DLP拼接和液晶拼接显示讲解
- 格式:ppt
- 大小:3.85 MB
- 文档页数:20
如今,大屏幕拼接已经出现在大街小巷。
许多商场、公司都使用了大屏幕拼接技术,来宣传广告、开会等。
而对于大屏幕的系统来说,它们的显示技术也有许多中。
接下来,我们就简要的介绍其中主要的六种:第一种是LCD液晶拼接显示技术。
这一技术主要是由日商主导的投影技术,从90年代起发展的日趋完善。
主要的应用领域是小量的大屏幕投影拼接显示墙、商务投影、桌面投影机等。
从最先的单晶硅静态液晶发展到如今的多晶硅动态液晶,这一技术有了很大的发展。
第二种是CRT显示技术。
这种技术也是最早采用的大屏幕投影机技术。
它采用的是阴极射线管(CRT)技术的大屏幕投影显示屏。
CRT完成投影显示技术的亮度发光和显示核心。
不过,这一技术有着自身的问题,就是CRT投影技术的亮度和分辨率的矛盾,这限制了它的发展。
第三种是LCOS显示技术。
它在携带型资讯设备的应用上比较火爆。
最大的优点是解析度可以很高。
缺点是成本高,这是因为模组的制程较为繁琐,各生产阶段良率控制不易。
它是近几年来在LCD技术基础上发展的一种新的显示技术。
第四种DLP纯数字化显示技术。
它叫做数码光处理。
它的优点很多,有显示图像平滑、精确、亮度高、维护方便、细腻、稳定可靠的特点。
它的应用领域现在也主要集中在商务投影机、电影院放映、桌面投影机。
值得一提的是,在大屏幕投影拼接显示领域它一直处于领导地位。
第五种是PDP—等离子显示技术。
在台湾地区被称之为电浆显示屏。
等离子体显示器的特点是图像效果出众、数字信号直接驱动方式独特而,正因为这些优点,它将是高清晰度数字电视的最佳显示屏幕。
第六种是GLV显示技术。
这一技术还处于一种研发的阶段,因此还未形成产业。
GLV的光线反射元件,是由一条条带状的反射面所组成,依据基板上提供的电压,进行极小幅度的上下移动,决定光线的反射与偏折,再加上其反射装置的超高切换速度,以达成影像的再生。
它的原理是以MEM原理为基础,靠着光线反射来决定影像的显现与否。
因此,我们可以看出,液晶屏拼接技术的系统显示技术有着非常多的选择,但是每种技术都有着自己的优点和缺点,因此,需要进行改进和发展,才能让显示技术的发展更加长远。
LED显示屏/DLP拼接/无缝液晶三大技术优缺点比较2015年9月,LG、创维群欣等安防显示企业纷纷推出1.8毫米缝隙液晶拼接产品,引领液晶拼接技术进入真正无缝时代,成为比肩传统小间距LED显示屏,DLP拼接单元的新选择。
那么对于广大渠道商、集成商、最终用户,必然会面临一个“该选谁”的疑问。
本文的目的也就在于和大家谈谈三大技术在各个方面的优缺点。
从显示效果看,三大拼接技术的优劣对于用户而言,显示设备的最终效果是最核心的选购标准,而不同的显示技术在效果上肯定有一些优劣的差异,具体请见下面的表格:亮度方面看,三种拼接技术都不用担心不够用。
虽然亮度是DLP拼接单元的弱项,尤其是在用LED和激光等长寿固态光源的产品,亮度瓶颈还很明显,且亮度提升与成本提升成正比,但是在大多数应用场合中,DLP拼接亮度依然满足基本需求。
反倒是亮度高著称的小间距LED面临过亮问题——小间距LED的一个主打营销技术既是“低亮度”。
相比而言液晶在亮度水平上显得更为适当,适合超大显示画面应用。
对比度指标上,小间距LED是最高的,DLP拼接单元和液晶相比差距不是很大。
而从需求端看,三大技术的对比度都超过实际显示的需要和人眼的分辨极限。
这就使得对比度效果上,三种技术画面优劣更多取决于软件的优化,而非硬件上的极限值。
分辨率(ppi)指标上,虽然小间距LED一直在突破,但是依然不能和DLP拼接、液晶拼接抗衡。
目前在55英寸单元上能够实现2K普及的只有液晶,未来有希望能普及4K 的更只有液晶。
对于小间距LED而言,更高的像素密度意味着稳定性设计的难度呈几何级数增长,像素间距下降50%,背板密度提升4倍。
这是为何小间距LED已经突破1.0、0.8和0.6的瓶颈,而真正大量应用依然只有2.0、1.6、1.2这样的产品的原因所在。
此外,值得提醒的是液晶具有的像素密度优势的“实际价值也不是很明确”,因为用户很少需求那么高的像素密度。
反应速度这个指标主要针对动态画面的拖尾问题。
解析DLP拼接大屏幕拼接原理液晶无缝拼接墙超大的显示、清晰的画面,在看到大屏幕拼接如此靓丽画面的同时,人们不禁会联想到其大屏幕拼接原理,今天就浅谈一下DLP背投拼接的显示原理以及优势。
DLP原理DLP是"Digital Lighting Progress"的缩写。
它的意思为数字光处理,也就是说这种技术要先把影像讯号经过数字处理,然后再把光投影出来。
它是基于德仪公司开发的数字微反射镜器件-DMD来完成显示数字可视信息的最终环节,而DMD 则是Digital Micromirror Device的缩写,字面意思为数字微镜元件,这是指在DLP 技术系统中的核心--光学引擎心脏采用的数字微镜晶片,它是在CMOS的标准半导体制程上,加上一个可以调变反射面的旋转机构形成的器件。
说得更具体些,就是DLP投影技术是应用了数字微镜晶片(DMD)来做主要关键元件以实现数字光学处理过程。
其原理是将光源藉由一个积分器(Integrator),将光均匀化,通过一个有色彩三原色的色环(ColorWheel),将光分成R、G、B三色,再将色彩由透镜成像在DMD上。
以同步讯号的方法,把数字旋转镜片的电讯号,将连续光转为灰阶,配合R、G、B三种颜色而将色彩表现出来,最后在经过镜头投影成像。
DLP优势从DLP的技术原理上来说,具有以下优势:1、噪音优势:DLP固有的数字性质能使噪声消失,因为DLP具有完成数字视频底层结构的最后环节的能力,并且为开发数字可视通信环境提供了一个平台,DLP技术提供了一个可以达到的显示数字信号的投影方法,这样就完成了全数字底层结构,具有最少的信号噪音。
2、精确的灰度等级:它的数字性质可以获得具有精确数字灰度等级的精细的图像质量以及颜色再现。
3、反射优势:因为DMD是一种反射器件,它有超过60%的光效率,使得DLP 系统显示更有效率。
这一效率是反射率、填充因子、衍射效率和实际镜片"开"时间产生的结果,这一结果使得DLP成为所有显示技术中唯一能够真7×24小时不间断连续工作的显示器。
拼接屏的常见知识点总结一、拼接屏的种类1.按照显示技术的不同,拼接屏可以分为液晶拼接屏、LED拼接屏和DLP拼接屏。
其中,液晶拼接屏采用液晶显示技术,LED拼接屏采用LED点阵显示技术,而DLP拼接屏则采用数字光处理技术。
2.按照安装形式的不同,拼接屏可以分为壁挂式拼接屏、立柱式拼接屏和地面式拼接屏。
壁挂式拼接屏安装在墙壁上,立柱式拼接屏安装在地面上,而地面式拼接屏则直接放置在地面上。
二、拼接屏的特点1.高分辨率:拼接屏由多块显示屏组成,可以拼接成大型的高分辨率显示屏,能够满足大尺寸图像和视频的显示需求。
2.高亮度:拼接屏采用高亮度的显示屏,能够在室内和室外的各种环境下清晰可见,适用于各种场景的展示需求。
3.高对比度:拼接屏采用高对比度的显示屏,能够呈现出鲜明的画面和清晰的色彩,提升了图像和视频的表现效果。
4.模块化设计:拼接屏采用模块化设计,易于安装和维护,可以根据实际需求自由组合,灵活应对各种场景的显示要求。
5.多种显示方式:拼接屏支持单屏显示、拼接显示、画中画显示等多种显示方式,能够满足不同场景下的多种展示需求。
三、拼接屏的应用领域1.监控指挥中心:拼接屏可以用于监控指挥中心的大屏显示,实时展示监控画面和指挥信息,帮助监控人员进行实时监控和指挥调度。
2.会议室:拼接屏可以用于会议室的大屏显示,实时展示会议议程和会议内容,提升会议效果和参会体验。
3.广告牌:拼接屏可以用于室内和室外的广告牌显示,吸引路人的注意力和增加广告宣传的效果。
4.演艺舞台:拼接屏可以用于演艺舞台的舞台背景或舞台侧屏显示,提升演艺表演的视觉效果和观赏体验。
5.商业展示:拼接屏可以用于商业展示的商品展示和广告宣传,吸引顾客的关注和增加购买的欲望。
四、拼接屏的选购注意事项1.分辨率:选择拼接屏时要注意其分辨率,要根据实际展示内容和观看距离来确定合适的分辨率。
2.亮度:选择拼接屏时要注意其亮度,要根据实际展示环境和光照情况来确定合适的亮度。
经过了十余年的发展,大屏幕拼接系统已经被广泛地应用于各种领域,但由于大屏幕拼接产品有着一定的技术难度,并且技术含量较高,所以截止目前为止,依然有很大一部分用户对于大屏幕拼接产品的了解知之甚少,所以投影时代网就应网友的要求,今天来普及一下有关大屏幕拼接市场三大主流技术的知识,因为只有了解了这些才能更好地认识产品。
从技术类型来分的话,大屏幕拼接产口可以分为,DLP背投拼接单元、LCD液晶拼接单元以及PDP等离子拼接单元三大类。
凭借着各自的优势,这三大技术目前在市面上的竞争十分胶着,到底这三大技术孰优孰劣,相信看完下面的介绍,您心里自然会明了。
拼缝“无人能及”DLP背投拼接DLP的全称为“Digital Light Procession”,中文意思是数字光处理,也就是说这种技术要先把影像信号经过数字处理,然后再把光投影出来。
说的具体一点就是,DLP投影技术应用了数字微镜晶片(DMD)来作为主要关键处理元件以实现数字光学处理过程。
其原理是将通过UHP灯泡发射出的冷光源通过冷凝透镜,通过Rod将光均匀化,经过处理后的光通过一个色轮将光分成RGB三原色,再将色彩由透镜投射在DMD芯片上,最后反射经过投影镜头在投影屏幕上成像。
DLP拼接墙由多个背投显示单元拼接而成,其最主要的特点是拼缝小,它的拼缝最小可以达到零点几毫米,可以做到真正意义上的“无缝”拼接,这也是其它两大技术LCD和PDP所不能匹及的。
当然DLP拼接也有它的缺点。
由于DLP拼接的光源是来自于灯泡,导致它的功耗大,散热量高,而且使用一段时间以后就会出现亮度降低,致使用户必须不断更换灯泡来保持最初的显示效果,而且它的单元箱体较大,安装时会带来一些麻烦等等,给用户的使用带来不便。
不过随着拼接技术的不断发展,目前DLP拼接已经解决了频繁更换灯泡、功耗大、散热量高等一系列问题,这都要得益于LED光源的加入。
采用了LED光源之后的DLP拼接单元,不仅在使用寿命上得到了较大的突破,同时在色彩以功耗等方面都有了革命性的改变,让DLP拼接继续保持市场领先的优势。
等离子/液晶拼接与DLP拼接比较MPDP拼接与DLP拼接的比较一、显像原理比较a) 等离子原理PDP (Plasma Display Panel),即等离子显示屏。
PDP是一种利用气体放电的显示技术,其工作原理与日光灯很相似。
它采用了等离子管作为发光元件,屏幕上每一个等离子管对应一个像素,屏幕以玻璃作为基板,基板间隔一定距离,四周经气密性封接形成一个个放电空间,放电空间内充入氖、氙等混合惰性气体作为工作媒质在两块玻璃基板的内侧面上涂有金属氧化物导电薄膜作激励电极。
当向电极上加入电压,放电空间内的混合气体便发生等离子体放电现象,也称电浆效应。
气体等离子体放电产生紫外线,紫外线激发涂有红绿蓝荧光粉的荧光屏,荧光屏发射出可见光,显现出图像。
当每一颜色单元实现 256级灰度后再进行混色,便实现彩色显示。
其技术原理为,由于PDP中发光的等离子管在平面中均匀分布,这样显示图像的中心和边缘完全一致,不会出现扭曲现象,实现了真正意义上的纯平面并且没有任何图像失真。
由于其显示过程中没有电子束运动,不需要借助于电磁场,因此外界的电磁场也不会对其产生干扰,具有较好的环境适应性。
PDP是一种自发光显示技术,不需要背景光源,因此没有视角和亮度均匀性问题。
而三色荧光粉共用同一个等离子管的设计也使其避免了聚焦和汇聚问题,可以实现非常清晰的图像。
等离子高电压高耗电,能耗大,寿命有先天不足,使用5000~10000小时后屏幕亮度就会衰减一半,并难以在海拔2500米以上正常工作。
b) DLP原理DLP是“Digital Lighting Progress”的缩写。
它的意思为数字光处理,也就是说这种技术要先把影像讯号经过数字处理,然后再把光投影出来。
它是基于德仪公司开发的数字微反射镜器件—DMD来完成显示数字可视信息的最终环节,而DMD则是Digital Micromirror Device的缩写,字面意思为数字微镜元件,这是指在DLP技术系统中的核心——光学引擎心脏采用的数字微镜晶片,它是在CMOS的标准半导体制程上,加上一个可以调变反射面的旋转机构形成的器件。
PDP 、DLP 、LCD 三大液晶拼接技术比较DLP液晶拼接屏缺点:拼接数目多了,会出现亮度不均匀功耗大,后期维护成本高亮度比等离子低占用空间比较大PDP液晶拼接屏缺点:1、像素点缝隙大2、显示计算机图像或静态图像容易灼烧3、亮度衰减快且无法提高4、可靠性较低,耗电极高LCD液晶拼接屏缺点: ·不能做到无缝拼接(目前,最窄的已经做到双边7mm,几乎可以忽略不计)PDP液晶拼接屏优点:对比度高、图像细腻安装初期亮度高单屏均匀度高DLP液晶拼接屏优点:适合长时间显示计算机和静态图像像素点缝隙小,图像细腻数字化显示亮度衰减慢大尺寸、拼缝小LCD液晶拼接屏优点:·低功耗、重量轻·易安装、可进行任意拼接·寿命长(一般可正常工作5 万小时以上)·无辐射、画面亮度均匀、画质好·后期维护成本较低结论目前,LCD液晶拼接屏最常见的液晶尺寸有19寸、20寸、40寸、46寸,它可以根据客户需要任意拼接,最大可达到10X10拼接,采用背光源发光,寿命长达50000小时。
其次,液晶的点距小,物理分辩率可以轻易达到高清标准;另外,液晶屏功耗小,发热量低,40寸以上的液晶屏,其功率也不过150W左右,大约只有等离子的1/4,且运行稳定,维护成本低。
随着液晶技术的不断发展,LCD液晶拼接已经被各个行业广泛应用。
拼接墙应用比较整屏控制:LCD :交互式的控制系统,可以开启多个窗口,每个窗口可以显示不同的画面PDP :由于单屏显示面积小,同样面积显示屏的数量多,所以控制器成本较高,速度慢,而且不能灵活开窗口显示图像 DLP :控制其速度快,功能高,不受物理屏的显示,可以任意开窗口显示图像拼缝:LCD :最小6.8mm ,拼接缝隙已经做到极致,整体效果好 PDP :最小3mm ,而且拼缝数量很多整体效果差DLP :小于0.5mm ,拼缝数量少,整体显示效果好适合显示环境LCD :适合在会议室,监控室,大型商场,购物中心安装,可显示静态或动态视频信号,7*24小时长机,长年运行PDP :适合在会议室,显示面积小于 6 平米,而且主要显示动态视频信号,每年运行时间在1000 小时以内的场合 DLP :适合控制或较大的展示空间和显示面积,适合显示各种信号,每年运行时间较长的场合整屏均匀性LCD :每个屏之间的颜色均匀性和亮度均匀性都可以做到很好PDP :每个屏之间的颜色均匀性和亮度均匀性不容易调节,整屏一致性差DLP :采用的数字技术,亮度和色彩容易调节,数量少的屏带来整屏均匀性高空间及安装LCD :超薄机身,安装方便快捷,占用空间少,较PDP 更轻薄PDP :超薄机身,安装方便快捷,占用空间较少DLP :需要较大的安装空间和维护空间维护LCD :维护成本低,支持7×24小时不间断开机,5万小时以上使用寿命PDP :维护成本较高,如果亮度衰减至很低时,需要更换显示板来提高亮度,其成本相当于重新购买DLP :维护成本高,亮度不够时,需要经常更换灯泡来来提高亮度,成本不断增加安装环境要求LCD :功耗低,安装环境要求不高PDP :功耗极高,散热量大,对用电、空调安装环境要求较高DLP :功耗低,安装环境要求不高结论三种液晶拼接产品各有优点,但是针对目前客户的使用环境,LCD液晶拼接,成本低、图像好、易维护无疑是最适合的解决方案。
在日常工作中,随着对信息量的需求越来越大,现在很多政府部门和公共机构都在使用拼接墙来显示信息。
此外,拼接墙在展览馆、机场、航天、电力、电信等部门也都有很重要的用途。
在国外,这种拼接墙还用于银行的监控系统、污水处理的监管部门和公共交通的调度部门等。
中国电子视像行业协会大屏幕投影显示分会秘书长赵汉鼎先生说过,“拼接墙不是可有可无的,而是可以大大地提高工作效率。
比如在公共交通调度部门,使用拼接墙可以同时显示很多画面,从而对各个路段的交通状况都一目了然,便于指挥调度。
”可见,拼接墙在指挥调度等大型部门与场所正发挥着重要的作用,但对很多人来说,拼接墙仍是一种既熟悉又陌生的产品,对其种类和发展状况并不了解。
为此,我们这在里做一个系统的介绍。
拼接墙是一种集成系统,目前共有四种类型,比较常用的是投影和LED 两种。
其中,投影目前常用到的有3LCD、DLP和LCOS。
使用投影技术的拼接墙价格相对较低,并且画面的质量和稳定性都比较高,因此性价比最高,是目前拼接墙领域的主流产品。
LED拼接墙虽然价格比较高,但因为其耐受日晒和风雨的特点,被广泛的用于室外进行数字显示。
除投影和LED外,还有LCD液晶和PDP等离子,他们都有各自的优点。
企业与政府部门在采购拼接墙时,应当结合其性能和用途进行综合考虑。
背投影拼接显示墙大屏幕投影拼接是一个笼统的概念,目前大屏幕投影拼接主要有两种,一种是传统的投影显示单元按照一定的排列方式组合而成的显示墙体,我们称之为硬拼拼接,另一种是采用边缘融合技术的无缝拼接。
其中,投影显示墙硬拼拼接是由多个箱体拼接而成,按其核心部分-显示光机采用的技术不同,它有LCD、DLP、LCOS拼接墙等多种类型。
目前,这种拼接技术的拼接缝隙最小的可以小到毫米以下,因为缝隙非常小,所以大家也都叫“无缝”拼接,但实际是有缝隙的。
投影显示墙硬拼接所采用的箱体通常由以下几个组件构成:投影机(LC D、DLP、CRT等种类)、背投影屏幕、反射镜、支架和箱体。
一、显像原理比较1 等离子原理PDP ( Plasma Display Panel ),即等离子显示屏。
PDP 是一种利用气体放电的显示技术,其工作原理与日光灯很相似。
它采用了等离子管作为发光元件,屏幕上每一个等离子管对应一个像素,屏幕以玻璃作为基板,基板间隔一定距离,四周经气密性封接形成一个个放电空间,放电空间内充入氖、氙等混合惰性气体作为工作媒质在两块玻璃基板的内侧面上涂有金属氧化物导电薄膜作激励电极。
当向电极上加入电压,放电空间内的混合气体便发生等离子体放电现象,也称电浆效应。
气体等离子体放电产生紫外线,紫外线激发涂有红绿蓝荧光粉的荧光屏,荧光屏发射出可见光,显现出图像。
当每一颜色单元实现 256 级灰度后再进行混色,便实现彩色显示。
其技术原理为,由于 PDP 中发光的等离子管在平面中均匀分布,这样显示图像的中心和边缘完全一致,不会出现扭曲现象,实现了真正意义上的纯平面并且没有任何图像失真。
由于其显示过程中没有电子束运动,不需要借助于电磁场,因此外界的电磁场也不会对其产生干扰,具有较好的环境适应性。
PDP 是一种自发光显示技术,不需要背景光源,因此没有视角和亮度均匀性问题。
而三色荧光粉共用同一个等离子管的设计也使其避免了聚焦和汇聚问题,可以实现非常清晰的图像。
等离子高电压高耗电,能耗大,寿命有先天不足,使用 5000 ~ 10000 小时后屏幕亮度就会衰减一半,并难以在海拔 2500 米以上正常工作。
2 DLP 原理DLP 是“Digital Lighting Progress”的缩写。
它的意思为数字光处理,也就是说这种技术要先把影像讯号经过数字处理,然后再把光投影出来。
它是基于德仪公司开发的数字微反射镜器件—DMD 来完成显示数字可视信息的最终环节,而 DMD 则是 Digital Micromirror Device 的缩写,字面意思为数字微镜元件,这是指在 DLP 技术系统中的核心——光学引擎心脏采用的数字微镜晶片,它是在 CMOS 的标准半导体制程上,加上一个可以调变反射面的旋转机构形成的器件。