⅡⅠⅡⅠTwo pumps in series Two pumps in parallel (两泵串联)(两泵并联)QQQ+=2122DC11QSQSHHCDACstr++=Q1Q22222QSQSHHCDBCstr++=A B两泵并联1)并联点前的管路损失可以忽略时如果并联点前的管路AC、BC很短,局部阻力损失也很小,即并联点前管路的阻力损失占整个管路阻力损失的比重非常小,以至可以忽略不计2211QS Q S H H CD AC st r ++=2222QS Q S H H CD BC st r ++=1)并联点前的管路损失可以忽略时如果并联点前的管路AC、BC很短,局部阻力损失也很小,即并联点前管路的阻力损失占整个管路阻力损失的比重非常小,以至可以忽略不计2=1QS H H CD st r +22QS H H CD st r +=21r r H H =1)并联点前的管路损失可以忽略时Q Q Q =+2121H H ==21r r H HQ ~H r1)并联点前的管路损失可以忽略时+~HH (扬程)Q 1+ Q 2 H 扬程相等Q 2~HQ 1~H 21H H =Hst Q (流量)2)并联点前的管路损失不能忽略时①相同性能的水泵并联且并联点前的管路布置对称(即管路的长短、大小、材质以及管路附件均相同);(即管路的长短大小材质以及管路附件均相同);②不同性能的水泵并联且并联点前的管路布置不对称2)并联点前的管路损失不能忽略时①相同性能的水泵并联且并联点前的管路布置对称(即管路的长短大小材质以及管路附件均相同)(即管路的长短、大小、材质以及管路附件均相同);=Q 流量相等(Q 1Q 2)H =H 扬程相等(12)2211QS Q S H H CD AC st r ++=2222Q S Q S H H CD BC st r ++=扬程相等(H 1=H 2)Q 22)2(Q S S H H CD AC st r ++=2S H AC +)4(Q S H CD st r +=2)并联点前的管路损失不能忽略时相同性能的水泵并联且并联点前的管路布置对称(即管路的长短、大小、材质以及管路附件均相同);2)并联点前的管路损失不能忽略时②不同性能的水泵并联且并联点前的管路布置不对称流量不相等(Q1≠Q2)扬程不相等(H 1≠H2)不能用等扬程下流量横加2)并联点前的管路损失不能忽略时②不同性能的水泵并联且并联点前的管路布置不对称流量不相等(Q1≠Q2)扬程不相等(H 1≠H2)想象处理:把水泵吸水管的进口A、B看成是泵的进口,把泵的出口延伸到并联点C,也就是将并联点前的管路阻力损失点C也就是将并联点前的管路阻力损失当成泵内的水力损失2)并联点前的管路损失不能忽略时②不同性能的水泵并联且并联点前的管路布置不对称想象处理:把水泵吸水管的进口A、B看成是泵的进口,把泵的出口延伸到并联点C,也就是将并联点前的管路阻力损失当成泵内的水力损失扬程相等(H1=H2)流量可叠加2)并联点前的管路损失不能忽略时②不同性能的水泵并联且并联点前的管路布置不对称想象处理:把水泵吸水管的进口A、B看成是泵的进口,把泵的出口延伸到并联点C,也就是将并联点前的管路阻力管损失当成泵内的水力损失2)并联点前的管路损失不能忽略时②不同性能的水泵并联且并联点前的管路布置不对称 需要扬程曲线22111Q S H Q S H H CD st AC r r +=−=′22=−=′222Q S H Q S H H CD st BC r r +并联运行工作点数解法2121101Q a Q a a H ++=泵1的Q ~H曲线方程2222102Q b Q b b H ++=泵2的Q~H曲线方程22111Q S Q S H H CD AC st r ++=水流过ACD的需要扬程联立22222Q S Q S H H CD BC st r ++=水流过BCD的需要扬程求解11r H H =22r H H =QQ Q =+21并联运行工作点讨论1) 并联运行时各台水泵的流量小于水泵各自单独运行时的流量,也表明水泵并联运行时的总流量小于每台泵各自单独工作时的流量之和.作时的流量之和并联运行工作点讨论2)当两台大小不同的泵并联时,小泵输出的流量很小,且随装置需要扬程曲线的变陡(即管路阻力损失变大)输出流量进一步减小。
离心泵的工作点与调节(一)管路特性曲线与泵的工作点当离心泵安装在特定的管路系统中工作时,实际的工作压头和流量不仅与离心泵本身的性能有关,还与管路的特性有关,即在输送液体的过程中,泵和管路是互相制约的。
所以,在讨论泵的工作情况前,应先了解与之相联系的管路状况。
在图2—17所示的输送系统中,若贮槽与受液槽的液面均保持恒定,液体流过管路系统时所需的压头(即要求泵提供的压头),可由图中所示的截面1—1,与2-2,间列柏努利方程式求得,即H e = (2-28)在特定的管路系统中,于一定的条件下进行操作时,上式的均为定值,即若贮槽与受液槽的截面都很大,该处流速与管路的相比可以忽略不计,则。
式2-28可简化为H e =K+H f (2-29)若输送管路的直径均一,则管路系统的压头损失可表示为(2-30) 式中 Q e —管路系统的输送量,m 3/h ;A —管路截面积,m 2。
对特定的管路,上式等号右边各量中除了和Q e 外均为定值,且也是Q e 的函数,则 可得(2-31)f Hg u g p Z +22∆+∆+∆ρg pZ ρ∆∆与K g p Z =+ρ∆∆022≈∆g u =++=∑g u d l l H e c ef 2)2ζζλ+(g A Q d l l e e c e 2)3600/()2ζζλ+(++∑λλ)(e f Q f H =将式2-31代人式2-29中可得(2-32)式2-32或式2-29即为管路特性方程。
若流体在该管路中流动已进入阻力平方区,又可视为常量,于是可令则式2-30可简化为H e = B所以,式2-29变换为 H e =K+B (2-33)由式2-33可看出,在特定的管路中输送液体时,管路所需的压头H e 随液体流量Q e 的平方而变。
若将此关系标在相应的坐标图上,即得如图2—18所示的H e —Q e 曲线。
这条曲线称为管路特性曲线,表示在特定管路系统中,于固定操作条件下,流体流经该管路时所需的压头与流量的关系。
水泵的变速调节原理改变水泵转速可以改变泵的性能曲线,在管路曲线保持不变的情况下,使工作点改变,这种调节方式称为变速调节。
图1 调速泵节能原理图以城市用水为例。
用户所需水量是不均匀的,而且泵站在规划时,水泵的选型是按照较不利条件选定的,也就是按较大设计流量和设计扬程选定的。
实际上在绝大部分时间里,水量都小于较大设计流量,水泵处在小流量下工作。
我们从离心泵的特性分析中知道,离心泵的叶片都是后弯式的,即β2<90°,其特性曲线是向下倾斜的,扬程随流量的增加而减少时,如图1所示。
反之,当水泵出水量减少时,水泵工作扬程将随之增大,由管路特性曲线知,流量减少时,水头损失减少,所以定速泵在绝大部分时间里处于扬程过剩状况,这部分剩余的扬程就造成了很大的能量浪费。
如果采用调速技术,就可以使得水泵的流量与扬程适应所需水量和扬程的变化,下面分析调速泵的运行工况点,其实,以上对定速泵的分析完全用于调速泵,只是转速不同而已。
在图1中A1-B1为调速前水泵(定速泵)的特性曲线,管路的特性CB是一条二次方曲线。
如前所述,离心泵有一定的自平衡能力,它总能稳定在泵的特性曲线和管路特性曲线的交点B1点工作。
其流量为Qmax,扬程为H1。
A2-B2为调速后水泵(n2)的特性曲线,同理,水泵以n2的转速运行时,也有同样的自平衡能力,调速后(n2)水泵特性A2-B2与管路特性CB的交点B2是水泵转速为n2时的工作点,这时的流量为Qmin,扬程为H2。
当需水量在Qmax 和Qmin之间变化时,只要使转速作相应的变化,就可以得到一系列的水泵特性曲线,这些特性曲线和管路特性曲线的交点就是水泵在不同转速下的工况点,这些工作点全部落在管路特性曲线CB上,也就是说不同转速时的水泵特性即可加以求得。
下面我们用相似定律来进行分析。
由相似定理可知,水泵的流量,扬程,轴功率都随着水泵转速的变化而变化,因此各式中:n 1、n 2分别为定速泵和调速泵的转速; Q 1、Q 2分别为定速泵和调速泵的流量; H 1、H 2分别为定速泵和调速泵的扬程; P 1、P 2分别为定速泵和调速泵的轴功率。