液氨储罐设计(专业知识)
- 格式:ppt
- 大小:570.50 KB
- 文档页数:10
第一章绪论1. 1设计任务设计一液氨贮罐。
工艺条件:温度为40℃,氨饱和蒸气压MPa.1,容积55为20m3, 使用年限15年。
1.2设计要求及成果1. 确定容器材质;2. 确定罐体形状及名义厚度;3. 确定封头形状及名义厚度;4. 确定支座,人孔及接管,以及开孔补强情况5. 编制设计说明书以及绘制设备装配图1张(A1)。
1.3技术要求(一)本设备按GBl50-1998《钢制压力容器》进行制造、试验和验收(二)焊接材料,对接焊接接头型式及尺寸可按GB985-80中规定(设计焊接φ)接头系数0.1=(三)焊接采用电弧焊,焊条型号为E4303(四)壳体焊缝应进行无损探伤检查,探伤长度为100%第二章设计参数确定2.1 设计温度O题目中给出设计温度取40C2.2 设计压力在夏季液氨储罐经太阳暴晒,随着气温的变化,储罐的操作压力也在不断变化。
通过查阅资料可知包头最高气温为40.4℃,通过查表可知,在40℃ 时液氨的饱和蒸汽压(绝对压力)为1.55MPa ,密度为580kg/m3,而容器设计时必须考虑在工作情况下可能遇到的工作压力和相对应的温度两者相结合中最苛刻工作压力来确定设计压力。
一般是指容器顶部最高压力与相应的设计温度一起作为设计载荷条件,其值不低于工作压力。
此液氨储罐采用安全法,依据《化工设备机械基础》若储罐采用安全法时设计压力应采用最大工作压力w P 的1.105.1-倍,取设计压力w P P 05.1=(已知MPa P w 55.1=表压)所以 MPa P P w 6.105.1==。
2.3 腐蚀余量查《腐蚀数据手册》16MnR 耐氨腐蚀,其y mm /1.0<λ,若设计寿命为15年,则mm 5.11.0152=⨯==αλC2.4焊缝系数该容器属中压贮存容器,技《压力容器安全技术监察规程》规定,氨属中度 毒性介质,容器筒体的纵向焊接接头和封头基本上都采用双面焊或相当于双面焊的全焊透的焊接接头,所以φ取0.1或85.0常见。
液氨(无水)储罐设计要点摘要:本文主要介绍了液氨储罐在设计过程中工作压力、设计压力、安全阀整定压力、最高允许工作压力的确定、设备选材原则及相应的技术条件要求等。
简介:液氨,又称为无水氨,呈无色液体状,有强烈刺激性气味。
氨作为一种重要的化工原料,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。
存储液氨的压力容器,主要应用的场合有医院、制冷业、气体生产厂等场合,它可以为这些企业提供存储的载体,在使用过程中安全可靠、降低成本。
1.设计数据:根据客户提供要求,本罐为常温储存液化气体储罐,无保冷措施,介质为无水液氨,最低设计金属温度-9℃,设计使用年限10年,固定卧式安装,设备公称直径DN1400,容积V=5m³。
2.液氨储罐过程设计要点2.1设计压力、温度确定常温储存液化气体的设计压力,应当以规定温度下的工作压力为基础来确定,根据TSG 21-2016《固定式压力容器安全技术监察规程》条款3.1.9.3规定,液氨临界温度≥50℃,无保冷措施,以液氨50℃饱和蒸气压设为工作压力,液氨50℃饱和蒸气压Pw=1.93MPa,设计压力确定Pc=(1.05~1.1)Pw ≈2.2MPa。
2.2设备材料选择原则根据液氨介质特性含水量不高于0.2%,且有可能受空气中O₂或CO₂污染,使用温度高于-5℃,属于液氨应力腐蚀环境。
对本设备根据设计压力、温度、介质特性,主体板材选用GB/T713-2017《锅炉和压力容器用钢板》低合金钢Q345R,供货状态正火;根据介质危害程度,最低设计金属温度,本设计选用符合GB/T9948的钢管,材料选择10#钢,供货状态正火;法兰锻件根据压力、介质不允许微量泄漏等特性,依照HG/T20592-2009《钢制管法兰、垫片、紧固件》选择带颈对焊法兰,公称压力等级PN40,材质为16MnⅡ锻件,密封面形式凹凸面。
2.3最高允许工作压力的引入及计算过程根据HG/T20660-2017《压力容器中化学介质毒性危害和爆炸危险程度分类标准》氨属于中毒危害介质,泄漏时易挥发可燃气体,爆炸极限为16%~25%,属于易爆介质,对于盛装不允许有微量泄漏的压力容器,应进行泄漏试验,该设备选择气密性试验,试验压力等于设计压力,并且试验时,需要将安全附件装配齐全,为了确保泄漏性试验顺利进行,所以引入最高允许工作压力,最高允许工作压力[PMAWP]是根据容器各受压元件有效厚度计算得到的,考虑了该元件承受的所有载荷,取各受压元件承受最高允许工作压力的最小值;综上各压力之间关系:工作压力Pw<设计压力Pc<安全阀整定压力Pz<最高允许工作压力。
液氨储罐设计h DN80 RF 液氨出⼝管⽬录⼀、设计参数的选择 (1)1、设计压⼒: (1)2、设计温度: (1)3、主要元件材料的选择: (1) 3.1 筒体材料的选择: (1)3.2地脚螺栓的材料选择: (1)⼆、设备的结构与厚度设计 (1) 1、筒体和封头的结构设计 (1)1.1筒体的长度计算 (1)2、筒体厚度的设计 (3)P (3)2.1计算压⼒c2.2圆筒厚度 (3)2.3封头厚度的计算 (3)3、⽔压试验 (4)三、开孔补强设计 (4)1、⼈孔的选⽤ (4)2、补强设计⽅法判别 (6)3、有效补强范围 (7)3.1宽度B的确定 (7)3.2 有效⾼度的确定 (7)4、有效补强⾯积 (7)4.1 筒体多余⾯积 (7)4.2接管的多余⾯积 (8)4.3焊缝⾦属截⾯积 (8)5、补强⾯积 (8)四、鞍座选型和结构设计 (8)1、鞍座选型 (8)2、鞍座位置的确定 (9)五、接管,法兰,垫⽚和螺栓的选择 (11)1、接管和法兰 (11)2、垫⽚ (12)3、螺栓(螺柱)的选择 (13)六、液⾯计的选⽤ (14)七、安全阀的选⽤ (15)⼋、垫⽚及螺栓的选择 (15)九、焊接接头的设计 (15)⼗、校核 (18)⼗⼀、结束语 (32)⼗⼆、参考⽂献 (33)⼀、设计参数的选择1、设计压⼒:液氨在50℃是的饱和蒸汽压为2.0325Mpa,由于按《压⼒容器安全技术监察规程》规定,盛装液化⽓体⽆保冷设施的压⼒容器,其设计压⼒应不低于液化⽓50℃时的饱和蒸汽压⼒Pv=2.0325Mpa,⼤⽓压Pa=0.1Mpa. ⽽最⾼⼯作压⼒指容器顶部在正常⼯作过程中可能产⽣的最⾼表压可取液氨容器的设计压⼒为最⼤⼯作压⼒的1.1倍。
即P=(2.0325-0.1)31.1=2.126Mpa。
2、设计温度:设计温度系指容器在正常操作情况下,在相应设计压⼒下,设定受压元件的⾦属温度,其值不得低于元件⾦属可能达到的最⾼⾦属温度,对于0℃以下的⾦属温度,则设计温度不⾼于元件⾦属可能达到的最低⾦属温度,容器的设计温度是指壳体的设计温度,可知器设计温度选取的依据是:其值不得低于最⾼⾦属温度或不得⾼于最低⾦属温度(0℃以下)。
液氨储罐设计液氨储罐是一种专门用于贮存液态氨的设备,通常采用铁质或钢质材料构建,其几何形状多样,包括球型、柱形、圆锥形等。
在化工、农业、医学、能源和环保等领域中,液氨储罐被广泛应用于氨气的储存、输送和使用。
液氨储罐的设计应考虑到以下因素:储罐的尺寸、外观、重量、储存容量、操作压力、储存温度、安全措施和环境影响等。
具体设计要求如下:1.设计参数与标准:储罐的设计应符合国家、行业和企业规定的设计标准和规范。
例如,对于LPG液化气罐,其设计应符合GB 50332-2013《钢制储罐设计规范》、GB50183-2005《液化石油气储存和运输设备技术条件》,以及国际规范ASME Section VIII Division 1等。
2.储罐材质和厚度:液氨储罐应采用高品质钢材或耐腐蚀材料制成,以保证其耐久性和安全性。
材质选择应考虑到单价、可用性、操作需求等因素。
对于钢制储罐,其厚度应根据所存放液体的特性和储罐的形状、尺寸等因素计算确定,以保证其承受压力和温度的能力。
3.储罐容量和形状:液氨储罐的密封容量应比其设计储存量大一些,以确保液体进入储罐时不会波涛汹涌。
储罐的几何形状可以是圆柱形、球型、圆锥形或其他形状,视实际情况而定。
4.安全措施:储罐应安装适当的安全设备,如安全阀、液位报警器、温度控制器等,以保证储存液体的安全。
此外,对于大规模储罐,还应考虑配备防火、防爆和灭火系统等。
5.管道和附件:液氨储罐应配备合适的出、进料管道和其他附件,如泄放阀、气密性检测器、排气装置等,以便于运输和输送。
6.环境考虑:储罐的设立不应对周围环境造成影响,应考虑其在地形、气候、土壤等方面的适应性。
7.检修和保养:液氨储罐应设计为易于检修和保养。
储罐的喷漆、防腐处理、检修等工作,应每隔一段时间进行,以保证其长期使用效果。
液氨储罐设计分析
液氨储罐是专门用于储存液态氨的设备,通常用于工业生产中的氨气
储存和供应。
设计一个合适的液氨储罐需要考虑多个因素,包括材料选择、结构设计和安全措施等。
首先,材料选择是设计液氨储罐的一个关键因素。
液氨具有很强的腐
蚀性,需要选择防腐材料以延长储罐的使用寿命。
一般情况下,不锈钢和
碳钢是常用的材料。
不锈钢具有良好的耐腐蚀性能,但价格较高;碳钢价
格较低,但需要进行防腐处理以提高其耐腐蚀能力。
其次,结构设计是储罐设计的另一个重要方面。
储罐的结构设计应该
考虑到储罐容量和存放位置,以确保储罐的稳定性和安全性。
常见的液氨
储罐结构有立式储罐和卧式储罐两种。
立式储罐通常占用空间较小,适用
于有限的场地;而卧式储罐通常容量较大,占用空间较大,适用于较大的
场地。
此外,设计时还需要考虑储罐的支撑结构、密封性能和排污系统等。
最后,为了保证储罐使用过程中的安全性,应采取一系列的安全措施。
首先,储罐应采用双层结构,以防止液氨泄漏造成安全事故。
其次,储罐
应配备压力传感器和温度传感器等监测设备,及时检测并防范潜在的问题。
此外,还需要配备火灾报警和灭火系统,防止储罐火灾发生。
同时,储罐
的操作人员应定期检查和维护设备,确保设备的正常运行。
总之,设计一个合适的液氨储罐需要考虑材料选择、结构设计和安全
措施等多个方面。
通过合理优化设计,储罐可以更好地满足工业生产中的
氨气储存和供应需求,并确保在储罐使用过程中的安全性。
XXXX大学课程设计题目: 液氨储罐设计院系: 化学工程学院专业: 化学工程与工艺班级:姓名:指导教师:完成日期: 2011年12月19日设计任务书设计题目: 液氨储罐设计设计任务:试设计一液氨储罐, 完成主体设备的工艺设计和附属设备的选型设计。
包括筒体、封头、零部件的材料的选择及结构的设计;罐的制造施工及焊接形式等;设计计算及相关校核;各设计的参考标准;附CAD图。
已知工艺参数如下:最高使用温度: T=50℃;公称直径: DN=3000㎜;筒体长度(不含封头): Lo=5900㎜。
任务下达时间: 2010年11月19日完成截止时间: 2010年12月30日目录设计任务书1 前言 (1)2 设计选材及结构 (2)2.1 工艺参数的设定 (2)2.1.1设计压力 (2)2.1.2筒体的选材及结构 (2)2.1.3封头的结构及选材 (2)3 设计计算 (3)3.1 筒体壁厚计算 (4)3.2封头壁厚计算 (4)3.3压力试验 (5)4 附件的选择 (6)4.1人孔的选择 (6)4.2人孔补强的计算 (7)4.3进出料接管的选择 (9)4.4液面计的设计 (10)4.5安全阀的选择 (10)4.6排污管的选择 (11)4.7 鞍座的选择 (11)4.7.1鞍座结构和材料的选取 (11)4.7.2容器载荷计算 (12)4.7.3鞍座选取标准 (12)4.7.4鞍座强度校核 (13)5 容器焊缝标准 (14)5.1压力容器焊接结构设计要求 (14)5.2筒体与椭圆封头的焊接接头 (14)5.3管法兰与接管的焊接接头 (14)5.4接管与壳体的焊接接头 (14)6 筒体和封头的校核计算 (16)6.1 筒体轴向应力校核 (16)6.1.1由弯矩引起的轴向应力 (16)6.1.2 由设计压力引起的轴向应力 (17)6.1.3 轴向应力组合与校核 (17)6.2筒体和封头切向应力校核 (18)7 总结 (19)参考文献 (20)1 前言本设计是针对《化工设备机械基础》这门课程所安排的一次课程设计, 是对这门课程的一次总结, 要综合运用所学的知识并查阅相关书籍完成设计。
液氨储罐的结构和强度设计液氨储罐是储存液体氨气的装置,其结构和强度设计对于储罐的安全运行至关重要。
下面将从液氨储罐的结构设计和强度设计两方面进行详细说明。
液氨储罐的结构设计主要包括两部分,即外罐和内罐。
内罐是用来储存液氨的主体部分,一般采用不锈钢材料制成,以保证液氨不会泄漏。
外罐则是对内罐进行保护和支持的结构,一般由碳钢材料制成。
内外罐之间形成的空隙通常被称为保温层,用来降低液氨的蒸发和能量损失。
液氨储罐的结构设计还包括液氨进出口、排气孔和安全装置等部分。
液氨进出口需要满足储罐的进出液要求,通常设置在储罐的顶部或侧面。
排气孔用于放出液氨蒸汽和气体,具有防止过压和阀门失效的功能。
安全装置包括压力表、液位计、安全阀等,用于监测储罐的压力和液位,并在必要时进行自动控制和保护。
首先是内压强度设计。
液氨储罐内部存有高压液氨,因此必须具有足够的强度来抵御内部压力的作用。
内压设计考虑到储罐的材料特性、制造工艺、结构形式等因素,采用了钢结构设计中的薄壁容器理论,并依据液体容器规范对壁厚、焊缝、支承等进行合理设计和计算。
其次是大地震作用强度设计。
液氨储罐是在地面上建设的,因此必须能够抵御地震带来的横向和纵向荷载。
大地震作用强度设计需要考虑储罐的结构形式、地震分级、地基状况等因素,采用了抗震设计的相关规范,如地震设计规范、抗震设计技术规范等,来确保储罐的抗震能力。
除了内压强度和地震作用强度,液氨储罐还需要考虑其他荷载,如风载、温变荷载、雪载等。
这些荷载需要根据具体地区的气候条件、使用环境等因素进行设计和计算。
总之,液氨储罐的结构和强度设计是确保储罐安全运行的重要环节。
对于设计人员来说,需要结合液氨储罐的实际情况和相关规范要求进行设计和计算,以确保储罐在各种荷载和工况下能够安全可靠地运行。
液氨储罐设计规范液氨储罐设计规范液氨储罐设计是液氨储存和运输系统中的重要环节,设计规范的合理性影响着液氨安全运行和环境保护。
以下是液氨储罐的设计规范要点:1. 储罐选址和场地设计储罐选址应远离居民区和火源,具备足够的通风和排放条件,以便在发生泄漏时能够及时散发液氨气体。
场地设计应考虑防火、排水、排气等因素,并满足储罐的支撑和固定要求。
2. 结构和材料选择液氨储罐结构可以采用球形或圆柱形,球形结构可减少材料用量。
而球形结构中的支撑腿应采用独立支撑方式,以减少热应力。
储罐材料选择应考虑其抗压强度、抗腐蚀性和低温性能。
3. 安全阀与泄漏防护储罐应配置安全阀和泄漏防护装置,以防止储罐内部压力过高和泄漏事故。
安全阀应根据储罐的设计压力和容积进行选择,并在每年定期检测和校准。
泄漏防护装置包括泄漏报警器、止回阀、堤坝和防喷器等。
4. 异常情况处理液氨储罐设计应考虑各种异常情况的处理,包括火灾、地震、泄漏和爆炸等。
储罐应配置火灾报警系统和灭火系统,以及应急处理预案和逃生通道。
5. 操作和维护要求液氨储罐的操作和维护应符合相应的规范。
操作人员应接受培训,了解储罐的工作原理和安全操作规程。
储罐的定期检查和维护应包括液位、压力、温度和防腐等方面的监测与维护。
6. 泄漏应急预案液氨储罐设计应制定相应的泄漏应急预案,包括报警、疏散、应急处理和环境保护等方面的措施。
应急预案应定期检查和演练,以确保应急响应的高效性和准确性。
总之,液氨储罐设计规范的合理性和严格执行对保障液氨安全运输和使用至关重要。
每个环节都应严格按照规范要求进行设计、建设和运行,以减少事故风险,保障生产和环境的安全。