用列举法求概率---画树状图法(2步或3步及以上概率)
- 格式:docx
- 大小:92.21 KB
- 文档页数:5
计算概率的常用方法掌握概率的求法是这一章节的重点,那么求概率有哪些方法呢?下面以中考题为例说明求概率的常用方法。
1、列举法(2009年广州)有红、白、蓝三种颜色的小球各一个,它们除颜色外没有任何其他区别。
现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个且只能放一个小球。
(1)请用树状图或其他适当的形式列举出3个小球放入盒子的所有可能的情况。
(2)求红球恰好被放入②号盒子的概率。
解析:(1)3个小球分别放入编号为①、②、③的三个盒子的所有可能情况有:红白蓝、红蓝白、白红蓝、白蓝红、蓝红白、蓝白红,共6种。
(3)由(1)可知,红球恰好放入②号盒子的情况有白红蓝、蓝红白,共2种,所以红球恰好放入②号盒子的概率P=2/6=1/3。
评注:在一次实验中,如果可能出现的结果只是有限个,且各种结果出现的可能性大小相等,我们可以通过列举实验结果的方法,分析出随机事件发生的概率。
2、列表法(2009年成都)有一个均匀的正四面体,四个面上分别标有数字1、2、3、4,小红随机地抛掷一次,把着地一面的数字记为x;另有3张背面完全相同,正面上分别写有数字-2、-1、1的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后他们计算出S=x+y的值。
(1)用树状图或表格表示出的所有可能的情况。
(2)分别求出当S=0和S<2的概率。
解析:(1)列表法分析如下:(2)由表格可知,所有可能出现的情况共有12种,其中S=0的有2种,S<2的有5种。
P(S=0)=2/12=1/6;P(S<2)=5/12。
评注:当一次实验涉及两个因素(例如投掷两个骰子),并且出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表法分析随机事件发生的概率。
3、树状图法(2009年安徽芜湖)“六一”儿童节,小明与小亮受邀到科技馆担任义务讲解员,他们俩各自独立地从A区(时代辉煌)、B区(科学启迪)、C区(智慧之光)、D区(儿童世界)这四个主题展区中随机选择一个为参观者服务。
用树丫图求事件的概率教学目标理解并掌握树状图法求概率的方法.(重难点)课前预习(一)知识探究(二)预习反馈1. 小芳和小丽是乒乓球运动员,在一次比赛中,每人只允许报“双打”或“单打”中的一项,那么至少有一人报“单打”的概率为( )A. 14B. 13C. 12D. 342. 连续掷三枚质地均匀的硬币,三枚硬币都是正面朝上的概率是( )A. 12B. 14C. 18D. 193. 在不透明的袋子里装有红色、绿色小球各一个,小球除颜色外无其他差别.随机摸出一个小球后,放回并摇匀,再随机摸出一个,则两次都摸到红色小球的概率为.4. 甲、乙两队实行乒乓球团体赛,比赛规则如下:两队之间实行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用画树状图法写出分析过程)例题精讲知识点1 用树状图法求概率例1 有一箱子装有3张分别标有4,5,6的号码牌,已知小南以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,则组成的两位数为5的倍数的概率为( )A. 16B. 14C. 13D. 12【归纳总结】理清事件中每一步可能出现的结果,尤其是要注重“放回”或“不放回”这两类因素对结果数量的干扰.变式训练一个不透明的袋子中有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取一张后,放回并搅匀,再随机抽取一张,两次抽取的数字的积为奇数的概率是( )A. 12B. 14C. 310D. 16【思路点拨】“放回”与“不放回”抽取的结果是不一样的,解题时,要先列举出“放回”情形下所有可能出现的结果,然后再去找寻出符合事件特征的结果的个数,从而列式计算概率.知识点2 求三次事件的概率例2 三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a,b,c,则以a,b,c为边长正好构成等边三角形的概率是( )A. 19B. 127C. 59D. 13【归纳总结】画树状图法适合于求两步或两步以上完成事件的概率,画树状图时,每一行表示一个步骤.为方便分析,一般把步骤中分支多的安排在上面.巩固训练1. 在6张卡片上分别写有1~6的整数.随机地抽取一张后放回,再随机地抽取一张.那么第二次取出的数字能够整除第一次取出的数字的概率是( )A. 718B. 1118C. 1336D. 122. 从长为10 cm、7 cm、5 cm、3 cm的四条线段中任选三条能够组成三角形的概率是3. 现有三张分别标有数字2,3,4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线y=12x+12图象上的概率为.4. 小明、小刚和小红各自打算随机选择元旦的上午或下午去红花湖景区游玩.画树状图解答下列问题:(1)小明和小刚都在元旦上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.课堂小结。
《画树状图求概率》简介
安定区李家堡初级中学毕宏州
一、《画树状图法求概率》内容简介
画树状图法求概率是人教版九年级上册第二十五章第二节用列举法求概率的第二课时内容。
本节课的学习目标是:1.会用树状图求出一次试验中涉及3个或更多个因素时,不重复不遗漏地求出所有可能的结果,从而正确地计算问题的概率.2.正确鉴别一次试验中是否涉及3个因素或多个因素,能够从实际需要出发判断何时选用列表法,或画树状图求概率更方便。
学习重点:正确鉴别一次试验中是否涉及3个因素或多个因素,能够运用树状图法计算简单事件发生的概率,并阐明理由。
学习难点:用树形图求出一次试验所有可能的结果。
二、《画树状图求概率》的特色和亮点
本节课用树状图求概率列举出的结果一目了然,当事件经过多次步骤(三步或三步以上)完成时,用这种“树状图”的方法求事件概率很有效。
本节课的一大亮点是让学生在提前预习的基础上,通过教师的引导分析,小组合作画树状图,各组推选学生在各组的黑板上完成画树状图,体现学生的主体作用,让学生感受到自身存在的价值。
学生完成画树状图后,和学生一起归纳小结画树状图求概率的基本步骤,让学生想一想:
(1) 列表法和树形图法的优点是什么?
(2)什么时候使用“列表法”方便?什么时候使用“树形图法”方便?
从而能够更加灵活的选取解题方法,提高学习效率。
25.2(3)用列举法求概率---画树状图法(2步或3步及以上概率)一.【知识要点】1.画树状图法(2步或3步及以上概率)二.【经典例题】1.一个不透明的口袋里装有分别标有汉字“美”、“丽”“四”、“川”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任选一个球,球上的汉字刚好是“四”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“美丽”或“四川”的概率为P 1.(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“美丽”或“四川”的概率为P 2,指出P 1,P 2的大小关系(请直接写出结论,不必证明).2. 有四个一模一样的小球,上面分别标有-2,0,2,3四个数字.从中任意模一个小球,将上面的数字记为a(不放回),再摸一个小球,将上面的数字记为b,这样的数字a,b 能使关于x 的一元二次方程()0112=++-bx x a 有实数根的概率为_______。
3. 有甲、乙、丙3个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm 、5cm 、7cm ;乙盒子中装有2张卡片,卡片上分别写着2cm 、5cm ;丙盒子中装有2张卡片,卡片上分别写着5cm 、7cm 。
所有卡片的形状、大小都完全相同。
现随机从甲、乙、丙三个盒子中各取出一张卡片放在一起,用卡片上标明的数量分别作为一条线段的长度。
(1)请用树状图的方法求这三条线段能组成三角形的概率。
(2)求这三条线段能组成直角三角形的概率。
4.(绵阳2019年第20题11分)胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D 对应的圆心角度数;(2)成绩在D 区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.5.甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球出颜色外无其他差别,分别从每个口袋中随机摸出1个球.(1)摸出的2个球都是白球的概率为__________.(2)下列事件中,概率最大的是( )A.摸出的两个球的颜色都相同.B.摸出的两个球的颜色不相同.C.摸出的两个球中至少有1个红球.D.摸出的两个球中至少有1个白球.6.(2020年绵阳期末第20题)(本题满分12分)同时抛掷两枚质地均匀的正四面体骰子,骰子各个面的点数分别是1至4的整数,把这两枚骰子向下的面的点数记为(a ,b ),其中第一枚骰子的点数记为a ,第二枚骰子的点数记为b .(1)用列举法或树状图法求(a ,b )的结果有多少种?(2)求方程02=++a bx x 有实数解的概率.三.【题库】【A 】【B 】1.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4,随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A. 14B. 12C. 34D. 562.经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率为__________.3. 如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的数字分别记作把作为点的横、纵坐标.(1)请你通过列表法或画树状图求点的个数;(2)求点在函数的图象上的概率.【C 】1.田忌赛马的故事为我们所熟知,小亮与小齐学习概率初步知识后设计如下游戏:小亮手中有方块10,8,6三张扑克牌,小齐手中有方块9,7,5三张扑克牌,每人从各自手中取一张牌进行比较,数据大的为本“局”获胜,每次取的牌不能放回,若本局采用三局两胜制,即胜2局或3局者为本次比赛获胜者,当小亮的三张牌出牌顺序为先出6,再出8,最后出10时,小齐随机出牌应对,则小齐本次比赛获胜的概率是 ( )A.16B.12C.19D.13 2.某校甲乙丙丁四名同学在运动会上参加4x100米接力比赛,其中甲跑第一棒,乙跑第二棒的概率是____________.3.(11分)每年3月12日,是中国的植树节。
课时教学设计个因素(例如抛掷两枚骰子)改为“把一枚骰子掷两次”,(1)满足两枚骰子点数相同(记为事件A)的结果有6个(表中斜体加粗部分),所以P(A)=636=16;(2)满足两枚骰子的和是9(记为事件B)的结果有4个(表中的阴影部分),所以P(B)=436=19;(3)满足至少有一枚骰子的点数为2(记为事件C)的结果有11个(表中方框部分),所以P(C)=1136步骤列表;求出表中可能出现的结果的总数n;统计某种随机事件可能发生的结果的数目m;用公式P(A)=mn计算概率.个分支,在分支下的第三行分别写上H和I;④按竖向把各种可能的结果竖着写在下面,就可得出所有可能的结果的总数(即机会均等的结果的总数m),再找出符合要求的种数,就可以利用概率的意义计算概率了.依据题意,我们可以画出如下的树状图:从树状图中可以看出,所有可能出现的结果共有12个,且这些结果出现的可能性相等,只有一个元音字母的结果有5个,即ACI,ADH,BCI,BDI,BEH,所以P(一个元音)=5 12;全是辅音字母的结果有两个,即BCH,BDH,所以P(三个辅音)=21= 126.的值,,∵共有6种等可能的结果,抽取2名,恰好是1名女生和1名男生有4种情况,∴抽取2名,恰好是1名女生和1名男生概率为23.称为几何概型).小猫在如图所示的地板上自由地走来走去,并随意停留在某块方砖上(图中每一块方砖除颜色外完全相同),求它最终停留在黑色方砖上的概率.由于试验中等可能发生的结果无法计数,所以此时的概率可以用所关注区域(即所有黑色方砖)的面积除以可能发生的区域(即所有方砖)的面积.不妨设小方砖的面积为1,由几何概型的概率公式知,P(停留在黑砖上)=41=164.2.如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球表面积的百分比.若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是 %.板书设计。
25.2用列举法求概率2—三步概率(树状图)编制: 校对:目标:理解并掌握用树状图求概率的方法经历用画树状图法求概率的学习过程,使学生明白在不同情境中分析事件发生的多种可能性通过求概率的数学活动,体验不同的数学问题采用不同的数学方法重点:理解树状图的应用方法及条件,用画树状图的方法求概率。
难点:用树状图列举各种可能性的结果,求实际问题中的概率。
经典例式例1.为了参加中考体育测试,甲,乙,丙三位同学进行足球传球训练。
球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传三次.(1)求请用树状图列举出三次传球的所有可能情况;(2)传球三次后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大.【变式练习1】1.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用“√”表示)或“淘汰”(用“×”表示)的评定结果,节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.习题精练:1.从甲地到乙地有a,b,c 三条道路可走,小王、小李、小张都任选一条道路从甲地到乙地.则恰有两人走同一条a 道路的概率是( ) A.32 B.31 C.61 D.92 2.用“绵阳”、“平安”、“创建”三个词语组句子,那么能够组成“绵阳平安创建”或“创建平安绵阳”的概率是( ) A.61 B.41 C.31 D.21 3.三张背面完全相同的数字牌,它们的正面分别印有数字“1”、“2”、“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a 、b 、c ,则以a 、b 、c 为边长正好构成等边三角形的概率是( ) A.91 B.271 C.95 D.31 4.一个家庭有3个孩子,(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩的概率.5.(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人。
《用列举法求概率(2)》教学设计本课是初中人教版九年级上册第25章《概率初步》第二节《用列举法求概率》的第二课时内容。
一、内容和内容分析1、内容:用列举法(树状图)求简单随机事件的概率2、内容解析在一次试验中,如果可能出现的结果只有有限种,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法求出随机事件发生的概率。
这是初中学生求概率最主要的方法之一。
当每次试验涉及两个因素时,用列表法能更清晰,不重不漏地列举出试验的所有结果,当每次试验涉及三个及更多因素时,用树状图能更清晰,不重不漏地列举出试验的所有结果。
相对于直接列举,表格和树状图列举体现了分步分析对思考较复杂问题时所起到的作用。
相对于列表,用树状图解决任意多步完成的试验,具有更广泛的适应性。
画树状图只要将试验涉及的“步”写成竖列,再分步把每一步的所有结果写在对应的横行中,就能不重不漏地列举试验的所有结果。
这种分步分析问题的方法将在高中乘法计数原理的学习中进一步应用。
另外,通过求概率,学生将进一步体会概率的意义,逐步培养随机观念。
通过分步分析的应用,学生将体会“分步”策略对解决复杂问题所起到的重要作用。
体会用数学模型解决实际问题的过程。
二、教学问题诊断分析学生已经理解了列举法求概率的含义,会用列表法处理涉及两个步骤的试验。
但对较复杂的问题学生可能不会从中提取数学模型,无法做到“分步”分析。
对涉及三个及以上步骤的试验,学生没有更好的列举方法,无法做到清晰明了,不重不漏。
因此在教学中需要教师的引导。
对“规律”“方法”的教学,教师都应当精心设计“导学”的问题或环节,引导学生思考,逐层推进,体现学生学习的主体性。
在教学中学生容易出现的问题是没有真正理解树状图的用法,无法区分“分几步”与“每步可能的结果”,虽然能够通过模仿解决一些简单问题,但无法灵活使用树状图解决具有较复杂背景的题目。
三、教学目标的设计1、课程目标①知识技能:Ⅰ.会用树状图法列举试验的所有结果并正确计算概率;Ⅱ.正确认识在什么条件下选择那种常用方法(直接列举,列表,树状图)。
专题25.2用列举法求概率(讲练)一、知识点1.随机事件概率的计算方法(1)一步完成:直接列举法,运用概率公式计算;(2)两步完成:列表法、画树状图法;(3)两步以上:画树状图法2.几何概率的计算方法求出阴影区域面积与总面积之比即为该事件发生的概率.二、标准例题:例1:春节期间某商场搞促销活动,方案是:在一个不透明的箱子里放4个完全相同的小球,球上分别标“0元”、“20元”、“30元”、“50元”,顾客每消费满300元,就可从箱子里同时摸出两个球,根据这两个小球所标金额之和可获相应价格的礼品;(1)若某顾客在甲商商场消费320元,至少可得价值______元的礼品,至多可得价值______元的礼品;(2)请用画树状图或列表的方法,求该顾客去商场消费,获得礼品的总价值不低于50元的概率.【答案】(1)20,80;(2)2 3【解析】解:(1)根据题意得:该顾客至少可得0+20=20(元),至多可得30+50=80(元).故答案为:20,80.(2)列表如下:0203050 0- 203050 2020- 5070 303050- 80 50507080-∴P(不低于50元)=82= 123.总结:此题考查的是用列表法或树状图法求概率.解题关键在于画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.例2:中考体育测评前,某校在初三15个班中随机抽取了4个班的学生进行了摸底测评,将各班的满分人数进行整理,绘制成如下两幅统计图.(1)D班满分人数共人,扇形统计图中,表示C班满分人数的扇形圆心角的度数为.(2)这些满分同学中有4名同学(3女1男)的跳绳动作十分标准,学校准备从这4名同学中任选2名同学作示范,请利用画树状图或列表法求选中1男1女的概率.【答案】(1)5,120°;(2)见解析,1 ()2 P A .【解析】解:(1)满分人数为6÷25%=24(人),∴D班满分人数共24﹣6﹣5﹣8=5(人),C班满分人数的扇形圆心角的度数=360°×824=120°,故答案为:5;120°;(2)画树状图为:或列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∴共有12种等可能情况,1男1女有6种情况,设题中1男1女为事件A,∴P(A)=612=12.总结:本题考查了扇形统计图,条形统计图,树状图等知识点,解题时注意:概率=所求情况数与总情况数之比.三、练习1.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为()A.1325B.1225C.425D.12【答案】A【解析】解:画树状图如图:共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,∴小李获胜的概率为13 25;故选:A.2.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A.23B.12C.13D.14【答案】D【解析】解:两次摸球的所有的可能性树状图如下:第一次第二次开始 ⎧⎧⎨⎪⎪⎩⎨⎧⎪⎨⎪⎩⎩红球红球绿球红球绿球绿球∴P 两次都是红球14=. 故选:D .3.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( ) A .13B .23C .19D .29【答案】A【解析】画树状图为:(用、、A B C 分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3, 所以两人恰好选择同一场馆的概率3193==. 故选:A .4.甲、乙两人玩游戏,把一个均匀的小正方体的每个面上分别标上数字1,2,3,4,5,6,任意掷出小正方体后,若朝上的数字比3大,则甲胜;若朝上的数字比3小,则乙胜,你认为这个游戏对甲、乙双方公平吗?________. 【答案】不公平 【解析】∵掷得朝上的数字比3大可能性有:4,5,6, ∴掷得朝上的数字比3大的概率为:31=62, ∵朝上的数字比3小的可能性有:1,2, ∴掷得朝上的数字比3小的概率为:26=13, ∴这个游戏对甲、乙双方不公平.5.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1、2、3、4、5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是___________.【答案】2 5【解析】解:列表得:(1,5)(2,5)(3,5)(4,5)-(1,4)(2,4)(3,4)- (5,4)(1,3)(2,3)- (4,3)(5,3)(1,2)- (3,2)(4,2)(5,2)- (2,1)(3,1)(4,1)(5,1)∴一共有20种情况,这两个球上的数字之和为偶数的8种情况,∴这两个球上的数字之和为偶数的概率是82 205.6.如图,有两个转盘A、B,在每个转盘各自的两个扇形区域中分别标有数字1、2,分别转动转盘A、B,当转盘停止转动时,若事件“指针都落在标有数字1的扇形区域内”的概率是19,则转盘B中标有数字1的扇形的圆心角的度数是_________°.【答案】80【解析】设转盘B中指针落在标有数字1的扇形区域内的概率为x,根据题意得:12x=19,解得x=29,∴转盘B中标有数字1的扇形的圆心角的度数为:360°×29=80°.故答案为:80.7.在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.(1)写出点M坐标的所有可能的结果;(2)求点M在直线y=x上的概率;(3)求点M的横坐标与纵坐标之和是偶数的概率.【答案】(1)(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3);(2);(3).【解析】【详解】(1)列表得:1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)∴点M坐标的所有可能的结果有九个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3).(2)P(点M在直线y=x上)=P(点M的横、纵坐标相等)==.(3)列表如下:123123423453456∴P(点M的横坐标与纵坐标之和是偶数)=.8.某校七年级随机抽取30名学生,对5种活动形式:A:跑步,B:篮球,C:跳绳,D:乒乓球,E:武术,进行了随机抽样调查,每个学生只能选择一种运动形式,调查统计结果,绘制了不完整的统计图.(1)将条形图补充完整;(2)如果初一年级有1200名学生,估计喜爱跳绳运动的有多少人?(3)某次体育课上,老师在5个一样的乒乓球上分别写上A,B,C,D,E放在不透明的口袋中,每人每次摸出一个球并且只摸一次,然后放回,按照球上的标号参加对应活动,小明和小刚是好朋友,请用树状图或列表法的方法,求他俩恰好是同一种活动形式的概率.【答案】(1)答案见解析;(2)估计喜爱跳绳运动的有360人;(3)1 5 .【解析】(1)D类型的人数为30﹣(4+6+9+3)=8(人),补全条形图如下:(2)根据题意得:1200930⨯=360(人).答:估计喜爱跳绳运动的有360人;(3)画树状图如下:由树状图可知,共有25种等可能结果,其中他俩恰好是同一种活动形式的有5种,他俩恰好是同一种活动形式的概率为51 255=.9.如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的数字分别记作a、b,把a、b 作为点 A 的横、纵坐标.(1)求点A(a,b)的个数;(2)求点A(a,b)在函数y=12x的图象上的概率.(用列表或树状图写出分析过程)【答案】(1)16;(2)1 8【解析】(1)列表得:因此,点A(a,b)的个数共有16个;(2)若点A在y=12x上,则ab=12,由(1)得满足ab=12的有两种因此,点A(a,b)在函数y=12x图象上的概率为21=168.10.为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目).并将调查结果绘制成如下统计图表:学生最喜欢的节目人数统计表节目人数(名)百分比最强大脑510%阅读者15B%中国诗词大会a40%出彩中国人1020%根据以上提供的信息,解答下列问题(1)x=,a=,b=;(2)补全条形统计图;(3)若该校共有学生800名,根据抽样调查结果,估计该校喜爱《中国诗词大会》节目的学生有多少名?(4)李玲和王亮经过选拔代表班级参加校内即将举办的“中国诗词大会”,预赛分为A、B、C三组进行,由抽签确定分组.李玲和王亮恰好分在一组的概率是多少?(要求用画树状图或列表法)【答案】(1)50,20,30;(2)见解析;(3)估计该校喜爱《中国诗词大会》节目的学生有320人;(4)见解析,1 3 .【解析】解:(1)x=5÷10%=50(人);a=50×40%=20;b%=1550×100%=30%,即b=30;故答案为50,20,30;(2)如图,(3)800×40%=320,所以估计该校喜爱《中国诗词大会》节目的学生有320人;(4)画树状图为:共有9种等可能性情况,两个人在一个组的有3种可能,所以李玲和王亮恰好分在一组的概率为31 93 .11.电子政务、数字经济、智慧社会一场数字革命正在神州大地激荡.在第二届数字中国建设峰会召开之际,某校举行了第二届“掌握新技术,走进数时代”信息技术应用大赛,将该校八年级参加竞赛的学生成绩统计后,绘制成如下统计图表(不完整):“掌握新技术,走进数时代”信息技术应用大赛成绩频数分布统计表组别成绩x(分)人数A60≤x<7010B70≤x<80mC80≤x<9016D90≤x≤1004请观察上面的图表,解答下列问题:(1)统计表中m=;统计图中n=,D组的圆心角是度.(2)D组的4名学生中,有2名男生和2名女生.从D组随机抽取2名学生参加5G体验活动,请你画出树状图或用列表法求:①恰好1名男生和1名女生被抽取参加5G体验活动的概率;②至少1名女生被抽取参加5G体验活动的概率.【答案】(1)20、32、28.8;(2)①恰好1名男生和1名女生被抽取参加5G体验活动的概率为23;②至少1名女生被抽取参加5G体验活动的概率为56.【解析】(1)被调查的总人数为10÷20%=50,则m=50﹣(10+16+4)=20,n%1650=⨯100%=32%,即n=32,D组的圆心角是360°450⨯=28.8°,故答案为:20、32、28.8;(2)①设男同学标记为A、B;女学生标记为1、2,可能出现的所有结果列表如下:A B12A/(B,A)(1,A)(2,A)B(A,B)/(1,B)(2,B)1(A,1)(B,1)/(2,1)2(A,2)(B,2)(1,2)/共有12 种可能的结果,且每种的可能性相同,其中刚好抽到一男一女的结果有8种,∴恰好1名男生和1名女生被抽取参加5G体验活动的概率为82 123=;②∵至少1名女生被抽取参加5G体验活动的有10种结果,∴至少1名女生被抽取参加5G体验活动的概率为105 126=.12.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是______.(2)如果小明将“求助”留在第二题使用,那么小明顺利通关的概率是______.【答案】1319【解析】(1)∵第一道单选题有3个选项,∴小明第一题不使用“求助”,那么小明答对第一道题的概率是:13;故答案为:13;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:19.故答案为:19.13.如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:乙积甲1234123(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.【答案】(1)补全表格见解析;(2)112,23;(3)16.【解析】(1)补全表格如下:1234 11234 22468 336912 (2)由表知,共有12种等可能结果,其中积为9的有1种,积为偶数的有8种结果,所以积为9的概率为112;积为偶数的概率为82123=,故答案为:112,23;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的有5和7这2种,∴此事件的概率为21 126=,故答案为:16.。
25.2(3)用列举法求概率---画树状图法(2步或3步及以上概率)
一.【知识要点】
1.画树状图法(2步或3步及以上概率)
二.【经典例题】
1.一个不透明的口袋里装有分别标有汉字“美”、“丽”“四”、“川”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任选一个球,球上的汉字刚好是“四”的概率为多少?
(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“美丽”或“四川”的概率为P 1.
(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“美丽”或“四川”的概率为P 2,指出P 1,P 2的大小关系(请直接写出结论,不必证明).
2. 有四个一模一样的小球,上面分别标有-2,0,2,3四个数字.从中任意模一个小球,将上面的数字记为a(不放回),再摸一个小球,将上面的数字记为b,这样的数字a,b 能使关于x 的一元二次方程()0112
=++-bx x a 有实数根的概率为_______。
3. 有甲、乙、丙3个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm 、5cm 、7cm ;乙盒子中装有2张卡片,卡片上分别写着2cm 、5cm ;丙盒子中装有2张卡片,卡片上分别写着5cm 、7cm 。
所有卡片的形状、大小都完全相同。
现随机从甲、乙、丙三个盒子中各取出一张卡片放在一起,用卡片上标明的数量分别作为一条线段的长度。
(1)请用树状图的方法求这三条线段能组成三角形的概率。
(2)求这三条线段能组成直角三角形的概率。
4.(绵阳2019年第20题11分)
胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:
请根据统计图的信息,解答下列问题:
(1)补全频数分布直方图,并求扇形统计图中扇形D 对应的圆心角度数;
(2)成绩在D 区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.
5.甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球出颜色外无其他差别,分别从每个口袋中随机摸出1个球.
(1)摸出的2个球都是白球的概率为__________.
(2)下列事件中,概率最大的是( )
A.摸出的两个球的颜色都相同.
B.摸出的两个球的颜色不相同.
C.摸出的两个球中至少有1个红球.
D.摸出的两个球中至少有1个白球.
6.(2020年绵阳期末第20题)
(本题满分12分)同时抛掷两枚质地均匀的正四面体骰子,骰子各个面的点数分别是1至4的整数,把这两枚骰子向下的面的点数记为(a ,b ),其中第一枚骰子的点数记为a ,第二枚骰子的点数记为b .
(1)用列举法或树状图法求(a ,b )的结果有多少种?
(2)求方程02
=++a bx x 有实数解的概率.
三.【题库】
【A 】
【B 】
1.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4,随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )
A. 14
B. 12
C. 34
D. 56
2.经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率为__________.
3. 如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,
指针指向的数字分别记作把作为点的横、纵坐标.
(1)请你通过列表法或画树状图求点的个数;
(2)求点在函数的图象上的概率.
【C 】
1.田忌赛马的故事为我们所熟知,小亮与小齐学习概率初步知识后设计如下游戏:小亮手中有方块10,8,6三张扑克牌,小齐手中有方块9,7,5三张扑克牌,每人从各自手中取一张牌进行比较,数据大的为本“局”获胜,每次取的牌不能放回,若本局采用三局两胜制,即胜2局或3局者为本次比赛获胜者,当小亮的三张牌出牌顺序为先出6,再出8,最后出10时,小齐随机出牌应对,则小齐本次比赛获胜的概率是 ( )
A.16
B.12
C.19
D.1
3 2.某校甲乙丙丁四名同学在运动会上参加4x100米接力比赛,其中甲跑第一棒,乙跑第二棒的概率是____________.
3.(11分)每年3月12日,是中国的植树节。
某街道办事处为进一步改善人居环境,准备在街道两边植种行道树,行道树的树种选择取决于居民的喜爱情况.为此,街道办事处的人员随机调查了部分居民,并将结果绘制成如下扇形统计图,其中∠AOB = 126︒. 请根据扇形统计图,完成下列问题:
(1)本次调查了多少名居民?其中喜爱香樟的居民有多少人?
(2)请将条形统计图补全(在图中完成).
(3)某中学的一些同学也参与了投票,喜爱“小叶榕”的有四人,其中一名男生;喜爱“黄a b 、,a b 、A ()A a b ,()A a b ,y x =1
4 3
2
葛树”的也有四人,其中三名男生.若街道准备分别从这两组中随机选出一名同学参与到街道植树活动中去.请你用列表或画树状图的方法求出所选两名同学恰好是一名女生和一名男生的概率.
居民喜爱的树种所占百分比居民喜爱的树种频数分布直方图
4.(本题满分12分)如图,甲袋子中有3张除数字外完全相同的卡片,乙袋子中有2张除数字外完全相同的卡片,若先从甲袋子中抽出一张数字为a的卡片,再从乙袋子中抽出一张数字为b的卡片,两张卡片中的数字,记为(a,b).
(1)请用树形图或列表法列出(a,b)的所有可能的结果;
(2)求在(a,b)中,使方程ax2+bx+1=0没有实数根的概率.
【D】
1.有三张不透明的纸片上分别写有-2,-4,5这三个数字,除正面写有不同数字外,其他
都相同,将这三张纸片背面向上洗匀后,第一次随机抽一张,并把这张纸片标有的数字
记作一次函数表达式中的k ,放回洗匀后,第二次再随机抽一张,并把这张纸片标有的数字记作一次函数表达式中的b
(1)写出k 为负数的概率;
(2)求一次函数b kx y
+=的图像经过第二.三.四象限的概率(用树状图或列表法求解)。