高中物理专题复习之运动学
- 格式:docx
- 大小:83.90 KB
- 文档页数:8
高中物理运动学规律及解题方法
高中物理的运动学规律和解题方法包括以下几个方面:
1. 匀变速直线运动:这是最基础的运动学规律,涉及到的概念有速度、加速度、位移等。
解题方法主要是利用公式,如速度公式、位移公式、加速度公式等,根据题目条件列方程求解。
2. 牛顿运动定律:这是运动学的基础,涉及到的概念有作用力、反作用力、惯性等。
解题方法主要是根据牛顿第二定律列方程求解,或者用惯性定律分析运动过程。
3. 曲线运动:涉及到抛物线运动、圆周运动等。
解题方法主要是利用向心力的公式和定理,分析物体在曲线运动中的受力情况和运动轨迹。
4. 相对运动:分析物体之间的相对运动,解题方法主要是画运动示意图,运用运动学规律进行分析。
5. 振动和波动:分析物体的振动和波动情况,解题方法主要是利用振动和波动的规律,如振动方程、波动方程等。
在解题过程中,需要注意以下几点:
1. 仔细审题,理解题意,明确题目要求求解的问题。
2. 根据题目的条件和运动学规律,选择合适的公式和定理进行求解。
3. 分析物体的受力情况和运动轨迹,注意分析过程的细节和物理意义。
4. 对于复杂的运动过程,需要分段或者分步骤进行分析,画运动示意图有助于理解问题。
5. 对于多过程的问题,需要注意各过程之间的联系和转折点。
高中物理竞赛辅导讲义第2篇 运动学【知识梳理】一、匀变速直线运动二、运动的合成与分解运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。
我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。
以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则v 绝对 = v 相对 + v 牵连或 v 甲对乙 = v 甲对丙 + v 丙对乙位移、加速度之间也存在类似关系。
三、物系相关速度正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。
以下三个结论在实际解题中十分有用。
1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。
2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。
3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。
四、抛体运动: 1.平抛运动。
2.斜抛运动。
五、圆周运动: 1.匀速圆周运动。
2.变速圆周运动:线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a tτ∆→∆=∆,方向指向切线方向。
六、一般的曲线运动一般的曲线运动可以分为很多小段,每小段都可以看做圆周运动的一部分。
在分析质点经过曲线上某位置的运动时,可以采用圆周运动的分析方法来处理。
对于一般的曲线运动,向心加速度为2n v a ρ=,ρ为点所在曲线处的曲率半径。
七、刚体的平动和绕定轴的转动1.刚体所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。
刚体的基本运动包括刚体的平动和刚体绕定轴的转动。
高中物理复习要点总结练习题高中物理是一门逻辑性和系统性都很强的学科,想要在考试中取得好成绩,扎实的复习是必不可少的。
下面为大家总结了高中物理的复习要点,并附上相应的练习题,希望能对同学们的复习有所帮助。
一、力学部分1、运动学(1)匀变速直线运动的规律:速度公式 v = v₀+ at,位移公式 x = v₀t + 1/2at²,速度位移公式 v² v₀²= 2ax 等,要熟练掌握这些公式的应用,能够解决刹车问题、追及相遇问题等。
(2)平抛运动:将平抛运动分解为水平方向的匀速直线运动和竖直方向的自由落体运动,掌握水平位移和竖直位移的计算方法。
(3)圆周运动:线速度、角速度、周期、向心加速度等物理量的定义和公式,以及向心力的来源分析。
练习题:一辆汽车以 10m/s 的初速度在水平地面上匀减速刹车,加速度大小为 2m/s²,求汽车刹车 5s 后的位移。
一个物体以水平初速度 v₀抛出,经过 2s 落地,水平位移为 40m,求物体抛出时的初速度 v₀。
一圆盘绕中心轴匀速转动,半径为 2m,周期为 4s,求圆盘边缘一点的线速度和向心加速度。
2、牛顿运动定律(1)牛顿第一定律:惯性的概念,力是改变物体运动状态的原因。
(2)牛顿第二定律:F = ma,要能够根据物体的受力情况分析加速度,或者根据加速度求解受力。
(3)牛顿第三定律:作用力与反作用力的关系。
练习题:一个质量为 2kg 的物体在水平地面上受到水平拉力 F = 10N 的作用,摩擦力 f = 4N,求物体的加速度。
一个人站在体重秤上,下蹲过程中体重秤的示数如何变化?3、机械能守恒定律(1)功和功率的计算:掌握恒力做功的公式 W =Fxcosθ,功率的公式 P = W/t 或 P = Fv。
(2)动能定理:合外力对物体做功等于物体动能的变化。
(3)机械能守恒定律:只有重力或弹力做功的情况下,机械能守恒,即 E₁= E₂。
高中物理运动学知识点一、引言运动学是物理学的一个分支,它研究物体的运动,而不涉及引起运动的力。
在高中物理课程中,运动学的概念为学生提供了描述和分析物体运动的基础工具。
本文将概述高中物理运动学的主要知识点。
二、基本概念1. 距离与位移- 距离是物体运动的总路径长度。
- 位移是从初始位置到最终位置的直线距离和方向。
2. 速度- 速度是位移与时间的比率。
- 瞬时速度是在某一特定时刻的速度。
3. 加速度- 加速度是速度的变化率。
- 它是速度随时间的变化量除以时间间隔。
三、运动学方程1. 匀速直线运动- 公式:\( s = ut + \frac{1}{2}at^2 \)- 其中,\( s \)是位移,\( u \)是初始速度,\( a \)是加速度,\( t \)是时间。
2. 匀加速直线运动- 公式:\( s = ut + \frac{1}{2}at^2 \)- 与匀速直线运动相同,但加速度 \( a \) 是一个非零常数。
3. 最终速度- 公式:\( v = u + at \)- 其中,\( v \)是最终速度。
四、运动图象1. 位移-时间图- 描述物体位移随时间的变化。
- 斜率代表速度。
2. 速度-时间图- 描述物体速度随时间的变化。
- 斜率代表加速度。
五、圆周运动1. 线速度- 物体在圆周路径上的速度。
- 公式:\( v = \omega r \)- 其中,\( \omega \)是角速度,\( r \)是半径。
2. 角速度- 物体绕轴旋转的速度。
- 公式:\( \omega = \frac{v}{r} \)3. 向心加速度- 使物体保持圆周运动的加速度。
- 公式:\( a_c = \frac{v^2}{r} \)六、相对运动1. 参考系- 描述物体运动的坐标系。
- 可以是静止的或运动的。
2. 相对速度- 一个物体相对于另一个物体的速度。
- 公式:\( v_{relative} = v_{object} - v_{reference} \)七、应用问题1. 自由落体- 物体在重力作用下自由下落的运动。
高中物理学习中的运动学知识点详解运动学是物理学中的一个重要分支,研究物体的运动状态和运动规律,是物理学的基石之一。
在高中物理学习中,我们学习了很多与运动相关的知识,本文将详细解析其中的几个重要的运动学知识点。
一、位移与距离位移和距离是描述物体位置变化的概念,但它们的含义有所不同。
位移是指物体从初始位置到最终位置的位置变化量,是一个矢量量值,具有大小和方向;而距离则是指物体在运动过程中实际所走过的路径长度,是一个标量量值,只具有大小而无方向。
在直线运动中,位移和距离可以相等,而在曲线运动中,位移和距离则不相等。
二、速度与加速度速度和加速度是描述物体运动状态的重要量。
速度是指物体在单位时间内所走过的位移,通常用v表示,是一个矢量量值,具有大小和方向。
加速度是指物体每秒钟速度变化的量,通常用a表示,也是一个矢量量值。
加速度可以使速度增加或减小,当加速度与速度的方向相同时,速度增大;当加速度与速度的方向相反时,速度减小。
当加速度为零时,物体的速度保持不变,即匀速运动。
三、匀速直线运动在匀速直线运动中,物体的速度保持不变,即加速度为零。
这种运动的特点是物体每个单位时间内走过的位移相等,可以用位移-时间图来表示。
位移-时间图是一条斜率为常数的直线,即速度恒定。
在匀速直线运动中,物体的位移与时间成正比,位移随时间的变化呈线性关系。
四、匀加速直线运动在匀加速直线运动中,物体的加速度保持不变,即速度每秒钟增加(或减小)的量相等。
这种运动的特点是物体每个单位时间内的位移随时间的增加而增加,可以用位移-时间图来表示。
位移-时间图是一条抛物线,其斜率在不同位置处表示物体的瞬时速度,由于加速度的存在,速度随时间变化而变化。
五、自由落体运动自由落体是指物体在只受重力作用下的竖直上抛运动。
在自由落体运动中,物体的加速度恒定且等于重力加速度g,其大小约为9.8m/s²。
自由落体运动的特点是物体自上而下运动,初始速度为零,位移与时间的关系可以用位移-时间图表示。
高三运动学知识点汇总一、什么是运动学运动学是物理学中的一个分支,研究物体运动的规律和特性,主要涉及到物体的位置、速度、加速度等概念。
在高三物理学习中,了解和掌握运动学的知识点是非常重要的。
二、一维运动学1. 位移位移是物体在某一段时间内的位置变化。
它的表达式为S=Vt,其中S表示位移,V表示速度,t表示时间。
在高三物理课程中,学生需要根据具体情况灵活运用位移公式。
2. 速度速度是物体运动的快慢程度,它的计算公式为v=ΔS/Δt,其中v表示速度,ΔS表示位移变化量,Δt表示时间变化量。
高三学生需要通过解题练习,掌握速度的计算方法。
3. 加速度加速度是物体速度变化率的物理量,它的计算公式为a=Δv/Δt,其中a表示加速度,Δv表示速度变化量,Δt表示时间变化量。
理解加速度的概念对于解决一维运动问题至关重要。
4. 匀速运动匀速运动是指物体在运动过程中速度保持不变的运动状态。
在高三物理学习中,学生需要了解匀速运动的特点和计算方法。
5. 匀加速直线运动匀加速直线运动是指物体在运动过程中加速度保持恒定的运动状态。
学生需要通过解题实践,熟练掌握匀加速直线运动的相关知识和运算方法。
三、二维运动学1. 二维运动的表示二维运动是指物体在运动过程中同时具有水平方向和竖直方向的运动状态。
学生需要了解二维运动的表示方法和相关的物理量。
2. 平抛运动平抛运动是指物体在水平方向运动的同时,竖直方向具有自由落体运动的状态。
学生需要掌握平抛运动的特点和相关计算方法。
3. 斜抛运动斜抛运动是指物体在具有水平和竖直方向速度分量的情况下的运动状态。
学生需要理解斜抛运动的特点,并能够灵活应用相关的物理公式解题。
四、相对运动1. 相对位移相对位移是指两个物体之间位置变化的差值。
学生需要理解相对位移的概念,并能够运用相关的公式计算相对位移。
2. 相对速度相对速度是指两个物体之间速度的差值。
学生需要掌握相对速度的计算方法,并能够应用到实际问题的解决中。
高中物理运动学知识点全面梳理汇编运动学是物理学的一个分支,研究物体的运动规律和运动状态。
在高中物理学习中,运动学是一个重要的学习内容,它涉及到许多重要的知识点。
本文将全面梳理高中物理运动学知识点,帮助读者更好地理解和应用这些知识。
一、描述运动的基本概念1. 物体的位移与路径位移是指物体从初始位置到结束位置的变化量,可以用矢量表示。
路径是物体运动轨迹上的一条线,它是位移的具体表现。
2. 速度与速率速度是指物体在单位时间内移动的位移,可以表示为位移对时间的比值。
速率是指单位时间内物体移动的路程,可以表示为路程对时间的比值。
3. 加速度加速度是指物体速度变化的速率,可以表示为速度对时间的比值。
如果加速度为正值,则物体在运动过程中速度增加;如果加速度为负值,则物体在运动过程中速度减小。
4. 匀速直线运动和变速直线运动如果物体在单位时间内的位移保持恒定,则称为匀速直线运动。
如果物体在单位时间内的位移不断变化,则称为变速直线运动。
二、运动的图像与图像的分析1. 速度-时间图像速度-时间图像可以直观地反映出物体在不同时刻的速度变化情况。
斜率表示加速度的大小。
2. 位移-时间图像位移-时间图像可以直观地反映出物体在不同时刻的位移变化情况。
曲线下面积表示物体移动的距离。
3. 加速度-时间图像加速度-时间图像可以直观地反映出物体在不同时刻的加速度变化情况。
斜率表示加速度的大小。
4. 速度-位移图像速度-位移图像可以直观地反映出物体在不同位移下的速度变化情况。
曲线斜率表示物体的加速度。
三、直线运动学的运动学方程1. 位移-时间关系物体的位移等于初始速度乘以时间再加上加速度乘以时间的平方的一半,即S=V0t+1/2at^2。
2. 速度-时间关系物体的速度等于初始速度加上加速度乘以时间,即v=V0+at。
3. 速度-位移关系物体的速度平方等于初始速度平方加上2倍加速度乘以位移,即v^2=V0^2+2aS。
四、自由落体运动1. 重力加速度自由落体是只受重力作用的物体在自由状态下的运动。
高中物理运动学知识点总结平均速度和瞬时速度:平均速度是指物体在一段时间内移动的总路程与时间的比值;瞬时速度是指物体在某一瞬间的速度。
平均加速度和瞬时加速度:平均加速度是指物体在一段时间内速度的改变量与时间的比值;瞬时加速度是指物体在某一瞬间的加速度。
牛顿运动定律:牛顿第一定律(惯性定律):物体在没有受到外力作用时,保持静止或匀速直线运动。
牛顿第二定律(运动定律):物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
公式为F=ma,其中F表示力,m表示质量,a表示加速度。
牛顿第三定律(作用-反作用定律):物体A对物体B施加一个力,物体B对物体A也会施加同样大小、方向相反的力。
匀速直线运动:物体做匀速直线运动时,位移和时间的比值等于速度。
匀加速直线运动:物体做匀加速直线运动时,位移和时间的二次方的比值等于加速度的一半。
匀变速运动位移公式:S = v0t +1/2at^2,其中S是物体的位移,v0是物体的初始速度,a是物体的加速度,t是运动时间。
匀变速运动速度与位移的关系式:S = (v -v0)^2 / (2a),这是由位移公式和速度公式推导出来的。
自由落体运动位移公式:H = 1/2gt^2,其中H是物体的位移,g是重力加速度,t 是运动时间。
竖直上抛运动位移公式:S = Vot - 1/2gt^2,其中S是物体的位移,Vo是物体的初始速度,g是重力加速度,t是运动时间。
平均速度和平均速率的定义式:平均速度v_avg = S / t,其中v_avg 是平均速度,S是位移,t是时间;平均速率v_avg = S / t,其中v_avg是平均速率,S是路程,t是时间。
加速度的定义式:a = Δv / Δt,其中a是加速度,Δv是速度的变化量,Δt是时间的变化量。
此外,运动学还包括点的运动学和刚体运动学两部分,主要研究物体的位置、位移、速度、加速度等随时间的变化规律。
运动学是理论力学的一个分支学科,它是运用几何学的方法来研究物体的运动,不涉及物体本身的物理性质和加在物体上的力。
高中物理必修一运动学总结IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】高一物理必修一运动学一、几个常见易混淆的概念: 1、时刻和时间时刻:指的是某一瞬时。
在时间轴上用一个点来表示。
对应的是位置、速度、动量、动能等状态量。
时间:是两时刻间的间隔。
在时间轴上用一段长度来表示。
对应的是位移、路程、冲量、功等过程量。
时间间隔=终止时刻-开始时刻。
2、位移和路程位移:描述物体位置的变化,是从物体运动的初位置指向末位置的矢量。
路程:物体运动轨迹的长度,是标量。
只有在单方向的直线运动中,位移的大小才等于路程。
3、平均速度和瞬时速度速度:描述物体运动的方向和快慢的物理量。
1.平均速度:位移与发生这个位移所用的时间之比,即txv ∆∆=,单位:m /s 。
速度是矢量,其方向与位移的方向相同。
它是对变速运动的粗略描述。
2.瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧。
对于运动快慢一直在变化的“非匀速运动”(又叫变速运动),如果要精确描述物体每时每刻运动的快慢程度,就必须引入“瞬时速度”这个概念。
当Δt 非常小(用数学术语来说,Δt →0)时的tx∆∆就可以认为是瞬时速度。
4、平均速度和平均速率 平均速度=平均速率= 5、速度和加速度速度:描述物体运动的方向和快慢的物理量。
加速度:反映运动物体速度变化快慢......的物理量。
即速度的变化率。
加速度的定义:速度的变化与发生这一变化所用的时间的比值,即 a=tv ∆∆=t v v ∆-12。
加速度是矢量。
加速度的方向与速度方向并不一定相同。
两种常见加速度:切向加速度、法向加速度。
二、几种常见的运动 1、静止自然界最基本、最简单的运动形式。
运动是绝对的,静止是相对的。
特征:V=0、a=0 2、匀速直线运动定义:在相等的时间里位移相等的直线运动。
特点:a =0,v=恒量.位移公式:S =vt .3、匀变速直线运动(包括:匀加速直线运动和匀减速直线运动)定义:在相等的时间内速度的变化相等的直线运动叫做匀变速直线运动。
高中物理运动学知识点高中物理运动学知识点归纳1、平抛运动2、v-t图象描述运动。
3、追及问题。
4、联系实际的运动学规律的简易计算。
[联系实际与综合]①体育竞技②交通运输(车、皮带轮、扶梯的运行)③水上运动(含船过河)④动物奔跑⑤气球落物和水柱喷射等空中抛物⑥飞车表演⑦电荷在电场中的偏转做类似平抛运动(但电荷在做匀速圆周运动不能类似平抛运动分解) [说明]⑴主要以选择题形式出现,难度中等。
⑵重点内容:①运动分类匀速直线运动直线运动匀变速直线运动:自由落体变速直线运动非匀变速直线运动:振子振动非匀变速曲线运动:圆周运动曲线运动(变速运动)匀变速曲线运动:平抛运动②描述量位置时刻瞬时速度位移时间平均速度加速度路程时间平均速率同向时:加速v恒定时:物体匀速运动a与v反向时:减速v大小或方向变时:物体做变速运动a与v垂直时:v大小不变,方向变a=0时:物体保持静止或匀速运动a恒定:物体做匀变速运动a≠0时:物体做变速运动a大小或方向变:物体做非匀变速运动③匀变速直线运动规律:S=v0t+at2消去t:vt2-v02=2aSv中时==(v0+vt)vt=v0+at消去a:s=(v0+vt)tΔs=s2-s1=s3-s2=…=at2④运动合成和分解:a、船过河(最短过河时间与距离)b、平抛规律:水平方向做匀速运动,竖直方向做自由落体运动位移:x=v0t,y=gt2/2,S=(x2+y2)1/2,方向tanα=y/x速度:vx=v0,vy=gt,v=(vx2+vy2)1/2,方向tanβ=vy/vx⑤熟练掌握v-t图象及追及问题的分析方法。
专题1.1 运动学基本概念【题型归纳与分析】考试的题型:选择题、实验题与解答题考试核心考点与题型:(1)选择题:运动图像的分析与应用(2)解答题:单独考察“匀变速直线运动的相关规律”或者“与牛顿定律的综合”(3)实验题:单独考察或者与牛顿定律的综合直线运动是高中物理的基础,在高中物理教材中占有很重要的地位,也是高考重点考查的内容之一。
近几年对直线运动单独命题较多,直线运动毕竟是基础运动形式,所以一直是高考热点,但不是难点,对本章内容的考查则以图像问题和运动学规律的应用为主,题型通常为选择题,分值一般为6分。
本章规律较多,同一试题往往可以从不同角度分析,得到正确答案,多练习一题多解,对熟练运用公式有很大帮助。
注意本章内容与生活实例的结合,通过对这些实例的分析、物理情境的构建、物理过程的认识,建立起物理模型,再运用相应的规律处理实际问题。
近年高考图像问题频频出现,且要求较高,考查的重点是v-t图像和匀变速运动的规律。
本章知识还较多地与牛顿运动定律、电场中带电粒子运动的等知识结合起来进行考查,并多与实际生活和现实生产实际密切地结合起来,考查学生综合运用知识解决实际问题的能力。
今后将会越来越突出地考查运动规律、运动图像与实际生活相结合的应用,在2018高考复习中应多加关注。
第01讲运动学基本概念课前预习● 自我检测1、判断正误,正确的划“√”,错误的划“×”(1)质点是一种理想化模型,实际并不存在。
(√)(2)体积很大的物体,不能视为质点。
(×)(3)参考系必须是静止不动的物体。
(×)(4)做直线运动的物体,其位移大小一定等于路程。
(×)(5)平均速度的方向与位移方向相同。
(√)(6)瞬时速度的方向就是物体在该时刻或该位置的运动方向。
(√)(7)物体的速度很大,加速度不可能为零。
(×)(8)甲的加速度a甲=2 m/s2,乙的加速度a乙=-3 m/s2,a甲>a乙。
高中物理运动学知识点总结一、运动的描述运动是物体位置随时间的变化。
在运动学中,主要研究物体运动的描述及其规律。
1.1 位移和路径长度位移是指物体从一个位置到另一个位置的变化,用△x表示。
路径长度是物体在运动过程中所走过的实际距离,在直线运动中等于位移。
1.2 平均速度和瞬时速度平均速度是指物体在一段时间内的位移与时间的比值。
瞬时速度是指物体在某一瞬间的速度,可以通过求极限得到。
1.3 平均加速度和瞬时加速度平均加速度是指物体在一段时间内速度的变化与时间的比值。
瞬时加速度是指物体在某一瞬间的加速度,可以通过求极限得到。
二、匀速直线运动匀速直线运动是指物体在运动过程中速度大小保持不变,方向可以改变或保持不变。
2.1 位移、速度和加速度的关系匀速直线运动中,位移与速度成正比。
速度等于位移与时间的比值,即v = △x / △t。
加速度为零,因为速度保持不变。
2.2 匀速直线运动的图像在匀速直线运动中,位移与时间呈线性关系,即位移随时间的变化呈直线。
速度与时间呈水平直线,表示速度不变。
加速度为零,没有图像。
2.3 匀速直线运动的公式匀速直线运动中,可以使用以下公式计算相关物理量: - 位移公式:△x = v * △t - 平均速度公式:v = △x / △t - 瞬时速度:v = v0 - 加速度:a = 0三、匀加速直线运动匀加速直线运动是指物体在运动过程中速度的变化量相等。
3.1 位移、速度和加速度的关系匀加速直线运动中,位移与速度成正比,与加速度的平方成正比。
位移与时间的关系为△x = v0 * t + 1/2 * a * t^2。
速度与时间的关系为v = v0 + at。
3.2 匀加速直线运动的图像在匀加速直线运动中,位移与时间呈二次函数关系,即位移随时间的变化呈抛物线。
速度与时间呈一次函数关系,即速度随时间的变化呈直线。
加速度常数时,加速度与时间无关,没有图像。
3.3 匀加速直线运动的公式匀加速直线运动中,可以使用以下公式计算相关物理量: - 位移公式:△x = v0 * t + 1/2 * a * t^2 - 平均速度公式:v = (v0 + vt) / 2 - 瞬时速度:v = v0 + at - 瞬时加速度:a = a四、自由落体运动自由落体运动是指物体在重力作用下从静止开始的运动。
高中物理第一讲运动学基础一、知识要点1.描述运动的物理量矢量:位移、平均速度、瞬时速度标量:位移、时间、路程、瞬时速率、平均速率矢量的引入更好的用数学刻画了客观世界,虽然有时感觉与常识不符,但它们是科学家长期实践中寻找到的刻画现实的有效途径。
2.匀变速直线运动①匀变速直线运动的基本关系②匀变速直线运动的题型(1)图像-计算题(2)代数-计算题(3)纸带问题(4)多过程问题(5)临界问题(6)图像分析……二、典例精析1.某物块做匀变速直线运动,运动过程中一个2s的位移是4m,紧接着下一个2s的位移是8m,问物块运动加速度?2.现有一小石子从屋顶落下,经过一扇窗户时所用时间为1s,窗高为10m,窗户下边缘离地3m,问小石子从多高处落下?3.现有甲、乙、丙三个物块,从0时刻开始,甲做匀加速直线运动,乙做速度先增大后减小的直线运动,丙做速度先减小后增大的直线运动。
在0时刻时,三者速度相等;当t1时刻时,三者速度也相等。
问:从0~t1时刻,甲、乙、丙位移的大小关系?4.某辆汽车刹车时能产生的最大加速度值为10m/s2.司机发现前方有危险时,0.7 s后才能做出反应,马上制动,这个时间称为反应时间.若汽车以20m/s的速度行驶时,(1)汽车之间的距离至少应为多少?(2)若酒醉驾驶时反应时间为平时的3倍,是否会撞到前方40m处得障碍物5.如图3所示,某同学在做“研究匀变速直线运动”实验中,由打点计时器得到表示小车运动过程的一条清晰纸带,纸带上两相邻计数点的时间间隔为T=0.20s,其中S1=7.05cm,S2=7.68cm,S3=8.33cm,S4=8.95cm,S5=9.61cm,S6=10.26cm,则A点的瞬时速度大小是_______________________m/s(保留2位有效数字),小车运动的加速度计算表达式是__________________________,加速度大小为_______________(保留2位有效数字)。
高中物理专题复习——运动学
[知识要点复习]
1. 位移(s):描述质点位置改变的物理量,是矢量,方向由初位置指向末位置,大小是从初位置到末位置的直线长度。
2. 速度(v):描述物体运动快慢和方向的物理量,是矢量。
做变速直线运动的物体,在某段时间内的位移与这段时间的比值叫做这段时间内平均速度。
它只能粗略描述物体做变速运动的快慢。
瞬时速度(v):运动物体在某一时刻(或某一位置)的速度,瞬时速度的大小叫速率,是标量。
3. 加速度(a):描述物体速度变化快慢的物理量,它的大小等于
矢量,单位m/s2。
4. 路程(L):物体运动轨迹的长度,是标量。
5. 匀速直线运动的规律及图像
(1)速度大小、方向不变
(2)图象
6. 匀变速直线运动的规律
(1)加速度a的大小、方向不变
(2)图像
7. 自由落体运动
只在重力作用下,物体从静止开始的自由运动。
8. 牛顿第一运动定律
一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止,这叫牛顿第一运动定律。
惯性:物体保持原匀速直线运动状态或静止状态的性质叫惯性,因此牛顿第一定律又叫惯性定律。
惯性是物体的固有属性,与物体的受力情况及运动情况无关;惯性的大小由物体的质量决定,质量大,惯性大。
9. 牛顿第二运动定律
物体加速度的大小与所受合外力成正比,与物体质量成反比,加速度的方向与合外力的方向相同。
10. 牛顿第三运动定律
两个物体之间的作用力和反作用力总是大小相等、方向相反,作用在一条直线上。
作用力与反作用力大小相等,性质相同,同时产生,同时消失,方向不同、作用在两个不同且相互作用的物体上,可概括为“三同,两不同”。
11. 超重与失重:当系统具有竖直向上的加速度时,物体对支持物的压力或对悬挂物的拉力大于其重力的现象叫超重;当系统具有竖直向下的加速度时,物体对支持物的压力或对悬挂物的拉力小于其重力的现象叫失重。
12. 曲线运动的条件
物体所受合外力的方向与它速度方向不在同一直线,即加速度方向与速度方向不在同一直线。
若用θ表示加速度a与速度v0的夹角,则有:0°<θ<90°,物体做速率变大的曲线运动;θ=90°时,物体做速率不变的曲线运动;90°<θ<180°时,物体做速率减小的曲线运动。
13. 运动的合成与分解
(1)合运动与分运动的关系
a. 等时性:合运动与分运动经历的时间相等;
b. 独立性:一个物体同时参与了几个分运动,各分运动独立进行,不受其它分运动的影响。
c. 等效性:各分运动叠加起来与合运动规律有完全相同的效果。
(2)运动的合成与分解的运算法则
遵从平行四边形定则,运动的合成与分解是指位移、速度、加速度的合成与分解。
(3)运动分解的原则
根据运动的实际效果分解或正交分解。
14. 平抛运动的规律和特点:
(1)定义:只在重力作用下,将物体水平抛出所做的运动;
(2)特点:
a. 加速度为g的匀变速曲线运动,轨迹是抛物线。
b. 可分解成水平方向的匀速直线运动,速度大小等于平抛的初速度;和竖直方向的自由落体运动。
c. 速度的变化量必沿竖直方向,且有Δv=gΔt。
15. 描述圆周运动的物理量及其关系
(3)转速(n),单位时间内转过的圈数,单位转/分钟(r/min)。
(4)周期与频率,物体绕圆周一圈所需时间叫周期,用T表示;单位时间内物体所做圆周运动的次数,用f表示,单位Hz,它与周期成倒数关系。
(5)这几个物理量之间的关系:
16. 圆周运动中向心力的特点
(1)匀速圆周运动中:合外力提供向心力,大小不变,方向始终与速度方向垂直且指向圆心,所以匀速圆周运动是变加速度运动。
(2)变速圆周运动,合外力沿半径方向的分力提供向心力,使物体产生向心加速度,改变速度的方向,合外力沿轨道切线方向的分力,使物体产生切向加速度,改变速度的大小,合外力不仅大小随时间改变,其方向也不沿半径指向圆心。
17. 万有引力定律(地球质量5.965×10^24kg,直径12756千米)
自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量乘积成正比,跟它
(G代表引力常量,其值约为6.67×10-11 N·㎡ /kg2)们的距离的二次方成反比。
F=GMm
R2
第一宇宙速度:是指物体紧贴地球表面作圆周运动的速度(也是人造地球卫星的最小发射速度)。
大小为7.9km/s
第二宇宙速度:是指物体完全摆脱地球引力束缚,飞离地球的所需要的最小初始速度,大小为11.2km/s。
第三宇宙速度:是指在地球上发射的物体摆脱太阳引力束缚,飞出太阳系所需的最小初始速度,其大小为16.7km/s。
【例题分析】
例1. 一艘小艇从河岸的A处出发渡河,小艇保持与河岸垂直方向行驶,经过10分钟到达正对岸下游120m的C处,如图1所示,如果小艇保持原来的速度逆水斜向上游与河岸成α角方向行驶,则经过12.5分钟恰好到达正对岸的B处,求河的宽度。
例2. 质量为m=0.10kg的小钢球以v0=10m/s的水平速度抛出,下落h=5.0m时撞击一钢板,撞后速度恰好反向,则钢板与水平面的夹角θ=________。
(取g=10m/s2)(见图3)
例3. 质量M=80kg的长木板放在水平光滑的平面上,在水平恒力F=11N作用下由静止开始向右运动,如图5所示,当速度达到1m/s时,将质量m=4kg的物块轻轻放到木板的右端,已知物块与木板间动摩擦因数μ=0.2,
(1)求物体经多少时间与木板保持相对静止?
(2)在这一时间内,物块在木板上滑行的距离多大?
(3)物块与木板相对静止后,物块受到的摩擦力多大?
例4.如图5所示,岸边的汽车用一根不可伸长的轻绳通过定滑轮牵引水中的小船,设小船始终不离开水面,且绳足够长,求汽车速度v1和小船速度v2的大小关系。
例5.如图8所示,长为L的细绳一端固定,另一端系一小球。
当小球在最低点时,给球一个v o = 2gL的水平初速,试求所能到达的最大高度。
课后习题
1. 如图8所示,为了测定某辆轿车在平直路上起动时的加速度(轿车起动时的运动可以近似看作匀加速运动),某人拍摄了一张在同一底片上多次曝光的照片(如图8),如果拍摄时每隔2s曝光一次,轿车车身总长为4.5m,那么这辆轿车的加速度约为()
A. B. C. D.
图8
2. 某同学在测定匀变速运动的加速度时,得到了几条较为理想的纸带,已知每条纸带上每5个点取一个计数点,即两计数点之间的时间间隔为0.1s,依打点先后编为0,1,2,3,4,5,由于不小心,纸带被撕断了,如图9所示,请根据给出的A、B、C、D四段纸带回答(填字母)。
(1)在B、C、D三段纸带中选出从纸带A上撕下的那段应该是_______。
(2)打纸带A时,物体的加速度大小是________m/s2。
图9
3. 一倾角为的斜面上放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与滑块相对静止共同运动。
当细线(1)沿竖直方向;(2)与斜面方向垂直;(2)沿水平方向。
求上述三种情况下滑块下滑的加速度及丝线拉力,设丝线拉力为T,滑块质量为m。
(见图10)
图10
4. 某种类型的飞机起飞滑行时,从静止开始做匀加速运动,加速度大小为4.0m/s2,飞机速度达到80m/s时离开地面升空。
如果在飞机达到起飞速度时,突然接到命令停止起飞,飞行员立即使飞机紧急制动,飞机做匀减速运动,加速度的大小为
5.0m/s2,请你为该类型的飞
机设计一条跑道,使在这种特殊的情况下飞机停止起飞而不滑出跑道,你设计的跑道长度至少要多长?
5. 如图11甲、乙所示,图中细线均不可伸长,物体均处于平衡状态,如果突然把两水平细线剪断,求剪断瞬间小球A、B加速度各为多少?(角已知)
图11
6. 如图12所示,质量为80kg的物体放在安装在小车上的水平磅秤上,小车沿斜面无摩擦地向下运动,现观察到物体在磅秤上读数只有600N,则斜面的倾角为多少?物体对磅秤的静摩擦力为多少?
图12
7. 如图13所示,水平地面上有两块完全相同的木块AB,在水平推力F作用下运动,用
代表A、B间的相互作用力()
图13
8. 皮带传送机的皮带与水平方向的夹角为,如图14所示,将质量为m的小物块放在皮带传送机上,随皮带一起向下以加速度a做匀加速直线运动,则()
A. 物块受到的支持力的方向一定垂直于皮带指向物块
B. 物块受到的静摩擦力的方向一定沿皮带斜向下
C. 物块受到的静摩擦力的大小可能等于
D. 物块受到的重力和摩擦力的合力的方向一定沿斜面方向
图14
9. 如图15所示,临界角C为的液面上有一点光源S发出一束光垂直入射到水平放置于液体中且距液面为d的平面镜M上。
当平面镜M绕垂直过中心O的轴以角速度做逆时针匀速转动时,观察者发现水面上有一光斑掠过,则观察者们观察到的光斑在水面上掠过的最大速度为多少?
图15
10. 一排球场总长为18m,设网高2m,运动员站在离网3m线上正对网前跳起将球水平击出
(1)设击球点的高度为2.5m,试问击球的速度在什么范围内才能使球既不触网也不越界。
(2)若击球点的高度小于某个值,那么无论水平击球的速度多大,球不是触网就是越界,试求出这个高度。