比;文本情感分析 • 数据挖掘:关联规则分析;分类;聚类 • 模型预测:预测模型;机器学习;建模仿真
➢ 大数据技术:
• 结构化数据: 海量数据的查询、统计、更新等操作效率低 • 非结构化数据 图片、视频、word、pdf、ppt等文件存储 不利于检索、查询和存储 • 半结构化数据 转换为结构化存储 按照非结构化存储
网络架构、数据中心、运维的挑战:
人们每天创建的数据量正呈爆炸式增长,但就数据 保存来说,我们的技术改进不大,而数据丢失的可 能性却不断增加。
如此庞大的数据量首先在存储上就会是一个非常严 重的问题,硬件的更新速度将是大数据发展的基石。
一些相关技术
➢ 分析技术:
➢ 存储
• 数据处理:自然语言处理技术 • 统计和分析:A/B test; top N排行榜;地域占
• 数据众包
和半结构化数据
(CrowdSouring) • 分布式文件系统
• 关系数据库
• 非关系数据库
(NoSQL)
• 数据仓库
• 云计算和云存储
• 实时流处理
计算结果展示
分布式文件系统
分布式文件系统(Distributed File System)是指文件系统管理 的物理存储资源不一定直接连接在本地节点上,而是通过计算机 网络与节点相连。
非结构化数据
相对于结构化数据而言,不方便用数据库二维逻辑表来表现 的数据即称为非结构化数据,包括所有格式的办公文档、文 本、图片、XML、HTML、各类报表、图像和音频/视频信息等
等。
Velocity 速度
• 1s 是临界点.
• 对于大数据应用而言,必须要在1秒钟内形成答案,否则处 理结果就是过时和无效的.
• 实时处理的要求,是区别大数据引用和传统数据仓库技术, BI技术的关键差别之一.