《概率论》判断题作业答案
- 格式:doc
- 大小:73.50 KB
- 文档页数:4
《概率论与数理统计》试题(1)判断题(本题共15分,每小题3分。
正确打“V” ,错误打“X” )⑴对任意事件A和B ,必有P(AB)=P(A)P(B) ()⑵ 设A、B是Q中的随机事件,则(A U B)-B=A ()⑶ 若X服从参数为入的普哇松分布,则EX=DX⑷假设检验基本思想的依据是小概率事件原理1 n _⑸ 样本方差S:= —(X i X )2是母体方差DX的无偏估计(n i i、(20分)设A、B、C是Q中的随机事件,将下列事件用A、B、C表示出来(1) 仅A发生,B、C都不发生;(2) 代B,C中至少有两个发生;(3) 代B,C中不多于两个发生;(4) 代B,C中恰有两个发生;(5) 代B,C中至多有一个发生。
三、(15分)把长为a的棒任意折成三段,求它们可以构成三角形的概率四、(10分)已知离散型随机变量X的分布列为X 2 1 0 1 31 1 1 1 11P5 6 5 15 302 求Y X的分布列.1五、(10分)设随机变量X具有密度函数f(x) -e|x|, V x V2求X的数学期望和方差•六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求P(14 X 30).七、(15分)设X1 ,X2,L ,X n是来自几何分布k 1P(X k) p(1 p) , k 1,2,L , 0 p 1 ,的样本,试求未知参数p的极大似然估计•X表示在x 0 0.5 1 1.5 2①(x ) 0.500 0.691 0.841 0.933 0.9772.5 30.994 0.999《概率论与数理统计》试题(1)评分标准⑴ X;(2) X;⑶“;⑷";(5) X o 解(1) ABC(2)ABU AC U BC 或 ABC U ABC U ABC U ABC ;(3) AUBUC 或 ABC U ABC U ABC U ABC U ABC U ABC U ABC ; (4) ABC U ABC U ABC ;(5) AB U AC U BC 或 ABC U ABC U ABC U ABC六解X “ P(14 ^b(k;100,0.20), EX=100 X 0.2=20, DX=100 X 0.2 X 0.8=16.-- --5分 分 30 20 14 20、 X 30) ( --------- )( --------------- ) ------------------ V16 J16 ------10(2.5) ( 1.5)=0.994+0.933—10.927. -------------------------------------n——15分七解n x nL(X 1, L ,x n ;p)p(1 p)x i1 p n(1 p)i1---------5分 -------------------------------------- 10 分每小题4分;解 设A '三段可构成三角形'又三段的长分别为x,y,a x y ,Oxa, 0 ya, Oxy a ,不等式构成平面域S .Aa A 发生 0 x —, 02不等式确定S 的子域A , 所以a a y , x y a2 2------------------------------------ 10A 的面积 1S 的面积 4---------------------------------------- 15则 分分分四 解Y 的分布列为Y 0 1 4 91 7 1 11P — ----- — —5 30 5 30Y 的取值正确得2分, 分布列对一组得 2分; 五 解 EXx 2 凶 dx 0, (因为被积函数为奇函数)2D X EX 22 x 1 |x| 1 —e dx x 2e x dx22 xx e0 2 xe x dx 0------------------------- 4 分 2[ xe x 0e x dx] 2.In L n In p d In L n dp p (X i n )l n(1 p),i 1 X i n @0, --------------------------- 10 分 解似然方程 n n X in i 1 得p 的极大似然估计 ------------------------------------------------------------------- 15 分 《概率论与数理统计》期末试题(2) 与解答一、填空题(每小题 3分,共15分) 1. 设事件 代B 仅发生一个的概率为 0.3,且P(A) P(B) 0.5,则 代B 至少有一个不发 生的概率为 ___________ . 2. __________________________________________________________________________ 设随机变量X 服从泊松分布,且P(X 1) 4P(X 2),则P(X 3) _______________________ . 23. _______________________ 设随机变量X 在区间(0,2)上服从均匀分布,则随机变量Y X 在区间(0,4)内的概率 密度为f Y (y) . 的指数分布,P(X 1) e 2,则4. 设随机变量 X,Y 相互独立,且均服从参数为5._______ , P{min( X ,Y) 1} = ____ 设总体X 的概率密度为 (1)x , 0 x 1, f (x)0, 其它 1.X 1 ,X 2, ,X n 是来自X 的样本,则未知参数 的极大似然估计量为 ___________解:1. P(AB AB) 0.3即 0.3 P(AB) P(AB) P(A) P(AB) P(B) P(AB) 0.5 2P(AB)2所以 P(AB) 0.1P(A B) P(AB) 1 P(AB) 092.P(X 1) P(X 0) P(X 1) e e , P(X 2) e由 P(X 1) 4P(X 2)知e e2 2e即2 21 0解得1,故P(X3)1 1 e . 63•设丫的分布函数为F Y (y), X 的分布函数为F x (x),密度为f x (x)则F Y (V ) P(Y y) P(X 2 y) P( ...y X ,y) FxG.y) F x ( ,y) 因为 X ~U (0, 2),所以 F X ( ,y) 0,即 F Y (y) F X G. y)1.ln x in i 1二、单项选择题(每小题 3分,共15分)1 .设A, B,C 为三个事件,且 A, B 相互独立,则以下结论中不正确的是(A) 若P(C) 1,则AC 与BC 也独立. (B) 若P(C) 1,则AUC 与B 也独立. (C) 若P(C) 0,则AUC 与B 也独立.J(y) F Y (y)1 _2丁x(J)0 y 4, 另解 在(0,2)上函数y 所以 2x 严格单调,反函数为h(y)其它..5f Y (y) Afx(7?)诙4孑 0 ,其它.y 4,4. P(X 1) 1 P(X P{min( X ,Y) 1} 111) eP{min( X,Y) 4 e ・ 1} P(X 1)P(Y 1)5.似然函数为L(X 1 ,L ,X n ;n(i 1n1)Xi(1叽1_ X )解似然方程得 ln L n ln(1)ln x i ln x i i 1@0的极大似然估计为EX X(D )若C B ,则A 与C 也独立• ()2•设随机变量 X~N(0,1), X 的分布函数为(x),贝U P(|X| 2)的值为(A )2[1 (2)] . ( B )2 (2)1 .(C ) 2(2).( D )1 2 (2).()3•设随机变量 X 和Y 不相关,则下列结论中正确的是(A ) X 与 Y 独立. (B ) D(X Y) DX DY .(C ) D(X Y) DX DY .(D ) D(XY) DXDY .()4•设离散型随机变量 X 和Y 的联合概率分布为(X,Y) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) P1 1 1 1 691832. X ~ N(0,1)所以 P(| X | 2) 1 P(| X | 2)1 P(2 X1 (2) ( 2) 1 [2 (2) 1] 2[1 (2)]若X,Y 独立,则 7的值为2 112(A ) -, —(A ) J—99991 15 1 (C ), — (D ) — , . ()6618185 •设总体X 的数学期望为,X 1,X 2丄,X n为来自X 的样本,则下列结论中正确的是(A ) X i 是的无偏估计量 (B ) X i 是 的极大似然估计量(C ) X 1是 的相合(一致)估计量(D ) X i 不是 的估计量.() 解:1.因为概率为1的事件和概率为 0的事件与任何事件独立,所以( A ), (B ), (C )可见A 与C 不独立.2)应选(A )都是正确的,只能选(事实上由图EX X12 3 P(X 2, Y 2)1 1 1 11— — ■ 1 、69183(- )(-391 1 23321 1丄92 918故应(A).3•由不相关的等价条件知应选(B ) 4•若X,Y 独立则有)P(X 2)P(Y 2)f(o三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1) 一个产品经检查后被认为是合格品的概率;(2) 一个经检查后被认为是合格品的产品确是合格品的概率解:设A ‘任取一产品,经检验认为是合格品’B ‘任取一产品确是合格品’则(1) P(A) P(B)P(A|B) P(B)P(A|B)0.9 0.95 0.1 0.02 0.857.P(AB) 0.9 0.95 (2) P(B| A) 0.9977 .P(A) 0.857四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5.设X为途中遇到红灯的次数,求X的分布列、分布函数、数学期望和方差.解:X的概率分布为k2 k3 3 kP(X k) cf(5)k(5)3kX 0 1 2即P27 54 36 125 125 12X的分布函数为0 , x 0,27125 ,0 x 1,F(x )81 1 x 2, 125117 2 x3, 1251 , x 3.2 6 EX3 --5 5DX c 2 3 183 --5 5 25五、(10分)设二维随机变量(X,Y)在区域 D匀分布.求(1)(X,Y)关于X的边缘概率密度;38125{(x,y)|x 0, y 0, x y 1}上服从均(2)Z X Y的分布函数与概率密(1) (X ,Y)的概率密度为f(x, y) 2, (x, y) D 0,其它.k 0,1,2,3.2 2x, 0 x 1f(x,y)dy0 ,其它(2)利用公式f Z(z) f (x, z x)dx其中f(x,z x) 2, 0 x 1,0 z x 1 x0,其它2, 0 x 1, x z 1.0,其它.当z 0 或z 1 时f z (z) 0z的分布函数为z z0 z 1 时f z(z) 2 q dx 2x02z 故Z的概率密度为f z(z)2z, 0 z 1,0,其它.0, z 0 0, z 0,fZ⑵z zf Z(y)dy 02ydy,0 z 1 2z , 0 z 1,1,1 z 1.z 1或利用分布函数法0 , z 0,F Z(Z) P(Z z) P(X Y z) 2dxdy, 0 z 1D11 , z 1.0 , z 0,2z , 0 z 1,1 , z 1.f z (z) F z⑵2z,0 ,0 z 1,其它.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X和纵坐标Y相互独立,且均服从N(0,22)分布.求(1)命中环形区域D {( x, y) |1 x2 y2 2}的概率;(2)命中点到目标中心距离Z X Y2的数学期望.D (1)P{X,Y) D} f(x,y)dxdyDx28dxdy 8rdrdf x(X)4 41 2 -8re 8 rdrd1 e 8 r 2dr 8 04 0r2re 丁r 2e T dr 02冷dr阪七、(11分)设某机器生产的零件长度(单位: cm ) X 〜N ( , 2),今抽取容量为样本,测得样本均值 X 10,样本方差s 2 0.16. ( 1)求的置信度为0.952区间;(2)检验假设H 。
华师《概率论与数理统计》在线作业
一、单选题(共15 道试题,共60 分。
)
1. 一部件包括10部分。
每部分的长度是一个随机变量,它们相互独立且具有同一分布。
其数学期望为2mm,均方差为0.05mm,规定总长度为20±0.1mm时产品合格,则产品合格的概率为()。
A. 0.527
B. 0.364
C. 0.636
D. 0.473
正确答案:D
2. 一条自动生产线上产品的一级品率为0.6,现检查了10件,则至少有两件一级品的概率为()。
A. 0.012
B. 0.494
C. 0.506
D. 0.988
正确答案:D
3. 每颗炮弹命中飞机的概率为0.01,则500发炮弹中命中5发的概率为()。
A. 0.1755
B. 0.2344
C. 0.3167
D. 0.4128
正确答案:A
4. 工厂每天从产品中随机地抽查50件产品,已知这种产品的次品率为0.1%,,则在这一年内平均每天抽查到的次品数为()。
A. 0.05
B. 5.01
C. 5
D. 0.5
正确答案:A
5. 炮战中,在距离目标250米,200米,150米处射击的概率分别为0.1, 0.7, 0.2, 而在各处射击时命中目标的概率分别为0.05, 0.1, 0.2。
若已知目标被击毁,则击毁目标的炮弹是由距目标250米处射出的概率为()。
A. 交换行为
B. 投资行为
C. 协议行为。
概率论试题及答案一、选择题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是:- A. 1/2- B. 3/8- C. 5/8- D. 1/82. 如果事件A和事件B是互斥的,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B)等于:- A. 0.7- B. 0.6- C. 0.4- D. 0.33. 抛掷一枚硬币两次,出现正面向上的概率是:- A. 1/4- B. 1/2- C. 3/4- D. 1二、填空题1. 概率论中,事件的全概率公式是 P(A) = ________,其中∑表示对所有互斥事件B_i的和。
2. 如果事件A和事件B是独立事件,那么P(A∩B) = ________。
三、计算题1. 一个工厂有3台机器,每台机器在一小时内发生故障的概率是0.01。
求在一小时内至少有一台机器发生故障的概率。
2. 一个班级有50名学生,其中30名男生和20名女生。
如果随机选择一名学生,这名学生是男生的概率是0.6。
求这个班级中男生和女生的人数。
四、解答题1. 解释什么是条件概率,并给出计算条件概率的公式。
2. 一个袋子里有10个球,其中7个是红球,3个是蓝球。
如果从袋子中随机取出一个球,观察其颜色后放回,再取出一个球。
求第二次取出的球是蓝球的概率。
答案一、选择题1. C. 5/82. B. 0.63. B. 1/2二、填空题1. P(A) = ∑P(A∩B_i)2. P(A)P(B)三、计算题1. 首先计算没有机器发生故障的概率,即每台机器都不发生故障的概率,为(1-0.01)^3。
至少有一台机器发生故障的概率为1减去没有机器发生故障的概率,即1 - (1-0.01)^3。
2. 设男生人数为x,女生人数为y。
根据题意,x/(x+y) = 0.6,且x+y=50。
解得x=30,y=20。
四、解答题1. 条件概率是指在已知某个事件已经发生的情况下,另一个事件发生的概率。
计算条件概率的公式是P(A|B) = P(A∩B)/P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率。
18秋学期《概率论》在线作业1-0001
试卷总分:100 得分:0
一、单选题 (共 15 道试题,共 75 分)
1.X服从标准正态分布(0,1),则Y=1+2X的分布是:
A.N(1,2);
B.N(1,4)
C.N(2,4);
D.N(2,5)。
正确答案:B
2.下面哪一种分布没有“可加性”?(即同一分布类型的独立随机变量之和仍然服从这种分布)?
A.均匀分布;
B.泊松分布;
C.正态分布;
D.二项分布。
正确答案:A
3. 设电灯泡使用寿命在2000h以上的概率为0.15,如果要求3个灯泡在使用2000h以后只有一个不坏的概率,则只需用()即可算出
A.全概率公式
B.古典概型计算公式
C.贝叶斯公式
D.贝努利公式
正确答案:D
4.独立地抛掷一枚质量均匀硬币,已知连续出现了10次反面,问下一次抛掷时出现的是正面的概率是:
A.1/11
B.B.1/10
C.C.1/2
D.D.1/9
正确答案:C
5.一袋中有5个乒乓球,编号分别为1,2,3,4,5从中任意去取3个,以X表示球中的最大号码,X=3的概率为:
A.0.1
B.0.4
C.0.3
D.0.6。
《概率论》作业题一、填空题。
1.集合{}1,2A =,{}3,4B =,分别在A 和B 中任取一个数记为x 和y ,组成点(,)x y 。
写出基本事件空间 .2.一超市在正常营业的情况下,某一天内接待顾客的人数。
则此随机试验的样本空间为 .3.同时投掷三颗骰子,记录三颗骰子点数之和。
此随机试验的样本空间为 .4.记录电话交换台1分钟内接到的呼唤次数。
此随机试验的基本事件空间为 .5.设A ,B ,C 是三个事件,用A ,B ,C 的运算关系将A ,B ,C 恰有一个发生可表示为 .A ,B ,C 至多发生两个可表示为 . A ,B ,C 至少发生两个可表示为 . 6. 设()0.4P A =,()0.7P A B +=,那么(1)若, A B 互斥,则()P B = .(2) 若, A B 相互独立,则()P B = . 7.设A ,B 是两个事件,其中()0.5P A =,()0.6P B =,()0.8P B A =,则()P A B += .8.设()0.4P A =,()0.3P B =,()0.6P A B +=,那么,()P AB = .9.一射击运动员对一个目标独立的进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为 .10. 设随机变量2~(32)X N ,,(1)0.8413Φ=,则{15}P X <<= . 11. 设随机变量2~(,)X N μσ,(3)0.0013Φ-=,则{33}P X μσμσ-<<+= .12.设随机变量X 的概率分布为:()1,(1,2,,)3k P X k k ===L ,则(12)P X -<≤= .(3)P X >= .13.设随机变量~(1,6)K U ,则方程210x Kx ++=有实根的概率为 .设随机变量~[24]KU -,,则方程22230x Kx K +++=无实根的概率为 .14. 设随机变量X 的密度函数为(0,2)()0axx f x ∈⎧=⎨⎩其它,则常数a = ,{24}P X <<= 。
[0198]《概率论与数理统计》第二次作业[判断题]已知电子管的寿命X(小时)服从参数λ=1/1000的指数分布,则这电子管使用在1000小时以上的概率为1/e.参考答案:正确[单选题]当随机变量X服从( )分布时,DX=EX。
A:指数B:均匀C:泊松D:两点参考答案:C[单选题]设X的分布函数为F(x),则F(x)不满足的是( ).A:单调不减.B:x趋于正无穷时,F(x)以1为极限;C:x趋于负无穷时,F(x)以0为极限D:在每一点F(x)为左连续的。
参考答案:D[单选题]设随机变量为X与Y,已知DX=25,DY=36,相关系数ρ=0.4,则D(X-Y)=( ).A:85B:61C:11D:37参考答案:D[单选题]设随机变量X服从参数为2的泊松分布,用切比雪夫不等式估计P(|X-2|≥4)( ).A:≤1/8B:≥1/8C:≤7/8D:≥7/8参考答案:A[单选题]X为连续型随机变量,a为一常数,则P(X= a)的值( )A:必为零B:不一定为零.C:可能不为零。
参考答案:A[单选题]每次射击中靶的概率为0.7,现独立射击10次,用随机变量X表示命中的炮弹数,则X服从( )分布.A:二项.B:几何C:均匀.D:超几何参考答案:A[判断题]随机变量X的取值为不可列无穷多,则X必为连续型随机变量。
参考答案:错误[判断题]X服从二项分布B(n,p),Y服从二项分布B(m,p),且X与Y独立,则X+Y服从二项分布B(n+m,p)。
参考答案:正确[判断题]随机变量X、Y独立,则X与Y必不相关。
参考答案:正确[判断题]设X与Y独立,且X有概率密度函数为f(x), Y有概率密度函数为p(y),则(X,Y)的联合分布密度 f ( x , y )=f(x)p(y) .参考答案:正确第一次作业[判断题]袋内装有5个白球,3个黑球,从中任取两个球,则取到的两个球都是白球的概率为5/14。
参考答案:正确[判断题]设A、B、C表示三个事件, 用A、B、C的运算关系表示"A、B、C恰有一个不发生”为A+B+C. 参考答案:错误[判断题]从1,2,3,4,5,6这六个数中随机的、有放回的连续抽取4个,则"取到的4个数字完全不同”的概率为5/18.参考答案:正确[判断题]概率为零的事件一定是不可能事件.参考答案:错误[判断题]事件A、B相互独立,则有P(AB)=P(A)P(B) .参考答案:正确[判断题]设A、B为两个事件,P(A+B)=1,则A+B必为必然事件。
精品文档判断题3:随机变量X 的方差DX 也称为X 的二阶原点矩。
错误4:掷硬币出现正面的概率为P , 掷了n 次,则至少出现一次正面的概率为1-(1-p)n. 正确 5:随机变量X 的取值为不可列无穷多,则X 必为连续型随机变量。
错误 6:设事件为A 、B ,已知P(AB)=0,则A 与B 必相互独立. 错误 7: “ABC ”表示三事件A 、B 、C 至少有一个发生。
错误8:设X 、Y 是随机变量,X 与Y 不相关的充分必要条件是X 与Y 的协方差等于0。
正确 9:设X 、Y 是随机变量,若X 与Y 相互独立,则E(XY)=EX •Ey. 正确 10:连续型随机变量均有方差存在。
错误11: A.B 为任意二随机事件,则P(A ∪B)=P(A)+P(B). 错误12:设A 、B 、C 为三事件,若满足:三事件两两独立,则三事件A 、B 、C 相互独立。
错误 4:设事件为A 、B ,已知P(AB)=0,则A 与B 互不相容.错误5:随机向量(X,Y )服从二元正态分布,则X 的边际分布为正态分布,Y 的边际分布也为正态分布. 正确 6:若X ~B(3,0.2),Y ~B(5,0.2),且X 与Y 相互独立,则X+Y ~B(8,0.2). 正确 7: X 为随机变量,a,b 是不为零的常数,则D(aX+b)=aDX+b. 错误8:设X 、Y 是随机变量,X 与Y 不相关的充分必要条件是D(X+Y)=DX+DY. 正确 2: C 为常数,则D(C)=0. 正确3:若X 服从二项分布B(5,0.2),则EX=2. 错误4: X 服从正态分布,Y 也服从正态分布, 则随机向量(X,Y )服从二元正态分布。
错误5:若X 服从泊松分布P(10),Y 服从泊松分布P(10),且X 与Y 相互独立,则X+Y 服从泊松分布P(20). 正确 6:cov(X,Y)=0等价于D(X+Y)=DX+DY. 正确7:随机变量的分布函数与特征函数相互唯一确定。
概率论与数理统计课程第一章练习题及解答一、判断题(在每题后的括号中 对的打“√”错的打“×” )1、若1()P A =,则A 与任一事件B 一定独立。
(√)2、概率论与数理统计是研究和揭示随机现象统计规律性的一门数学学科。
(√)3、样本空间是随机现象的数学模型。
(√)4、试验中每个基本事件发生的可能性相同的试验称为等可能概型。
(×)5、试验的样本空间只包含有限个元素的试验称为古典概型。
(×)6、实际推断原理就是“概率很小的事件在一次试验中实际上几乎是不发生的”。
(√)7、若S 为试验E 的样本空间,12,,,n B B B L 为E 的一组两两互不相容的事件,则称12,,,n B B B L 为样本空间S 的一个划分。
(×)8、若事件A 的发生对事件B 的发生的概率没有影响,即()()P B A P B =,称事件A 、B 独立。
(√) 9、若事件12,,,(2)n B B B n ≥L 相互独立,则其中任意(2)k k n ≤≤个事件也是相互独立的。
(√)10、若事件12,,,(2)n B B B n ≥L 相互独立,则将12,,,n B B B L 中任意多个事件换成它们的对立事件,所得的n 个事件仍相互独立。
(√)二、单选题1.设事件A 和B 相互独立,则()P A B =U ( C )A 、()()P A PB + B 、()()P A P B +C 、1()()P A P B -D 、1()()P A P B -2、设事件A 与B 相互独立,且0()1,0()1P A P B <<<<,则正确的是( A )A 、A 与AB +一定不独立 B 、A 与A B -一定不独立C 、A 与B A -一定独立D 、A 与AB 一定独立3、设当事件A 与B 同时发生时,事件C 必发生,则( B )A 、1()()()P C P A PB ≤+- B 、1()()()PC P A P B ≥+-C 、()()P C P AB =D 、()()P C P A B =U4、在电炉上安装了4个温控器,其显示温度的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度0t ,电炉就断电,以E 表示事件“电炉断电”,而(1)(2)(3)(4)T T T T ≤≤≤为4个温控器显示的按递增顺序排列的温度值,则事件E 等于( )A 、(1)0{}T t ≥B 、(2)0{}T t ≥C 、(3)0{}T t ≥D 、(4)0{}T t ≥分析 事件(4)0{}T t ≥表示至少有一个温控器显示的温度不低于临界温度0t ;事件(3)0{}T t ≥表示至少有两个温控器显示的温度不低于临界温度0t ,即(3)0{}E T t =≥,选C 。
福师《概率论》在线作业二福师《概率论》在线作业二1. 如果随机变量X和Y满足D(X+Y)=D(X-Y),则下列式子正确的是()A. X与Y相互独立B. X与Y不相关C. DY=0D. DX*DY=0正确答案: B 满分:2 分得分:22. 甲、乙两人独立的对同一目标各射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率是()。
A. 0.6B. 5/11C. 0.75D. 6/11正确答案: C 满分:2 分得分:23. 下列哪个符号是表示必然事件(全集)的A. θB. δC. ФD. Ω正确答案: D 满分:2 分得分:24. 一台设备由10个独立工作折元件组成,每一个元件在时间T发生故障的概率为0.05。
设不发生故障的元件数为随即变量X,则借助于契比雪夫不等式来估计X和它的数学期望的离差小于2的概率为()A. 0.43B. 0.64C. 0.88正确答案: C 满分:2 分得分:25. 随机变量X服从正态分布,其数学期望为25,X落在区间(15,20)内的概率等于0.2,则X落在区间(30,35)内的概率为()A. 0.1B. 0.2C. 0.3D. 0.4正确答案: B 满分:2 分得分:26. 利用样本观察值对总体未知参数的估计称为( )A. 点估计B. 区间估计C. 参数估计D. 极大似然估计正确答案: C 满分:2 分得分:27. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率A. 15/28B. 3/28C. 5/28D. 8/28正确答案: A 满分:2 分得分:28. 设A,B为两事件,且P(AB)=0,则A. 与B互斥B. AB是不可能事件C. AB未必是不可能事件D. P(A)=0或P(B)=0正确答案: C 满分:2 分得分:29. 设随机变量X和Y独立,如果D(X)=4,D(Y)=5,则离散型随机变量Z=2X+3Y的方差是()B. 43C. 33D. 51正确答案: A 满分:2 分得分:210. 设A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为 ( )A. “甲种产品滞销或乙种产品畅销”;B. “甲种产品滞销”;C. “甲、乙两种产品均畅销”;D. “甲种产品滞销,乙种产品畅销”.正确答案: A 满分:2 分得分:211. 现考察某个学校一年级学生的数学成绩,现随机抽取一个班,男生21人,女生25人。
判断题
1:A.B为任意二随机事件,则P(A-B)=P(A)-P(B). (错误)
2:对二项分布b ( k ; n , p ) = C n k p k( 1- p )n- k, k = 0 , 1 ,…, n,当k = [n p]时,概率值b ( k ; n , p )达到最
大。
(错误)
3:X、Y相互独立,则X、Y必不相关. (正确)
4:设两个相互独立的随机变量ξ、η的方差分别是4和2,则D( 3ξ- 2η) = 44。
(正确)
5: cov(X,Y)=0等价于D(X+Y)=DX+DY. (正确)
6:(ξ,η)~(μ1,μ2;σ12,σ22;ρ),则ξ与η是相互独立的充分必要条件为ρ= 0。
(正确) 7:设{ξk}为两两不相关的随机变量序列,Dξk< +∞,且存在常数C,使得Dξk<C,k=1,2,…,
则{ξk}服从大数定律。
(正确)
8:随机变量X服从二项分布b (n,p),当n充分大时,由中心极限定理,X近似服从正态分布
N(np,np(1-p)). (正确)
9:相互独立的随机变量序列,如果具有有限的数学期望,则该序列服从大数定律。
(错误)
10: n个相互独立的随机变量之积的特征函数等于他们的特征函数之积. (错误)
11:设随机变量ξ的特征函数为f ( t ),且它有n阶矩存在,则当k≤n时,有i k f(k)(0) = Eξk。
(错误) 12:A∪B∪C”表示三事件A、B、C至少有一个发生。
(正确)
13:从一堆产品中任意抽出三件进行检查,事件A表示"抽到的三个产品中合格品不少于2个”,事件B 表示"抽到的三个产品中废品不多于2个”,则事件A与B是互为对立的事件。
(错误)
14:已知:P(A)=0.2, P(B)=0.5,P(AB)=0.1,则P(A∪B)=0.6. (正确)
15:设A、B、C为三事件,若满足:P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C),则三事件A、B、C 必然相互独立。
(错误)
16:每一个连续型随机变量均有方差存在。
(错误)
17:设X、Y是随机变量,若E(XY)=EX•EY,则X与Y相互独立. (错误)
18:X为随机变量,a,b是不为零的常数,则E(aX+b)=aEX+b. (正确)
19:X~N(3,4),则P(X<3)= P(X>3). (正确)
20:任意随机变量均存在数学期望。
(错误)
21:一批产品有10件正品,3件次品,现有放回的抽取,每次取一件,直到取得正品为止,假定每件产品被取到的机会相同,用随机变量ξ表示取到正品时的抽取次数,则ξ服从几何分布。
(正确) 22: X为随机变量,a,b是不为零的常数,则D(aX+b)=aDX+b.(错误)
23:设X服从参数为λ的泊松分布,则D(2X+1)=2λ。
(错误)
24:随机向量(X,Y)服从二元正态分布,则X的边际分布为正态分布,Y的边际分布也为正态分布.正确
精品文档 25:若X ~B(3,0.2),Y ~B(5,0.2),且X 与Y 相互独立,则X+Y ~B(8,0.2). (正确)
26:特征函数 f ( t )具有性质:f ( 0 ) = 1。
(正确)
27.设A 、B 为二事件,则A —B=A —AB. (正确)
28. 设0)(,0)(>>B P A P ,若 A 与B 互不相容,则A 与B 必不相互独立. (正确)
29.设一口袋中有a 只白球,b 只黑球,从中取出三只球(不放回),则三只球依次为黑白黑的概率为
()()
21)()
1(-+-++-b a b a b a b ab . (正确)
30. 设ξ服从⎥⎦⎤
⎢⎣⎡
-2,2ππ
的均匀分布,ξηtan =,则η的密度函数为
+∞<<-∞+=y y y p ,)1(1
)(2πη。
(正确)
31.已知随机变量的联合分布、边际分布如下表 则相互独立。
(正确)
32.设二维随机变量(X,Y)具有联合概率密度
其他x
y x x y x f 32,1002),(<<<<⎩⎨⎧=,则X 与Y 相互独立. (错误)
33.设随机变量ξ的特征函数为)(t f ,且它有n 阶矩存在,则当n k ≤时,有k k k E f i ξ=)0()(.
(
错误) 34. 设事件为A 、B ,已知P(AB)=0,则A 与B 互不相容. (错误)
35. 随机变量X 、Y 相互独立,则D(X+Y)=DX+DY. (正确)
36. 设X 、Y 是随机变量,X 与Y 不相关的充分必要条件是D(X+Y)=DX+DY. (正确)
37 .随机变量X 的方差DX 也称为X 的二阶原点矩。
(错误)
精品文档
38. 掷硬币出现正面的概率为P,掷了n次,则至少出现一次正面的概率为1-(1-p)n. (正确)
39. 随机变量X的取值为不可列无穷多,则X必为连续型随机变量。
(错误)
40. 设事件为A、B,已知P(AB)=0,则A与B必相互独立. (错误)
41. “ABC”表示三事件A、B、C至少有一个发生。
(错误)
42. 设X、Y是随机变量,X与Y不相关的充分必要条件是X与Y的协方差等于0。
(正确)
43. 设X、Y是随机变量,若X与Y相互独立,则E(XY)=EX•Ey. (正确)
44. 连续型随机变量均有方差存在。
(错误)
45. A、B为任意二随机事件,则P(A∪B)=P(A)+P(B). (错误)
46、C为常数,则D(C)=0. (正确)
47、若X服从二项分布B(5,0.2),则EX=2. (错误)
48若X服从泊松分布P(10),Y服从泊松分布P(10),且X与Y相互独立,则X+Y服从泊松分布P(20). 正确
49、随机变量的分布函数与特征函数相互唯一确定。
(正确)
50、两个相互独立的随机变量之和的特征函数等于他们的特征函数之和. (错误)
精品文档
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。