传感器应用实例--模拟式检测仪表设计实例
- 格式:pdf
- 大小:367.06 KB
- 文档页数:5
传感器设计与应用实例一、引言随着科技的进步和社会的发展,传感器在各个领域的应用也变得越来越广泛。
传感器作为一种用于检测和测量物理量的设备,可以感知环境中的各种参数并将其转换为可用的电信号。
本文将就传感器的设计与应用实例进行全面、详细、完整且深入地探讨,旨在了解传感器的设计原理和各个领域的典型应用案例。
二、传感器的分类传感器可以按照测量参数的类型进行分类。
常见的传感器分类包括温度传感器、湿度传感器、压力传感器、光学传感器等。
不同类型的传感器具有不同的工作原理和应用场景。
2.1 温度传感器温度传感器可将环境温度转换为电信号。
常见的温度传感器有热电偶、热敏电阻和温度芯片等。
它们在智能家居、工业自动化和气象监测等领域有着广泛的应用。
2.2 湿度传感器湿度传感器用于测量环境中的湿度水分含量。
常见的湿度传感器有电容式湿度传感器和电阻式湿度传感器等。
应用场景包括空调系统、农业温室和食品保鲜等。
2.3 压力传感器压力传感器可感知环境中的压力变化。
常见的压力传感器有压电传感器、扩散硅传感器和谐振式压力传感器等。
它们广泛应用于工业制造、汽车安全和医疗领域。
2.4 光学传感器光学传感器是一种能够感知光的强度、波长和方向的传感器。
常见的光学传感器有光电传感器、光耦合器和光纤传感器等。
它们被广泛用于光通信、图像识别和光学测量领域。
三、传感器的设计原理传感器的设计需要对各种物理量进行准确测量,并将其转换为可用的电信号输出。
设计传感器的关键在于选择合适的感知元件、信号处理电路和输出接口。
3.1 感知元件感知元件的选择直接影响传感器的灵敏度和测量范围。
常见的感知元件包括电容器、电磁线圈和光敏二极管等。
例如,温度传感器可以使用热敏电阻来感知温度变化。
3.2 信号处理电路传感器的信号处理电路用于将感知元件输出的模拟信号转换为数字信号或放大处理。
信号处理电路的设计需要考虑噪声抑制、放大增益和滤波等因素。
数字信号处理可以更好地适应现代化的数据处理要求。
压力传感器(压力变送器)的原理及应用概述:压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用1、应变片压力传感器原理与应用力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。
但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。
下面我们主要介绍这类传感器。
在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。
电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。
它是压阻式应变传感器的主要组成部分之一。
电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。
金属电阻应变片又有丝状应变片和金属箔状应变片两种。
通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。
这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。
它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。
根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。
而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。
一般均为几十欧至几十千欧左右。
电阻应变片的工作原理金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。
传感器的应用案例
传感器是一种用于感知、监测与测量环境中特定物理量的装置,广泛应用于各个领域。
下面列举了10个传感器的应用案例:
1. 温度传感器:用于测量环境温度,常见于空调、冰箱、热水器等家电设备中,以控制温度在合适的范围内。
2. 光敏传感器:用于感知光线强度的变化,常见于自动照明系统、摄像机中,以实现自动调节光线亮度和拍摄质量。
3. 湿度传感器:用于测量环境湿度,常见于气象仪器、温室、空气净化器中,以监控和控制湿度水平。
4. 压力传感器:用于测量压力变化,广泛应用于汽车、工业设备、医疗器械等领域,以实现压力监测和控制。
5. 加速度传感器:用于测量物体的加速度,常见于汽车、智能手机、运动设备中,以实现运动检测和姿态跟踪。
6. 位移传感器:用于测量物体的位移变化,常见于机械设备、机器人、汽车制动系统中,以实现位置控制和安全监测。
7. 气体传感器:用于检测环境中的气体浓度,常见于煤气报警器、空气质量监测仪器中,以实现气体泄漏和污染监测。
8. 声音传感器:用于感知环境中的声音变化,常见于安防系统、智
能家居中,以实现声音检测和警报。
9. 触摸传感器:用于感知物体的触摸或接近,常见于智能手机、电子设备中,以实现触摸操作和接近检测。
10. 水位传感器:用于测量液体的水平高度,常见于水箱、洗衣机、污水处理设备中,以实现水位监测和控制。
这些传感器应用案例涵盖了生活、工业、安全、医疗等多个领域,展示了传感器在实际应用中的重要性和广泛性。
通过传感器的监测与测量,我们能够更好地了解和控制环境中的物理量,提高生活质量和工作效率。
传感器技术的发展不仅为我们带来了便利,也为各行各业提供了更多的创新机会。
传感器应用案例【案例2.1】图2.12所示是一种可插入人体心内导管的微型压阻式压力传感器,为了导入方便,在传感器端部加一塑料壳6。
当被测压力p作用于金属波纹膜片7上时,将压力转换为集中力,使硅片梁5产生变形,从而使硅片梁上扩散的电阻4发生变化,再由电桥输出获得心内导管的压力。
这种传感器可用于人体心血管、颅内、眼球内等压力的测量。
1-引线;2-硅橡胶导管;3-金属外壳;4-扩散电阻;5-硅片梁;6-塑料壳;7-金属波纹膜片;8-推杆图2.12 微型压阻式压力传感器图2.13所示为压阻式加速度传感器的结构示意图。
图中悬臂梁用单晶硅制成,在悬臂梁的根部扩散四个阻值相同的电阻,构成差动全桥。
在悬臂梁的自由端装一质量块,当传感器受到加速度作用时,质量块的惯性力使悬臂梁发生变形产生应力,该应力使扩散电阻的阻值发生变化,由电桥输出获得加速度的大小。
图2.13 压阻式加速度传感器【案例2.2】图2.18所示为热敏电阻在温度自动控制中的应用。
当实际温度低于设定温度时,热敏电阻R T较大,A点电位升高,晶体管V1和V2导通,继电器K线圈通电,常开触点K1吸合,电热丝加热,发光二极管LED指示电路处于加热状态。
当实际温度高于设定温度时,热敏电阻R T较小,A点电位降低,晶体管V1和V2截止,继电器K线圈断电,常开触点K1断开,加热丝停止加热。
二极管V D为继电器K提供放电回路,保护晶体管V2。
电位器R p调节设定温度。
CCU +图2.18 热敏电阻温度控制器【案例2.3】图2.27所示为电容式测厚仪用于金属带材扎制过程中厚度的在线检测,在金属带材的上下两侧各放置一块面积相等的圆形极板,两极板与金属带材之间形成两个电容1C 和2C ,当金属带材在轧制过程中的厚度发生变化时,将引起电容量变化。
电容1C 和2C 分别接入运算放大器A 1和A 2的负反馈回路,就可将电容变化转换成电压输出,只要测得输出电压u o1和u o2,由式(2.27)就可得到两极板与金属带材之间的间距1δ和2δ。
让更多的孩子得到更好的教育传感器及其应用(应用实例)一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●传感器的传感元件是如何将非电学量转化电学量的。
●传感器的应用模式:如何实现信号的放大、转换显示和执行等。
(这些内容限于高中水平只要求了解,不要求理解或掌握)重点难点:●传感器的传感元件是如何将非电学量转化电学量的。
●传感器的应用模式:如如何实现信号的放大、转换显示和执行等。
学习策略:●多观察,多思考,理论联系实际,这样才能使我们的知识成为有用的知识。
二、学习与应用“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对知识回顾---复习学习新知识之前,看看你的知识贮备过关了吗?传感器原理是什么?请简单描述:知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习。
请在虚线部分填写预习内容,在实线部分填写课堂学习内容。
课堂笔记或者其它补充填在右栏。
详细内容请学习网校资源ID:#50941#406622。
知识点一、温度传感器的应用——电饭锅1.感温铁氧体(1)组成:氧化锰、氧化锌和氧化铁粉末。
(2)特点:常温下具有铁磁性,能够被磁体吸引,温度达到约103℃时,失去铁磁性。
(3)居里点:又称居里温度,即指103℃。
2.电饭锅的结构如图所示:3.电饭锅的工作原理开始煮饭时,用手压下开关按钮,永磁体与感温磁体相吸,手松开后,按钮不再恢复到图示状态,则触点接通,电热板通电加热,水沸腾后,由于锅内水保持100℃不变,故感温磁体仍与永磁体相吸,继续加热,直到饭熟后,水分被大米吸收,锅底温度升高,温度升至居里点103℃时,感温磁体失去______,在弹簧作用下,永磁体被弹开,触点分离,切断电源从而停止加热。
要点诠释:如果用电饭锅烧水,在水沸腾后因为水温保持在100℃,故不能自动断电,只有水烧干后,温度升高到103℃才能自动断电。
第12章 模拟式检测仪表设计及实例模拟式检测仪表基本组成12.1 “表头”的原理与刻度12.1.1“表头”的原理 一、“表头”的结构――动圈式磁电系测量机构(最常见)组成结构如图12-1-1所示 :永久磁铁弹性支承 动圈及指针二、动圈所受力矩:1、电磁力矩i bNLBi bF M c 0φ===,0φ是穿过动圈的磁链。
NbLB =0φ2、弹性力矩θk M k =, k 是弹性支承的弹性系数;θ是动圈的转角。
3、阻尼力矩dtd D M d θ=,D 是阻尼系数 三、动圈的运动方程:1、动态方程:c M 驱使动圈转动,而d M 、k M 则阻止动圈转动,因此根据转动定律有:22dtd J M M M d k c θ=-- 式中J ——动圈和与其固定连接的动圈框架及笔尖或指针构成的惯性体的转动惯量。
22dt d θ——该惯性体的转动角加速度。
将c M 、d M 、k M 代入上式得动圈的动态方程:i k dt d D dtd J 022φθθθ=++2、静态方程:若信号电流为直流I ,在达到稳定之后,上式左边前两项均为零,于是有:I S I k00==φθ这就是动圈的静态方程。
式中S 0称为动圈式磁电系测量机构的静态灵敏度,kI S gmax0φθ==式中Ig 为指针满偏max θθ=时动圈电流值。
“表头”的灵敏度S 0与动圈的满偏电流Ig 的倒数――“Ω/V ”数成正比。
四、直流电流表和直流电压表――图12-1-21、直流电流表――由动圈(内阻为r )并联分流电阻R 构成,电流表量程Im 为)1(RrI I g m += 直流电流x I 与指针偏角θ成线性正比关系:x x mg x mI rR RS I I I S I I +===00maxθθ 2、直流电压表――由动圈串联分压电阻R 构成,电压表的量程U m 为)(R r I U g m +=直流电压x U 与指针偏角θ成线性正比关系:x x x mg x mU S U rR S U U I S U U 100max=+===θθ 12.1.2“表头”的刻度 刻度(标定):给仪表输入标准的被测量x ,在表头指针的偏转处刻上被测量的数字x 。