数学知识点秋北师大版初中数学九年级上册第一次月考试卷-总结
- 格式:doc
- 大小:172.79 KB
- 文档页数:6
北师大版九年级上册数学第一次月考试题一、单选题1.小明和小颖做“剪刀、石头、布”的游戏,假设他们每次出这三种手势的可能性相同,则在一次游戏中两人手势相同的概率是( )A .13B .16C .19D .23 2.下列条件中,能判定▱ABCD 是菱形的是( )A .AC =BDB .AB ⊥BC C .AD =BD D .AC ⊥BD 3.已知关于x 的方程x 2﹣x +m =0的一个根是3,则另一个根是( )A .﹣6B .6C .﹣2D .2 4.身高1.6米的小明同学利用相似三角形测量学校旗杆的高度,上午10点,小明在阳光下的影长为1米,此时测得旗杆的影长为9米,则学校旗杆的高度是( ) A .9米 B .10米 C .13.4米 D .14.4米 5.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有( )A .24B .36C .40D .90 6.如图,线段AB 两个端点的坐标分别为A (2,2)、B (3,1),以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(4,4)B .(3,3)C .(3,1)D .(4,1) 7.如图,在矩形ABCD 中,AB m =,6BC =,点E 在边CD 上,且23CE m .连接BE ,将BCE 沿BE 折叠,点C 的对应点C '恰好落在边AD 上,则m =( )A.B.C D.48.已知m,n是一元二次方程x2=x的两个实数根,则下列结论错误的是()A.m+n=0 B.m•n=0 C.m2=m D.n2=n9.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A B.C.D10.如果关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是()A.a>﹣14B.a≥﹣14C.a≥﹣14且a≠0D.a>14且a≠0二、填空题11.如图,在ABCD中,点E是CD的中点,AE,BC的延长线交于点F.若ECF△的面积为1,则四边形ABCE的面积为________.12.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为__________.13.如图,在矩形ABCD中,AB=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,若BE =EO ,则AD 的长是____.14.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是______. 15.如图,在△ABC 中,D 为AC 边上的中点,AE ∥BC ,ED 交AB 于G ,交BC 延长线于F .若BG :GA=3:1,BC=10,则AE 的长为___________.16.如图,将一张长方形纸板的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计).若长方形纸板边长分别为40cm 和30cm ,且折成的长方体盒子表面积是950cm 2,此时长方体盒子的体积为_____cm 3.17.已知平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B 1在y 轴上且坐标是(0,2),点C 1、E 1、E 2、C 2、E 3、E 4、C 3在x 轴上,C 1的坐标是(1,0).B 1C 1∥B 2C 2∥B 3C 3, 以此继续下去,则点A 2020到x 轴的距离是________.三、解答题18.解方程(1)x2-5x=0(2)(x-3)(x+3)=2x的平分线,BD 19.如图,在ABC中,AB=8,BC=4,AC=6,CD AB,BD是ABC交AD于点E,求AE的长.20.平行四边形ABCD中,过点D作DE⊥AB于点E,点F在CD上,DF=BE,连接:BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DF=5,求矩形BFDE的面积.21.2020年突如其来的新型冠状病毒疫情,给生鲜电商带来了意想不到的流量和机遇,据统计某生鲜电商平台1月份的销售额是1440万元,3月份的销售额是2250万元.(1)若该平台1月份到3月份的月平均增长率都相同,求月平均增长率是多少?(2)市场调查发现,某水果在“盒马鲜生”平台上的售价为20元/千克时,每天能销售200千克,售价每降价2元,每天可多售出100千克,为了推广宣传,商家决定降价促销,同时尽量减少库存,已知该水果的成本价为12元/千克,若使销售该水果每天获利1750元,则售价应降低多少元?22.将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).BC=,点M在BC上,连接AM点N在直线AD 23.如图,矩形ABCD中,3AB=,2∠=∠,MN交CD于点E.上,且AMN AMB(1)求证:AMN是等腰三角形;(2)求证:22=⋅;AM BM AN(3)当M为BC中点时,求ME的长.24.如图,在矩形ABCD中,AD=kAB(k>0),点E是线段CB延长线上的一个动点,连接AE,过点A作AF⊥AE交射线DC于点F.(1)如图1,若k=1,则AF与AE之间的数量关系是;(2)如图2,若k≠1,试判断AF与AE之间的数量关系,写出结论并证明;(用含k的式子表示)(3)若AD=2AB=4,连接BD交AF于点G,连接EG,当CF=1时,求EG的长.25.如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC 向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.(1)当t=2时,求线段PQ的长度;(2)当t为何值时,△PCQ的面积等于5cm2?(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB 能否垂直?若能,求出相应的t值;若不能,请说明理由.参考答案1.A2.D3.C4.D5.D6.A7.A8.A9.B10.C11.312.31613.14.54k ≤且1k ≠ 15.516.150017.20193218.(1)x 1=0,x 2=5 ;(2)x 1 +1,x 2 +1 19.420.(1)详见解析;(2)2021.(1)月平均增长率是25%.(2)售价应降低3元. 22.(1)14;(2)71623.(1)详见解析;(2)详见解析;(3)54ME =24.(1)AF =AE ;(2)AF =kAE ,证明见解析;(3)EG 的长为625.(1);(2)当t=1秒时,△PCQ 的面积等于5cm 2;(3)能垂直,理由见解析.。
2024-2025学年九年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第三章(北师大版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单选题1.下列方程是关于x的一元二次方程的是().A.1+x=2B.x2―2y=0xC.x2+2x=x2―1D.x2=0【答案】D【分析】本题考查了一元二次方程的定义,掌握一元二次方程的定义是解题的关键.根据一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程,逐项分析判断即可求解.+x=2,是分式方程,不是一元二次方程;故该选项不符合题意;【详解】解:A.1xB.x2―2y=0,含有两个未知数,不是一元二次方程,故该选项不符合题意;C.x2+2x=x2―1,化简后为:2x+1=0,不是一元二次方程,故该选项不符合题意;D.x2=0,是一元二次方程,故该选项符合题意;故选D.2.下列事件中,属于必然事件的是()A.打开电视,正在播放跳水比赛B.一个不透明的袋子中装有3个红球和1个白球,除颜色外,这些球无其他差别,随机摸出两个球,至少有一个是红球C.抛掷两枚质地均匀的骰子,点数和为6D.一个多边形的内角和为600°【答案】B【分析】本题考查事件的分类,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,由此对每一项进行分析即可.【详解】A,打开电视,可能播放跳水比赛,也可能不播放,因此该事件是随机事件;B,一个不透明的袋子中装有3个红球和1个白球,除颜色外,这些球无其他差别,随机摸出两个球,可能是2个红球,也可能是1个红球和1个白球,因此至少有一个是红球,该事件是必然事件;C,抛掷两枚质地均匀的骰子,点数和为可能是6,也可能不是6,因此该事件是随机事件;D,设一个n边形的内角和为600°,则(n―2)⋅180°=600°,解得n=16,不是整数,因此这种情3况不存在,该事件是不可能事件;故选B.3.下列命题是假命题的是()A.有一组邻边相等的矩形是正方形B.有一组邻边相等的四边形是平行四边形C.有三个角是直角的四边形是矩形D.对角线互相垂直且平分的四边形是菱形【答案】B【分析】根据正方形的判定、平行四边形的判定、矩形和菱形的判定判断即可.【详解】解:A、有一组邻边相等的矩形是正方形,是真命题;B、有一组邻边相等的四边形不一定是平行四边形,如筝形,原命题是假命题;C、有三个角是直角的四边形是矩形,是真命题;D、对角线互相垂直且平分的四边形是菱形,是真命题;故选:B.【点睛】本题考查的是命题的真假判断,主要包括平行四边形的判定和特殊平行四边形的判定.判断命题的真假关键是要熟悉课本中的性质定理.4.已知m是方程x2―x―4=0的一个根,则―2m2+2m的值为()A.4B.―4C.8D.―8【答案】D【分析】根据一元二次方程的根的定义,可知m2―m=4,然后整体代入求值即可.【详解】解:∵m是方程x2―x―4=0的一个根,∴m2―m―4=0,整理,可得m2―m=4,∴―2m2+2m=―2(m2―m)=―2×4=―8.故选:D.【点睛】本题主要考查了一元二次方程的根的定义以及代数式求值,理解一元二次方程的根的定义是解题关键.5.某农机厂4月份生产零件50万个,第二季度共生产零件182万个,设该厂5,6月份平均每月的增长率为x,那么x满足的方程是()A.50(1―x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=182【答案】B【分析】本题主要考查一元二次方程的增长率问题,根据题意分别表示出五月份,六月份生产零件的量,最后相加列出等式即可.【详解】解:根据题意,该厂五月份生产零件为:50(1+x),则该厂六月份生产零件为:50(1+x)(1+x)=50(1+x)2,故该厂第二季度共生产零件为:50+50(1+x)+50(1+x)2=182.故选:B6.如图,在3×3的正方形网格中,已有两个小正方形被凃黑,再将图中剩余的小正方形中任意一个涂黑,则三个被涂黑的小正方形能构成轴对称图形的概率是()A.17B.37C.47D.57【答案】B【分析】本题考查了概率公式,轴对称图形,熟记概率公式和能识别轴对称图形是解题的关键.分别将7个空白处涂黑,判断出所得图案是轴对称图形的个数,再根据概率公式进行计算.【详解】解:如图①②③任意一处涂黑时,图案为轴对称图形,∵共有7个空白处,将①②③处任意一处涂黑,图案为轴对称图形,共3处,∴构成轴对称图形的概率是3,7故选:B7.若1和―1有一个是关于x的方程x2+bx+a=0的根,则一元二次方程(a+1)x2+2bx+(a+1)=0根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.有两个实数根D.没有实数根【答案】B【分析】本题考查了一元二次方程的根,一元二次方程的根的判别式.熟练掌握:当Δ=0时,一由(a+1)x2+2bx+(a+1)=0,可知Δ=4b2―4(a+1)2,由题意,当1是方程的根时,b=―(1+a),则Δ=0,此时,方程有两个相等的实数根;当―1是方程的根时,b=1+a,则Δ=0,此时,方程有两个相等的实数根;然后作答即可.【详解】解:∵(a+1)x2+2bx+(a+1)=0,∴Δ=4b2―4(a+1)2,∵1和―1有一个是关于x的方程x2+bx+a=0的根,当1是方程的根时,则1+b+a=0,解得,b=―(1+a),∴Δ=4b2―4(a+1)2=4[―(1+a)]2―4(a+1)2=0,此时,方程有两个相等的实数根;当―1是方程的根时,则1―b+a=0,解得,b=1+a,∴Δ=4b2―4(a+1)2=4(1+a)2―4(a+1)2=0,此时,方程有两个相等的实数根;综上,方程有两个相等的实数根,故选:B.8.如图,菱形ABCD的顶点A,B的坐标分别为1,2,―2,―1,BC∥x轴,将菱形ABCD平移,使点B与原点O重合,则平移后点D的对应点的坐标为()A.3―1,2B.2,3)C.+1,2)D.+3,3)【答案】D【分析】本题考查了菱形的性质,坐标与图形,勾股定理以及平移等知识,先利用勾股定理求出AB,然后利用菱形的性质求出点D的坐标,最后利用平移的性质求解即可.【详解】解∶∵A,B的坐标分别为1,2,―2,―1,∴AB==∵菱形ABCD,∴AD=AB=AD∥BC,又BC∥x轴,∴AD∥x轴,∴D的坐标为(1+,∵菱形ABCD平移,使点B与原点O重合,∴菱形ABCD向右平移2个单位,向上平移1个单位,∴平移后点D的对应点的坐标为3,3),故选∶D.9.如图,在平行四边形ABCD中,∠C=135°,AB=2,AD=3,点H,G分别是CD,BC上的动点,连接AH,GH.E,F分别为AH,GH的中点,则EF的最小值是( )A.2B C D.【答案】C【分析】作AQ⊥BC,根据中位线定理可推出EF=12AG,进一步可得当AG⊥BC时,AG有最小值,此时EF的值也最小.据此即可求解.【详解】解:作AQ⊥BC,如图:∵E,F分别为AH,GH的中点∴EF=12AG故:当AG⊥BC时,AG有最小值,此时EF的值也最小∴EF的最小值是12AQ∵∠C=135°,AB=2∴∠B=180°―135°=45°∴AQ=AB×sin45°=∴EF故选:C【点睛】本题考查了中位线定理、平行四边形的性质、解直角三角形等.掌握相关结论即可.10.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a―b+c=0,则b2―4ac≥0;②若方程ax2+c=0有两个不相等的实数根,则方程ax2+bx+c=0必有两个不相等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2―4ac=(2ax0+b)2;⑤若方程ax2+bx+c=0(a≠0)两根为x1,x2且满足x1≠x2≠0,则方程cx2+bx+a=0(c≠0),必有实数根1x1,1x2.其中,正确的是( )A.②④⑤B.②③⑤C.①②③④⑤D.①②④⑤【答案】D【分析】一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则Δ=b2―4ac>0;有两个相等的实数根,则Δ=b2―4ac=0;没有实数根,则Δ=b2―4ac<0;若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=―ba ,x1·x2=ca.【详解】解:①若a―b+c=0,则x=―1是一元二次方程ax2+bx+c=0的解∴Δ=b2―4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实数根∴Δ=―4ac>0∴b2―4ac≥4ac>0∴方程ax2+bx+c=0必有两个不相等的实数根,故②正确;③∵c是方程ax2+bx+c=0的一个根∴ac2+bc+c=0当c=0时,无法得出ac+b+1=0,故③错误;④∵x0是一元二次方程ax2+bx+c=0的根∴x0=∴±=2ax0+b∴b2―4ac=(2ax0+b)2,故④正确;⑤∵方程ax2+bx+c=0(a≠0)两根为x1,x2∴x1+x2=―ba ,x1·x2=ca∴b=―a(x1+x2),c=ax1x2∴方程cx2+bx+a=0(c≠0)可化为:ax1x2x2―a(x1+x2)x+a=0(c≠0)即:x1x2x2―(x1+x2)x+1=0∴(x1x―1)(x2x―1)=0∴x=1x1或x=1x2,故⑤正确;综上分析可知,正确的是①②④⑤.故选:D【点睛】本题考查了一元二次方程根的判别式和根与系数的关系.熟记相关结论是解题关键.第II卷(非选择题)二、填空题11.已知关于x的一元二次方程(m―2)x2―2x+1=0有实数根,则实数m的取值范围是.【答案】m≤3且m≠2【分析】本题考查了一元二次方程的定义及根的判别式,根据一元二次方程的定义及根的判别式可得,解不等式即可求解,掌握一元二次方程的定义及根的判别式与根的关系是解题的关键.【详解】解:由题意得,Δ=(―2)2―4(m―2)×1=12―4m≥0,且m―2≠0,∴m≤3且m≠2.12.在一个不透明的盒子中装有6个红球、若干个黑球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是红球的概率为23,则盒子中黑球的个数为.【答案】3【分析】设黑球的个数为x个,根据概率的求法得:66+x =23,解方程即可求出黑球的个数.【详解】解:设黑球的个数为x个根据题意得:66+x =23解得:x=3经检验:x=3是原分式方程的解∴黑球的个数为3故答案为:3.【点睛】本题考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13.把关于x的一元二次方程x²―8x+c=0配方,得(x―m)²=11,则c+m=.【答案】9【分析】本题考查了配方法解一元二次方程;把常数项c移项后,在左右两边同时加上一次项系数8的一半的平方得(x―4)2=16―c,进而得出c=5,m=4,即可求解.【详解】解:x2―8x+c=0配方,得(x―4)2=16―c∴m=4,16―c=11∴c=5∴c+m=9,故答案为:9.14.如图,在Rt△ABC中,∠ACB=90°,且Rt△ABC的周长是12cm,斜边上的中线CD长为52cm,则S△ABC=.【答案】6cm2【分析】先根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=5cm,再利用勾股定理可得AC2 +BC2=25cm2,利用三角形的周长公式可得AC+BC=7cm,然后利用完全平方公式可得AC⋅BC的值,最后利用三角形的面积公式求解即可得.cm,【详解】解:∵在Rt△ABC中,斜边上的中线CD长为52∴AB=2CD=5cm,∴AC2+BC2=AB2=25(cm2),∵Rt△ABC的周长是12cm,∴AC+BC+AB=AC+BC+5=12,∴AC+BC=7(cm),×(72―25)=12(cm2),∴AC⋅BC=AC+BC)2―(AC2+BC2)=12AC⋅BC=6cm2,则S△ABC=12故答案为:6cm2.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半、勾股定理、完全平方公式等知识点,熟练掌握直角三角形斜边上的中线等于斜边的一半是解题关键.15.如图,在矩形ABCD中,AB=4,AD=3.P是射线AB上一动点,将矩形ABCD沿着PD对折,点A的对应点为A′.当P,A′,C三点在同一直线上时,则AP的长.【答案】4±【分析】分类讨论:当点P在AB上时,由折叠的性质得AD=A′D=3,AP=A′P,∠A=∠DA′P=90°,利用勾股定理求得A′C=AP=A′P=x,则PB=4―x,PC=x+定理列方程求解即可;当点P在AB的延长线上时,由折叠的性质得∠A=∠A′=90°,AP=A′P,AD=A′D=3,利用勾股定理求得A′C=AP=A′P=a,则CP=a―BP=a―4,利用勾股定理列方程求解即可.【详解】解:如图,当点P在AB上时,由折叠的性质得,AD=A′D=3,AP=A′P,∠A=∠DA′P=90°,∴∠DA′C=90°,在Rt△DA′C中,A′C==设AP=A′P=x,则PB=4―x,PC=x+在Rt△BCP中,BC2+BP2=PC2,即32+(4―x)2=(x+2,解得x=4―∴AP=4―如图,当点P在AB的延长线上时,由折叠的性质得,∠A=∠A′=90°,AP=A′P,AD=A′D=3,在Rt△A′DC中,A′C==设AP=A′P=a,则CP=a―BP=a―4,在Rt△BCP中,BC2+BP2=CP2,即32+(a―4)2=(a―2,解得a=4+综上所述,AP=±+4,故答案为:4±【点睛】本题考查矩形的性质、折叠的性质、勾股定理、解一元一次方程,运用分类讨论思想解决问题是解题的关键.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示放置,点A1,A2,A3,…,在直线y=x+2上,点C1,C2,C3,…在x轴上,则B2023的坐标是.【答案】(22024―2,22023)【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出B1,B2,B3,……,的坐标,根据点的坐标的变化找出变化规律,再代入n=2023即可得出结论.【详解】解:∵直线y=x+2,当x=0时,y=2,∴A1的坐标为(0,2).∵四边形A1B1C1O为正方形,∴B1的坐标为(2,2),C1的坐标为(2,0).当x=2时,y=4,∴A2的坐标为(2,4),∵四边形A2B2C2C1为正方形,∴B2的坐标为(6,4),C2的坐标为(6,0).同理,可知:B3的坐标为(14,8),……,∴B n的坐标为(2n+1―2,2n)(n为整数),∴点B2023的坐标是(22024―2,22023).故答案为:(22024―2,22023).【点睛】本题考查了一次函数图象上点的坐标特征,正方形的性质及规律型,解题的关键是根据点的坐标的变化找出变化规律.三、解答题17.解方程:(1)x2―4x―1=0.(2) x(x―1)+2=2x【答案】(1)x1=2+2=2―(2)x1=2,x2=1【分析】(1)利用配方法解方程即可;(2)利用因式分解法解方程即可.【详解】(1)x2―4x―1=0x2―4x=1x2―4x+4=1+4(x―2)2=5x―2=±x1=2x2=2―(2)x(x―1)+2=2xx(x―1)+2―2x=0x(x―1)―2(x―1)=0(x―2)(x―1)=0x1=2,x2=1【点睛】本题考查了解一元二次方程,选择合适的方法是解题的关键.18.小明的手机没电了,现有一个只含A,B,C,D四个同型号插座的插线板(如图,假设每个插座都适合所有的充电插头,且被选中的可能性相同),请计算:(1)若小明随机选择一个插座插入,则插入插座C的概率为______;(2)现小明同时对手机和学习机两种电器充电,请用列表或画树状图的方法计算两种电器插在不相邻的插座的概率.【答案】(1)14(2)12【分析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.(1)直接利用概率公式计算;(2)画树状图展示所有12种等可能的结果数,再找出两个插头插在不相邻插座的结果数,然后根据概率公式计算.【详解】(1)小明随机选择一个插座插入,则插入A 的概率=14;故答案为:14;(2)画树状图为:共有12种等可能的结果数,其中两个插头插在不相邻插座的结果数为6,所以两个插头插在不相邻插座的概率=612=12.19.如图,用长为34米的篱笆,一面利用墙(墙的最大可用长度为20米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC 上用其他材料做了宽为1米的两扇小门(如图),设花圃垂直于墙的边AB 长为x 米.(1)用含x 的代数式表示BC ;(2)当AB 为多少米时,所围成花圃面积为105平方米?【答案】(1)(36―3x )米(2)当AB 为7米时,所围成花圃面积为105平方米【分析】(1)用绳子的总长减去三个AB 的长,然后加上两个门的长即可表示出BC ;(2)由(1)得花圃长BC=36―3x,宽为x,然后再根据面积为105,列一元二次方程方程解答即可.【详解】(1)解:设花圃垂直于墙的边AB长为x米,则长BC=34―3x+2=36―3x(米)故答案为:(36―3x);(2)由题意可得:(36―3x)x=105解得:x1=5,x2=7∵当AB=5时,BC=36―3×5=21>20,不符合题意,故舍去;当AB=7时,BC=36―3×7=15<20,符合题意,∴AB=7(米).答:当AB为7米时,所围成花圃面积为105平方米.【点睛】本题主要考查一元二次方程的应用,弄清题意、用x表示出BC是解答本题的关键.20.已知关于x的一元二次方程x2+6x―m2=0.(1)求证:该方程有两个不相等的实数根;(2)若该方程的两个实数根x1,x2满足x1+2x2=―5,求m的值.【答案】(1)见解析(2)m=±【分析】(1)根据一元二次方程根的判别式,代入计算即可解答;(2)根据一元二次方程根与系数的关系,求得x1,x2,再将其代入求得m的值即可.【详解】(1)证明:∵在方程x2+6x―m2=0中,Δ=62―4×1×(―m2)=36+4m2>0,∴该方程有两个不相等的实数根.(2)解:∵该方程的两个实数根分别为x1,x2,∴x1+x2=―6①,x1⋅x2=―m2②.∵x1+2x2=―5③,∴联立①③,解得x1=―7,x2=1.∴x1⋅x2=―7=―m2,解得m=±【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,熟知相关公式是解题的关键.21.如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE 于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.【答案】(1)见解析(2)AB=【分析】(1)由题意可得△AFD≌△CED(AAS),则AF=EC,根据“一组对边平行且相等的四边形是平行四边形”可得四边形AECF是平行四边形;又EF垂直平分AC,根据垂直平分线的性质可得AF=CF,根据“有一组邻边相等的平行四边形是菱形”可得结论;(2)过点A作AG⊥BC于点G,根据题意可得∠AEG=60°,AE=2,则BG=AG=AB=BG=【详解】(1)证明:在△ABC中,点D是AC的中点,∴AD=DC,∵AF∥BC,∴∠FAD=∠ECD,∠AFD=∠CED,∴△AFD≌△CED(AAS),∴AF=EC,∴四边形AECF是平行四边形,又EF⊥AC,点D是AC的中点,即EF垂直平分AC,∴平行四边形AECF是菱形.(2)解:如图,过点A作AG⊥BC于点G,由(1)知四边形AECF是菱形,又CF=2,∠FAC=30°,∴AF∥EC,AE=CF=2,∠FAE=2∠FAC=60°,∴∠AEB=∠FAE=60°,∵AG⊥BC,∴∠AGB=∠AGE=90°,∴∠GAE=30°,AE=1,AG==∴GE=12∵∠B=45°,∴∠GAB=∠B=45°,∴BG=AG=∴AB==.【点睛】本题主要考查菱形的性质与判定,含30°角的直角三角形的三边关系,等腰直角三角形的性质与判定等内容,根据45°,30°等特殊角作出正确的垂线是解题关键.22.如图,在Rt△ABC中,AC=24cm,BC=7cm,点P在BC上从B运动到C(不包括C),速度为2cm/s;点Q在AC上从C运动到A(不包括A),速度为5cm/s.若点P,Q分别从B,C同时出发,当P,Q两点中有一个点运动到终点时,两点均停止运动.设运动时间为t秒,请解答下列问题,并写出探索的主要过程.(1)当t为何值时,P,Q两点的距离为?(2)当t 为何值时,△PCQ 的面积为15cm 2【答案】(1)经过1秒,P ,Q 两点的距离为(2)经过1.5秒或2秒,△PCQ 的面积为15cm 2【分析】本题考查一元二次方程的应用,勾股定理.熟练掌握勾股定理,列出一元二次方程,是解题的关键.(1)设经过t 秒,P ,Q 两点的距离为,勾股定理列式求解即可;(2)利用S △PCQ =12PC ⋅CQ ,列式计算即可.【详解】(1)解:设经过t 秒,P ,Q 两点的距离为,由题意,得:BP =2t cm ,CQ =5t cm ,∵在Rt △ABC 中,AC =24cm ,BC =7cm ,∴CP =BC ―BP =(7―2t )cm ,由勾股定理,得:CP 2+CQ 2=PQ 2,即:(7―2t )2+(5t )2=2,解得:t 1=1,t 2=―129(舍去);∴经过1秒,P ,Q 两点的距离为;(2)解:设经过t 秒,△PCQ 的面积为15cm 2,此时:BP =2t cm ,CQ =5t cm ,则:CP =BC ―BP =(7―2t )cm ,∴S △PCQ =12PC ⋅CQ =12(7―2t )⋅5t =15,解得:t 1=2,t 2=1.5,∴经过1.5秒或2秒,△PCQ 的面积为15cm 2.23.暑假期间某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额-进货成本)(1)若该纪念品的销售单价为45元时则当天销售量为 件.(2)当该纪念品的销售单价为多少元时,该产品的当天销售利润是2610元.(3)该纪念品的当天销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由.【答案】(1)230(2)59元或39元(3)不可能达到3700元,理由见解析【分析】本题考查一元二次方程的应用,找准等量关系是解题的关键,正确列出一元二次方程是解题的关键.(1)根据当天销售量=280―10×增加的销售单价,即可得到答案;(2)设该纪念品的销售单价为x元,则当天的销售利润为[280―(x―10)×10]件,列出一元二次方程即可得到答案;(3)设该纪念品的销售单价为y元,则当天的销售利润为[280―(y―10)×10]件,列出一元二次方程根据根的判别式判断即可.【详解】(1)解:280―(45―40)×10=230(件),故答案为:230;(2)解:设该纪念品的销售单价为x元,则当天的销售利润为[280―(x―10)×10]件,依题意得(x―30)[280―(x―40)×10]=2610,整理得x2―98x+2301=0,整理解得x1=39,x2=59,答:当该纪念品的销售单价定价为59元或39元时,该产品的当天销售利润是2610元.(3)解:不能,理由如下:设该纪念品的销售单价为y元,则当天的销售利润为[280―(y―10)×10]件,依题意得(y―30)[280―(y―40)×10]=2610,整理得y2―98y+2410=0,∵Δ=(―98)2―4×1×2410=―36<0,故该方程没有实数根,即该纪念品的当天利润不可能达到3700元.24.如图,正方形ABCD中,点P是线段BD上的动点.(1)当PE⊥AP交BC于E时,①如图1,求证:PA=PE.②如图2,连接AC 交BD 于点O ,交PE 于点F ,试探究线段PA 2、PO 2、PF 2之间用等号连接的数量关系,并说明理由;(2)如图3,已知M 为BC 的中点,PQ 为对角线BD 上一条定长线段,若正方形边长为4,随着P 的运动,CP +QM 的最小值为PQ 的长.【答案】(1)①见解析;②PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2【分析】(1)①连接PC ,根据SAS 证明△ABP≌△CBP (SAS),得到PA =PC ,∠BAP =∠BCP ,再求出∠BAP +∠BEP =180°,进一步证明∠BCP =∠PEC 得到PC =PE ,等量代换可得结果;②先根据PE ⊥AP 得到S △APF =12PO ⋅AF =12PA ⋅PF ,得到PO 2⋅AF 2=PA 2⋅PF 2,结合勾股定理得到PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2;(2)连接AC 交BD 于点O ,先根据正方形的性质得到AC ⊥BD ,BO =CO =P 与点O 重合时,CP 的最小值,QM 的最小值,以及此时QM ⊥BD ,QM∥AC ,最后根据M 为BC 中点得到Q 为BO 中点,即可求解.【详解】(1)解:①如图1,连接PC ,∵四边形ABCD 是正方形,∴AB =BC ,∠ABC =90°,∠ABD =∠CBD =45°,在△ABP 和△CBP 中,AB =BC ∠ABD =∠CBD BP =BP,∴△ABP≌△CBP (SAS),∴PA =PC ,∠BAP =∠BCP,∵PE ⊥AP ,∴∠APE =90°,又∠BAP +∠BEP +∠ABC +∠APE =360°,∴∠BAP +∠BEP =180°,∵∠PEC +∠BEP =180°,∴∠BAP =∠PEC ,∴∠BCP =∠PEC ,∴PC =PE ,∴PA =PE ;②如图,PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2,理由是:∵PE ⊥AP ,∴PA 2+PF 2=AF 2,∵四边形ABCD 是正方形,∴AC ⊥BD ,∵S △APF =12PO ⋅AF =12PA ⋅PF ,∴PO 2⋅AF 2=PA 2⋅PF 2,∴PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2;(2)如图,连接AC 交BD 于点O ,∵四边形ABCD 是正方形,边长为4,∴AC ⊥BD ,BO =CO ==∴当点P 与点O 重合时,CP 的最小值为CO =∵CP +QM 的最小值为∴QM ∴当点P 与点O 重合时,QM ⊥BD ,如图,∴QM∥AC ,∵M 为BC 中点,∴Q 为BO 中点,∴PQ =12BO =12×=。
2024-2025学年北师大版九年级数学上册第一次月考模拟卷一、单选题1.用配方法解方程2x 2+4x-3=0时,配方结果正确的是( )A .(x +1)2=4B .(x +1)2=2C .(x +1)2=52D .(x +1)2=12 2.下列说法正确的是( )A .邻边相等的平行四边形是矩形B .矩形的对角线互相平分C .对角线互相垂直的四边形是菱形D .一组对边相等,另一组对边平行的四边形是平行四边形3.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围是( )A .94m < B .94m … C .94m > D .94m … 4.如图所示,菱形ABCD 中,对角线AC BD 、相交于点O ,H 为AD 边的中点,菱形ABCD 的周长为36,则OH 的长等于( )A .4.5B .5C .6D .95.如图,在ABC V 中,点D 、E 、F 分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA P .下列结论:①四边形AEDF 是平行四边形;②如果90BAC ∠=︒,那么四边形AEDF 是矩形;③如果AD 平分BAC ∠,那么四边形AEDF 是菱形;④如果90BAC ∠=︒,AD 平分BAC ∠,那么四边形AEDF 是正方形,你认为正确的是( )A .①②③④B .①②③C .①②④D .②③④6.用配方法解一元二次方程2810x x --=时,配方的结果正确的是( )A .2(8)65x +=B .2(8)65x -=C .2(4)17x +=D .2(4)17x -= 7.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C '处,BC '交AD 于E ,AD =8,AB =4,则DE 的长为( )A .3B .4C .5D .68.如图,正方形ABCD 中,点M 是边BC 上一点(异于点B 、C ),AM 的垂直平分线分别交AB 、CD 、BD 于E 、F 、K ,连AK 、MK .下列结论:①EF AM =;②AE DF BM =+;③BK ;④90AKM ∠=︒.其中正确的结论个数是( )A .1个B .2个C .3个D .4个9.如图,在给定的正方形ABCD 中,点E 从点B 出发,沿边BC 方向向终点C 运动,DF AE ⊥交AB 于点F ,以FD ,FE 为邻边构造平行四边形DFEP ,连接CP ,则DFE EPC ∠+∠的度数的变化情况是( )A .一直减小B .一直减小后增大C .一直不变D .先增大后减小10.如图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点,PE BC ⊥于点E ,PF CD ⊥于点F ,连接AP ,EF .给出下列结论:①PD ;②四边形PECF 的周长为8;③APD V 一定是等腰三角形;④AP EF =.其中正确结论的序号为( )A .①②③④B .①②④C .②④D .①②③二、填空题11.如图,在平面直角坐标系xOy 中,菱形ABCD 的面积为48,顶点()6,0A -,则顶点B 的坐标为.12.一张长方形纸条,折成如图所示的形状,若1110∠=︒,则2∠=.13.如图,在边长为2的正方形ABCD 中,E ,F 分别是边DC ,CB 上的动点,且始终满足DE =CF ,AE ,DF 交于点 P ,则∠APD 的度数为 ;连接CP ,线段CP 长的最小值为.14.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1640张相片.如果全班有x 名学生,根据题意,列出方程为.15.某小组同学,新年时每人互送贺年片一张,已知全组共送贺年片72张,则这个小组共有人.16.如图,点P 是正方形ABCD 的对角线AC 上一点,过点P 作EF BC ∥,分别交AB 、CD 于E 、F ,连接PB 、PD .若3AE =, 5.PF =则图中阴影部分的面积为.17.如图,在矩形ABCD 中,6AB =,8BC =,E 在AC 上,且BA BE =,F 在BE 的延长线上,且BE EF =,则线段DF 的长度为.18.如图,将长方形纸片ABCD 沿EF 折叠后,点A ,B 分别落在A ',B 的位置,再沿AD 边将A ∠折叠到H ∠处,已知150∠=︒,则FEH ∠=︒.三、解答题19.如图,将一张矩形纸片ABCD 进行折叠,已知该纸片宽AB 为8cm ,长BC 为10cm ,折叠时顶点D 落在边BC 上的点F 处(折痕为AE ).(1)求ABF △的面积;(2)求EF 的长.20.解方程:235x 20x --=(用两种不同的方法).21.某广场有一块正方形草坪,需修整成一块长方形草坪,在修整时一边加长了4m ,另一边减少了4m ,这时得到长方形草坪面积与原来正方形草坪的边长减少了2m 后的正方形面积相等,则原正方形草坪的面积是多少?(列方程解应用题)22.如图,矩形ABCD 中,86AB AD ==,,M 是边CD 上一点,将ADM △沿直线AM 翻折,得到ANM V .(1)当AN 平分MAB ∠时,求DM 的长;(2)连接BN ,当2DM =时,求ABN V 的面积.23.如图,点E 是正方形ABCD 的边BC 上的动点,90AEF ∠=︒,且E F A E =,FH BH ⊥.(1)求证:BE CH =;(2)若62AB BE ==,,求DF 的长.24.如图,在四边形ABCD 中,AB CD ∥,2AB BC CD ==,E 为对角线AC 的中点,F 为边BC 的中点,连接DE ,EF .(1)求证:四边形CDEF 为菱形;(2)连接DF 交EC 于G ,若6DF =,5CD =,求四边形CDEF 的面积.25.已知,在Rt ABC △中,90,3,4C AC BC ∠=︒==.P 是BC 边上一动点(P 不与B 、C 重合),将ACP △沿AP 折叠得到ADP △,点C 的对应点为D .【特例感知】(1)如图1,当点D 落在AB 上时,求CP 的长;【类比迁移】(2)如图2,当点D 在AB 上方且满足2∠=∠B BAD 时,求CP 的长;【拓展提升】(3)如图3,将线段AP 绕点A 逆时针旋转90︒得到AE ,连接DE .①当ADE V 为等腰三角形时,直接写出CP 长;②连接PE ,记CP x =,PDE △的面积为y ,请直接写出y 与x 的关系式.。
北师大版九年级上册数学第一次月考试卷及答案北师大版九年级上册数学第一次月考试题一、选择题。
(每小题只有一个正确答案,每小题3分,共30分)1.将一元二次方程3x2=4x-6化为一般形式,得到3x2-4x-6=0.2.由已知条件可得:2的平方-3×2+k=0,即k=2.3.菱形不一定具有对角线互相垂直的性质。
4.将x2+4x-1=0配方法得到(x+2)2=5.5.2x2-3x+1=0的根为x=1/2和x=1,即有两个不相等的实数根。
6.若顺次连结四边形四条边的中点所得的四边形是菱形,则原四边形是矩形。
7.根据勾股定理可得:AC'=√(AD²+CD²)=√(6²+8²)=10.8.∠XXX∠CFA+∠AFD=∠BAD+∠AFD=70°+90°-∠DFC=160°-∠XXX。
9.将矩形沿AE折叠后,DE=AB=3/2,因此DE的长为3/2.10.△BCF的面积最大值为8.二、填空题11.一元二次方程2x2-4x-9的一次项系数是-4.12.方程x2=9的解是x=3或x=-3.13.方程(x+2)(x-1)=0的解是x=-2或x=1.14.已知菱形的边长是10cm,较短的对角线长为12cm,则较长的对角线为20cm。
15.∠AEB=120°。
公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m²,求原正方形空地的边长.设原正方形的空地的边长为x,则可列方程$(x-1)(x-2)=18$.17.解方程$x^2+4x-5=0$,得到$x=1$或$x=-5$.18.已知关于x的一元二次方程$x^2+kx-5=0$的一个根是1,由二次方程的性质可知另一个根为$\frac{-5}{1}=-5$,将这个根代入方程中,得到$k=4$.19.在矩形ABCD中,两条对角线相交于O,$\angle AOB=60°$,$AB=2$,设AD的长为x,则由三角函数可得$OD=\frac{x}{2}$,又由勾股定理可得$AD=\sqrt{4+x^2}$,根据正弦定理可得$\frac{\frac{x}{2}}{sin60°}=\frac{\sqrt{4+x^2}}{sin120°}$,解得$x=2\sqrt{3}$.20.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,由对角线的性质可知$\triangle AOB\cong\triangle COD$,$\triangle AOD\cong\triangle BOC$,因此$\angleAOD=\angle BOC=90°$,又因为DE∥AC,所以$\angleADE=\angle ACD$,$\angle CDE=\angle CAB$,因此$\angle AED=\angle BDC$,又因为CE∥BD,所以$\angle CED=\angle CBD$,因此四边形OCED是菱形.21.解方程$(x+1)-3(x+1)+2=0$,我们可以将$x+1$看成一个整体,设$x+1=y$,则原方程可化为$y-3y+2=0$,解得$y_1=1$,$y_2=2$.当$y_1=1$时,$x+1=1$,解得$x=0$,当$y_2=2$时,$x+1=2$,解得$x=1$,所以原方程的解为$x_1=0$,$x_2=1$.22.如图,把一张矩形纸片沿对角线折叠,已知AB=6,AD=8。
九年级数学上册第一次月考试卷(满分150分 时间:120分钟)一.单选题。
(每小题4分,共48分)1.方程:①2x 2-13x=1,②2x 2-5xy+y 2=0,③7x 2+1=0,④y22=0,其中是一元二次方程是( )A.①②B.②③C.③④D.①③ 2.矩形,菱形,正方形具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角 3.下列命题中,不正确的是( )A.顺次连接菱形各边中点所得的四边形是矩形B.有一个角是直角的菱形是正方形C.对角线相等且垂直的四边形是正方形D.有一个角是60°的等腰三角形是等边三角形 4.不解方程,判断方程2x 2-4x -1=0的根的情况是( )A.没有实数根B.有两个相等实数根C.有两个不相等实数根D.无法确定 5.在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是( ) A.频率就是概率 B.频率与试验次数无关C.在相同的条件下进行试验,如果试验次数相同,则各实验小组所得的频率的值也相同D.随着试验次数的增加,频率一定会逐步稳定在概率数值附近6.若m ,n 是一元二次方程x 2+2x -2021=0的两个实数根,则2m+2n -mn 的值为( ) A.2021 B.2019 C.2017 D.20157.用配方法解方程2x 2+4x+1=0,配方后的方程是( )A.(2x+2)2=﹣2B. (2x+2)2=﹣3C.(x+12)2=12D.(x+1)2=12 8.某公司今年一月产值200万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年(包括今年)的总产值就达到了1400万元,设这个百分数为x ,则可列方程为( )A.200(1+x )2=1400B.200+200(1+x )+200(1+x )2=1400C.1400(1+x )2=200D.200(1+x )3=14009.有一个不透明的口袋中,装有5个红球和3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到白球的概率是( ) A.15 B.13 C.58 D.3810.根据四边形的不稳定性,当变动∠B的度数时,菱形ABCD的形状会发生改变,当∠B=60°时,如图1,AC=√2,当∠B=90°时,如图2,AC=().A.√2B.2C.2√2D.√3(第10题图)(第11题图)(第12题图)11.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上,若∠ECD=35°,∠AEF=15°,则∠B的度数为()A.50°B.55°C.70°D.75°12.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,下列结论:①EF=2BE,②PF=2PE,③FQ=2EQ,④△PBF是等边三角形,其中正确的是()A.①②B.②③C.①③D.①④二.填空题。
北师大版九年级数学上册第一次月考考试及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.用配方法将二次函数y=x 2﹣8x ﹣9化为y=a (x ﹣h )2+k 的形式为( )A .y=(x ﹣4)2+7B .y=(x+4)2+7C .y=(x ﹣4)2﹣25D .y=(x+4)2﹣253.若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x =-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y << 4.若函数y =(3﹣m )27mx -﹣x+1是二次函数,则m 的值为( ) A .3 B .﹣3C .±3D .9 5.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .66.已知1x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( )A .-1或2B .-1C .2D .07.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是( )A .1<x<5-B .x>5C .x<1-且x>5D .x <-1或x >59.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180°10.如图,将正方形OEFG 放在平面直角坐标系中,O 是坐标原点,点()2,3E ,则点F 的坐标为( )A .()1,5-B .()2,3-C .()5,1-D .()3,2-二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是__________.2.因式分解:x 3﹣4x=_______.3.函数2y x =-x 的取值范围是__________.4.把长方形纸片ABCD沿对角线AC折叠,得到如图所示的图形,AD平分∠B′AC,则∠B′CD=__________.5.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S菱形ABCD=24,则OH的长为___________.6.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为__________.三、解答题(本大题共6小题,共72分)1.解分式方程(1)232x x=+(2)21124xx x-=--2.若二次函数y=ax2+bx+c的图象的顶点是(2,1)且经过点(1,﹣2),求此二次函数解析式.3.如图,一次函数y=x+4的图象与反比例函数y=kx(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP =32S△BOC,求点P的坐标.4.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB 上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=23,BF=2,求阴影部分的面积(结果保留π).5.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、B5、B6、B7、B8、D9、A10、A二、填空题(本大题共6小题,每小题3分,共18分) 1、2.2、x (x+2)(x ﹣2)3、2x ≥4、30°5、36、2三、解答题(本大题共6小题,共72分)1、(1)4x =;(2)32x =- 2、231211y x x =-+-3、(1)y=-3x(2)点P (﹣6,0)或(﹣2,0)4、(1)直线BC 与⊙O 相切,略;(2)23π5、(1)50;(2)240;(3)12. 6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。
北师大版九年级数学上册第一次月考试卷(考试时间:90分钟总分:120分)一、选择题(共10题;共30分)1.在四张大小、材质完全相同的卡片上写有“翼、装、飞、行”四个字,将四张卡片放置于暗箱内摇匀后先后随机抽取两张,则两张卡片上的汉字恰为“飞”,“行”二字的概率是()A. 18B. 16C. 14D. 122.小郭、小亮两人打算搭乘同一班次电车上学,若此班次电车共有5节车厢,且小郭、小亮从任意一节车厢上车的机会相等,则两人从同一节车厢上车的概率为()A. 12B. 15C. 110D. 1253.方程x2﹣5x=0的解是()A. x=﹣5B. x=5C. x1=0,x2=5D. x1=0,x2﹣54.关于x的一元二次方程kx2+2x+1=0有实数根,则实数k的取值范围是()A. k≤1B. k<1C. k≤1且k≠0D. k<1且k≠05.如图,要使平行四边形ABCD成为矩形,需添加的条件是()A. ∠ABC=90°B. AC⊥BDC. ∠1=∠2D. AB=BC6.如图,在平面直角坐标系中,菱形ABCD的边长为6,它的一边AB在x轴上,且AB的中点是坐标原点,点D在y轴正半轴上,则点C的坐标为()A. (3√3,3)B. (3,3√3)C. (6,3)D. (6,3√3)7.在一个不透明的布袋中装有50个红、蓝两种颜色的球,除颜色外其他都相同,小明通过多次摸球实验后发现,摸到红球的频率稳定在0.3左右,则布袋中蓝球可能有()A. 35个B. 20个C. 30个D. 15个8.m,n是一元二次方程x2-5x-2=0的两个实数根,则m+n-mn的值是()A. -7B. 7C. 3D. -39.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD于点E,则线段DE的长为()A. 3B. 154 C.5 D. 15210.如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC= 725.其中正确结论的个数是()A. 2个 B. 3个 C. 4个 D. 5个二、填空题(共7题;共28分)11.菱形的面积是16,一条对角线长为4,则另一条对角线的长为________.12.如图,某小区规划在一个长34m、宽22m的矩形ABCD上,修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为100m2,那么通道的宽应设计成________m.13.不透明袋子中装有红、绿小球各一个,除颜色外无其余差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为________.14. 2019世界月季洲际大会4月28日在中国南阳举办!甲,乙,丙,丁四名同学将参加志愿者活动,若四名同学被随机分成两组,每组两人,则甲、乙恰好在同一组的概率是________.15.如图,菱形ABCD的周长为16,AC,BD交于点O,点E在BC上,OE∥AB,则OE的长是________.16.如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D=80°,则∠ECF的度数是________.17.已知矩形ABCD,对角线AC、BD相交于点O,点E为BD上一点,OE=1,连接AE,∠AOB=60°,AB=2,则AE的长为________.三、解答题一(共3题;共18分)18.解方程:(1)x2+4x﹣1=0;(2)2(x﹣3)2=x2﹣9.19.如图所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm.点P沿AC边从点A向终点C以1cm/s的速度移动;同时点Q沿CB边从点C向终点B以2cm/s的速度移动,且当其中一点到达终点时,另一点也随之停止移动.问点P,Q出发几秒后可使△PCQ的面积为9 cm²?20.某小区为促进生活垃圾的分类处理,将生活垃圾分为a(厨余)、b(可回收)、c(其他)三类,并且设置了相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱分别记为A、B、C.粗心的小亮将分类好的两袋垃圾(可回收、其他)随机投入到三种垃圾箱的其中两种内,请用画树状图或列表格的方法,求小亮投放正确的概率.四、解答题二(共3题;共24分)21.如图,在正方形ABCD的外侧,作等边角形ADE,连接BE、CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.22.商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元. 据此规律,请回答:(1)商场日销售量增加________件,每件商品盈利________元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?23.东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.作业情况频数频率非常好0.22较好68一般不好40请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了多少名学生?(2)将统计表中所缺的数据填在表中横线上;(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的作业本中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.五、解答题三(共2题;共20分)24.如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2cm/s的速度向D移动.(1)P、Q两点从出发开始到几秒时,四边形APQD为长方形?(2)P、Q两点从出发开始到几秒时?四边形PBCQ的面积为33cm2;(3)P、Q两点从出发开始到几秒时?点P和点Q的距离是10cm.25.如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连接DF.(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;(2)连接AE,试判断AE与DF的位置关系,并证明你的结论;(3)延长DF交BC于点M,试判断BM与MC的数量关系.(直接写出结论)答案一、选择题1.解:根据题意画树状图如下:共有12种可能,其中恰为:“飞”“行”二字的有2种,故概率P=212=16.故答案为:B2.解:记5节车厢分别为A、B、C、D、E,列表如下:由列表可知,共有种等可能的结果,其中两人从同一节车厢上车的结果有种,故(两人从同一节车厢上车)=525=15.3.解:x2﹣5x=0,x(x﹣5)=0,解得x1=0,x2=5.故答案为:C.4.一元二次方程ax2+bx+c=0有实数根,则代表着系数a不为零,且b2-4ac≥0,可解出k≤1且k≠0故答案为:C5.A、∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,故A正确;B、∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,故B错误;C、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADB=∠2,∵∠1=∠2,∴∠1=∠ADB,∴AB=AD,∴四边形ABCD是菱形,故C错误;D、∵四边形ABCD是平行四边形,AB=BC,∴四边形ABCD是菱形,故D错误;故答案为:A.6.解:∵四边形ABCD为菱形∴AB=AD=CD=6,AB∥CD∵AB的中点是坐标原点∴AO=BO=3∴DO=√AD2−AO2=3√3∴点C的坐标为(6,3√3)故答案为:D.7.解:蓝球的个数=50×0.7=35(个),所以答案为A选项.8.解:∵m,n是一元二次方程x2-5x-2=0的两个实数根,∴m+n=5,mn=-2,∴m+n-mn=5-(-2)=7.故答案为:B.9.解:设ED=x,则AE=6﹣x,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6﹣x)2,解得:x=3.75,∴ED=3.75= 15.4故答案为:B.10.解:①正确.理由:∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正确.理由:∵∠BAG=∠FAG,∠DAE=∠FAE.又∵∠BAD=90°,∴∠EAG=45°;③正确.理由:设DE=x,则EF=x,EC=12-x.在直角△ECG中,根据勾股定理,得:(12﹣x)2+62=(x+6)2,解得:x=4,∴DE=x=4,CE=12-x=8,∴CE=2DE;④正确.理由:∵CG=BG,BG=GF,∴CG=GF,∴∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;⑤正确.理由:∵S△ECG= 12GC•CE= 12×6×8=24.∵S△FCG= 35SΔGCE= 35×24= 725.故答案为:D.二、填空题11.设另一条对角线的长为x,则有4x2=16,解得:x=8,故答案为8.12.解:设通道的宽应设计成xm,则种植花草的部分可合成长(34−2x)m,宽(22−x)m的矩形,依题意,得:(34−2x)(22−x)=100×6,整理,得:x2−39x+74=0,解得:x1=2,x2=37(不合题意,舍去).故答案为:2.13.解:两次摸球的所有的可能性树状图如下:由图知:共有4种等可能结果,其中两次都摸到红球的只有1种结果,所以两次都摸到红球的概率为14.故答案为:1414.解:根据题意画树状图得:共有12种等可能的结果数,其中甲、乙恰好分到一组的结果数为2,所以甲、乙恰好分到一组的概率212=16;15.解:∵菱形ABCD的周长为16,∴AB=BC=CD=AD=4,OA=OC,∵OE∥AB,∴OE是△ABC的中位线,∴OE=12AB=2,故答案为:2.16.解:∵四边形ABCD为菱形,∴BC=CD,AD∥BC,∴∠BCD=180°-∠D=180°-80°=100°,∵BC=CF,∴CD=CF,∴∠DCF=180°-2∠D=180°-160°=20°,∴∠BCF=∠BCD-∠DCF=100°-20°=80°,∴∠ECF=∠BCE=40°.故答案为:40°.17.解:∵四边形ABCD是矩形,∴OA=OB,又∠AOB=60°∴△AOB是等边三角形,∴OA=OB=AB=2,∵OE=1∴点E是OB的中点或OD的中点,如图若点E是OB的中点,则AE⊥BO,∴在Rt△AEO中,AE= √AO2−OE2= √22−12= √3,若点E是OD的中点E′,则EE′=2,∴在Rt△AEE′中,AE′= √AE2+EE′2= √(√3)2+22= √7,故AE的长是√3或√7.三、解答题18. (1)解:∵x2+4x﹣1=0,∴x2+4x+4=5,∴(x+2)2=5,∴x+2=±√5,∴x1=﹣x2=﹣√5﹣2(2)解:∵2(x﹣3)2=x2﹣9.∴2(x﹣3)2﹣(x2﹣9)=0,∴2(x﹣3)2﹣(x+3)(x﹣3)=0,∴(x﹣3)[2(x﹣3)﹣(x+3)]=0,∴(x﹣3)(x﹣9)=0,∴x﹣3=0或x﹣9=0,∴x1=3,x2=9.19. 解:设点P,Q出发x秒后可使△PCQ的面积为9 cm²,由题意得PC=6-x,QC=2x,×PC×QC=9∴12即1(6−x)×2x=92解得x1=x2=3,∴点P,Q出发3秒后可使△PCQ的面积为9 cm².20. 解:树状图如下:总共有6种可能情况,投放正确只有一种;.∴小亮投放正确的概率为:1621. (1)证明:∵四边形ABCD是正方形,∴AB=CD,且∠BAD=∠CDA=90°,∵△ADE是等边三角形,∴AE=DE,且∠EAD=∠EDA=60°,∴∠BAE=∠BAD+∠EAD=150°,∠CDE=∠CDA+∠EDA=150°,∴∠BAE=∠CDE,在△BAE和△CDE中:{AB=CD∠BAE=∠CDEAE=DE,∴△BAE≌△CDE(SAS).(2)解:∵AB=AD,且AD=AE,∴△ABE为等腰三角形,∴∠ABE=∠AEB,又∠BAE=150°,∴由三角形内角和定理可知:∠AEB=(180°-150°)÷2=15°.故答案为:15°.22. (1)2x;50-x(2)解:由题意,得(30+2x)(50-x)=2100解之得x1=15,x2=20.∵该商场为尽快减少库存,降价越多越吸引顾客.∴x=20.答:每件商品降价20元,商场日盈利可达2100元.23. (1)解:由图形可知:72°占360°的百分比为72360=20%,故调查的总的学生人数为40÷20%=200(名),故答案为:200(名) .(2)解:“非常好”的学生人数为:0.22×200=44(人),总人数减去“非常好”、“较好”、“不好”的人数即得到“一般”的人数,故一般的人数为200-44-68-40=48,其频率为48÷200=0.24,同样可算出“较好”、“不好”的频率为0.34和0.2,补充如下表所示:(3)解:“非常好”和“较好”的学生的频率为0.22+0.34=0.56,∴该校学生作业情况“非常好”和“较好”的学生一共约1800×0.56=1008(名),故答案为:1008;(4)解:由题意知,列表如下:由列表可以看出,一共有12种结果,并且它们出现的可能性相等. 其中两次抽到的作业本都是“非常好”的有2种,∴两次抽到的作业本都是非常好的概率为212=16,故答案为:16.24.(1)解:设P,Q两点从出发开始到x秒时,四边形APQD为长方形,根据题意得:16﹣3x=2x,解得:x= 165.答:P,Q两点从出发开始到165秒时,四边形APQD为长方形(2)解:设P,Q两点从出发开始到y秒时,四边形PBCQ的面积为33cm2,根据题意得:12×6(16﹣3x+2x)=33,解得:x=5.答:P,Q两点从出发开始到5秒时,四边形PBCQ的面积为33cm2(3)解:过点Q作QE⊥AB于点E,如图所示.设P,Q两点从出发开始到x秒时,点P和点Q的距离是10cm,根据题意得:(16﹣3x﹣2x)2+62=102,整理得:(16﹣5x)2=82,解得:x1= 85,x2= 245.答:P,Q两点从出发开始到85秒或245秒时,点P和点Q的距离是10cm.25. (1)解:∵四边形ABCD是正方形,∴AB=AD=BC=DC,∠DAC=∠BAC=∠DCA=∠BCA=45°,又∵AF=AF,∴△ADF≌△ABF,∵AC=AC,∴△ADC≌△ABC,∵CF=CF,∴△CDF≌△CBF,∴全等的三角形有:△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF. (2)解:AE⊥DF.证明:设AE与DF相交于点H.∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠BAF.又∵AF=AF,∴△ADF≌△ABF.∴∠1=∠2.又∵AD=BC,∠ADE=∠BCE=90°,DE=CE,∴△ADE≌△BCE.∴∠3=∠4.∵∠2+∠4=90°,∴∠1+∠3=90°,∴∠AHD=90°.∴AE⊥DF.(3)解:如图,∵∠ADE=90°,AE⊥DF.∴∠1+∠5=90°,∠3+∠1=90°.∴∠3=∠5,∵∠3=∠4,∴∠4=∠5.∵DC=BC,∠DCM=∠BCE=90°,∴△DCM≌△BCE.∴CE=CM,又∵E为CD中点,且CD=CB,∴CE= 12CD= 12BC,∴CM= 12CB,即M为BC中点,∴BM=MC.。
可编辑修改精选全文完整版2023-2024学年九年级上学期数学(北师大版)第一次月考试卷▼(上册1.1~2.4) ▼说明:共有六个大题,23个小题,满分120分,作答时间120分钟. 一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内.错选、多选或未选均不得分. 1.下列方程是一元二次方程的是( )A.3x −1=0B.a x 2+b x +c=0(a ,b ,c 为常数)C.x ²+x =3D.3x 2−2x y −5y 2=0 2.菱形具有而平行四边形不一定具有的性质是( )A.对角线互相垂直B.对边相等C.对角相等D.是中心对称图形 3.一元二次方程x 2=4的解为( )A.x =2B.x =4C.x 1=−2,x 2=2D.x 1=−4,x 2=4 4.如图,若四边形ABCD 是平行四边形,则下列结论中错误的是( ) A.当AC ⊥BD 时,它是菱形 B.当AC=BD 时,它是矩形 C.当∠ABC=90°时,它是矩形 D.当AB=BC 时,它是正方形5.已知关于x 的一元二次方程x 2+b x +c=0有一个非零实数根c ,则b+c 的值为( )ADCBOA.1B.−1C.0D.26.如图,把一张矩形纸片ABCD 按如下方法进行两次折叠:第一次将DA 边折叠到DC 边上得到DA ´,折痕为DM ,连接A ´M ,CM ,第二次将△MBC 沿着MC 折叠,MB 边恰好落在MD 边上.若AD=1,则AB 的长为( )A.32 B.√2 C.√3 D.√2−1 二、填空题(本大题共6小题,每小题3分,共18分)7.把一元二次方程x (x −3)=4化成a x 2+b x +c=0的一般形式,其中a=1,则常数项c=______.8.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ADB=25°,那么∠AOB 的度数为______.9.若关于x 的方程x 2−2x +1−k=0有两个相等的实数根,则k 的值为______. 10.若关于x 的一元二次方程a x 2=b(ab >0)的两个根分别为m 与2m −6,则m 的值为______.11.如图,在平面直角坐标系x Oy 中,四边形ABCO 是正方形,已知点A 的坐标为(2,1),则点C 的坐标为______.12.如图,在菱形ABCD 中,AB=20,∠A=45°,点E 在边AB 上,AE=13,点P 从点A第8题图ADCBO第12题图A D BCPE第11题图ACDB出发,沿着A →D →C →B 的路线向终点B 运动,连接PE ,若△APE 是以AE 为腰的等腰三角形,则AP 的长可以是______.三、解答题(本大题共5小题,每小题6分,共30分) 13.(1)解方程:x 2−2x −1=0.(2)如图,在Rt △ABC 中,∠ACB=90°,D 为AB 的中点,∠A=30°,BC=2,求CD 的长.14.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点C 作BD 的平行线交AB 的延长线于点E.求证:AC=CE.15.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AE ⊥BC 于点E ,若OB=2,S 菱形ABCD =4,求AE 的长.16.如图,△ACB 和△CED 都是等腰直角三角形,点B ,C ,E 在同一直线上,且E 是BC 的中点,请仅用无刻度的直尺......按要求完成以下作图(保留作图痕迹). (1)在图1中,作□ABMC. (2)在图2中,作正方形ACBN.ADBEO ABCDEOADBC17.如图,矩形绿地的长为12m ,宽为9m ,将此绿地的长、宽各增加相同的长度后,绿地面积增加了72m 2,求绿地的长、宽增加的长度.四、解答题(本大题共3小题,每小题8分,共24分)18.设关于x 的一元二次方程为x 2+b x +c=0.在下面的四组条件中选择其中一组b ,c 的值,使这个方程有两个不相等的实数根,并解这个方程. ①b=2,c=1;②b=1,c=2;③b=3,c=−1;④b=−3,c=2. 注:如果选择多组条件分别作答,按第一个解答计分.19.定义:如果关于x 的一元二次方程a x 2+b x +c=0(a ≠0)满足b=a+c ,那么我们称这个方程为“完美方程”.(1)下面方程是“完美方程”的是______.(填序号) ①x 2−4x +3=0;②2x 2+x +3=0;③2x 2−x −3=0.(2)已知3x 2+m x +n=0是关于x 的“完美方程”,若m 是此“完美方程”的一个根,求m 的值.20.如图,在□ABCD 中,E ,F 分别是边CD ,BC 上的点,连接BE ,DF ,BE 与DF 交于点P ,BE=DF.添加下列条件之一使□ABCD 成为菱形:①CE=CF ;②BE ⊥CD ,DF ⊥BC. (1)你添加的条件是_______(填序号),并证明.图1ADCBEA图2CDE B(2)在(1)的条件下,若∠A=45°,△BFP 的周长为4,求菱形的边长.五、解答题(本大题共2小题,每小题9分,共18分) 21.【阅读】解方程:(x −1)2−5(x −1)+4=0.解:设x −1=y ,则原方程可化为y 2−5y+4=0,解得y 1=1,y 2=4. 当y=1时,即x −1=1,解得x =2;当y=4时,即x −1=4,解得x =5. 所以原方程的解为x 1=2,x 2=5. 上述解法称为“整体换元法”. 【应用】 (1)若在方程x−1x−3xx−1=0中,设y=x−1x,则原方程可化为整式方程:________.(2)请运用“整体换元法”解方程:(2x −3)2−(2x −3)−2=0.22.如图1,在□ABCD 中,点E ,F 在对角线AC 上,AE=CF ,DE ⊥AC ,过点D 作DG ∥AC 交BF 的延长线于点G. (1)求证:四边形DEFG 是矩形.(2)如图2,连接DF ,BE ,当∠DFG=∠BEF 时,判断四边形 DEFG 的形状,并说明理由.图1E F ABCDG图2ABDGCFE AFCDE P B六、解答题(本大题共12分) 23.【课本再现】(1)如图1,在正方形ABCD 中,F 为对角线AC 上一点,连接BF ,DF.你能找出图中的全等三角形吗?结论猜想:图中的全等三角形有__________ (不必证明). 【知识应用】(2)如图2,P 为DF 延长线上一点,且BP ⊥BF ,DP 交BC 于点E.判断△BPE 的形状,并说明理由. 【拓展提升】(3)如图3,过点F 作HF ⊥BF 交DC 的延长线于点H. ①求证:HF=DF.②若AB=√3+1,∠CBF=30°,请直接写出CH 的长.2023-2024学年九年级上学期数学(北师大版)第一次月考试卷参考答案▼(上册1.1~2.4) ▼说明:共有六个大题,23个小题,满分120分,作答时间120分钟. 一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后图1AB CDFA图2B PDC EF图3ABDHCF括号内.错选、多选或未选均不得分. 1.下列方程是一元二次方程的是( )A.3x −1=0B.a x 2+b x +c=0(a ,b ,c 为常数)C.x ²+x =3D.3x 2−2x y −5y 2=01.解:A 是一元一次方程,B 当a ≠0时是一元二次方程,C 是一元二次方程,D 是二元二次方程,故选C 。
北师大版九年级上册数学第一次月考试题一、选择题。
(每小题只有一个正确答案)1.正方形具有而菱形不具有的性质是( )A .对角线互相平分B .对角线相等C .对角线平分一组对角D .对角线互相垂直2.平行四边形ABCD 是正方形需增加的条件是( )A .邻边相等B .邻角相等C .对角线互相垂直D .对角线互相垂直且相等3.依次连接菱形的各边中点,得到的四边形是( )A .矩形B .平行四边形C .菱形D .梯形 4.在平行四边形、菱形、矩形、正方形中,能够找到一个点,使该点到各顶点距离相等的图形是( )A .平行四边形和菱形B .菱形和矩形C .矩形和正方形D .菱形和正方形5.菱形的边长是2cm ,一条对角线的长是,则另一条对角线的长是( )A .4 cmBC .2 cmD .6.矩形的对角线长10cm ,顺次连结矩形四边中点所得四边形的周长为( ) A .40cm B .10cm C .5cm D .20cm 7.如图,正方形ABCD 的对角线AC 是菱形AEFC 的一边,则FAB ∠等于( )A .135°B .45°C .22.5°D .30° 8.方程()()2353x x x -=-的根为( )A .52x =B .3x =C .125,32x x ==D .125,32x x =-=- 9.一元二次方程x 2﹣x+2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .只有一个实数根10.已知1x 、2x 是方程221x x =+的两个根,则1211x x +的值为( ) A .12- B .2 C .12 D .2-11.用配方法解一元二次方程2420x x -+=,下列配方正确的是( )A .()222x +=B .2(2)2x -=-C .2(2)2x -=D .2(26)x -= 12.若方程2(4)x a -=有解,则a 的取值范围是( ).A .0a ≤B .0a ≥C .0a >D .无法确定二、填空题13.如果x 1,x 2是方程2x 2﹣3x ﹣6=0的两个根,那么x 1+x 2=________;x 1•x 2=________ 14.如图,矩形ABCD 沿AF 折叠,使点D 落在BC 边上E 处,如果∠BAE=50°,则∠DAF=_______.15.如图所示,把两个大小完全一样的矩形拼成“L”形图案,则∠FAC =_____度,∠FCA =_____度.16.若菱形的对角线长分别是6cm 、8cm ,则其周长是________ ,面积是____________ 17.若关于x 的一元二次方程mx 2+4x+3=0有实数根,则m 的取值范围是________ 18.已知x=-1是关于x 的方程222x ax a 0+-=的一个根,则a=_____.19.把方程x 2-4x =-5整理成一般形式后,得其中常数项是_______.20.方程22(2)(3)20m m x m x --+--=是一元二次方程,则m=_____.21.若式子4x 2-nx+1是一个完全平方式,则n 的值为____________.22.已知x 2+4x -2=0,那么3x 2+12x +2002的值为 _________.三、解答题23.用适当的方法解方程: ()2143x x +=- ()2 22340x x +-=()2325360x -= ()()24(4)54x x +=+24.已知菱形ABCD 中,E 、F 分别是CB 、CD 上的点,且BE=DF ;求证:⑴△ABE ≌△ADF ;⑵∠AEF=∠AFE25.如图,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥BD ,求证:四边形OCED 是菱形.26.已知:如图Rt△ABC中,∠ACB=90°,CD为∠ACB的平分线,DE⊥BC于点E,DF⊥AC 于点F.求证:四边形CEDF是正方形.27.阅读第(1)题的解题过程,再解答第(2)题:(1)例:解方程x2﹣|x|﹣2=0.解:当x≥0时,原方程可化为x2﹣x﹣2=0.解得:x1=2,x2=﹣1(不合题意.舍去)当x<0时,原方程可化为x2+x﹣2=0.解得:x1=﹣2,x2=1(不合题意.舍去)∴原方程的解是x1=2,x1=﹣2.(2)请参照上例例题的解法,解方程x2﹣x|x﹣1|﹣1=0.28.已知关于x的一元二次方程x2﹣4x+m﹣1=0有两个相等的实数根,求m的值及方程的根.参考答案1.B【解析】根据正方形和菱形的性质逐项分析可得解.【详解】根据正方形对角线的性质:平分、相等、垂直;菱形对角线的性质:平分、垂直,故选B.【点睛】考点:1.菱形的性质;2.正方形的性质.2.D【解析】如图所示:添加的条件是AC=BD且AC⊥BD,平行四边形ABCD为正方形;理由如下:添加的条件时AC=BD且AC⊥BD时;∵四边形ABCD是平行四边形.又AC=BD,∴四边形ABCD是矩形,∵AC⊥BD,∴四边形ABCD是菱形,∴四边形ABCD是正方形;故选D.3.A【解析】【分析】如图,连接EF、FG、GH、HE,根据菱形的性质得到AC⊥BD,根据三角形中位线定理得到EF⊥FG,FG⊥HG,GH⊥EH,HE⊥EF,根据矩形的判定定理解答即可.【详解】解:如图,连接EF、FG、GH、HE,∵四边形ABCD是菱形,∴AC⊥BD,∵E,F,G,H是中点,∴EF∥BD,FG∥AC,∴EF⊥FG,同理:FG⊥HG,GH⊥EH,HE⊥EF,∴四边形EFGH是矩形.故选:A.【点睛】本题考查的是菱形的性质、矩形的判定定理以及三角形的中位线定理,掌握三个角是直角的四边形是矩形是解题的关键.4.C【详解】由平行四边形、菱形、矩形、正方形的性质易得,矩形对角线相等,所以选C.5.C【解析】如图所示,已知AB=2cm,因为菱形对角线互相平分,所以BO=OD在Rt△ABO中,222AB AO BO=+,AB=2cm,BO所以AO=1cm,故菱形的另一条对角线AC长为2AO=2cm,故选C.点睛:本题考查了菱形对角线互相垂直平分的性质,勾股定理在直角三角形中的运用,本题根据勾股定理求AO的长是解题的关键.6.D【解析】因为矩形的对角线相等,所以AC=BD=10cm,∵E、F、G、H分别是AB、BC、CD、AD、的中点,∴EH=GF=12BD=12×10=5cm,EF=GH=12AC=12×10=5cm,故顺次连接矩形四边中点所得的四边形周长为EH+GF+EF+GH=5+5+5+5=20cm,故选D.【点睛】本题考查了矩形的性质,三角形中位线定理,解题的关键是要熟知矩形的对角线相等,三角形的中位线等于底边的一半.7.C【分析】根据正方形、菱形的性质解答即可.【详解】∵AC是正方形的对角线,∴∠BAC=12×90°=45°,∵AF是菱形AEFC的对角线,∴∠FAB=12∠BAC=12×45°=22.5°.故选C. 【点睛】本题考查了正方形、菱形的性质,熟知正方形、菱形的一条对角线平分一组对角的性质是解决问题的关键.8.C【分析】因式分解法解方程.【详解】解:()()2-530x x -=,125,32x x ==, 故选C .【点睛】本题考查一元二次方程的解法,熟练掌握因式分解法是关键.9.C【分析】判断上述方程的根的情况,只要看根的判别式△=b 2-4ac 的值的符号就可以了.【详解】解:∵△=b 2-4ac=1-8=-7<0,∴方程无实数根.故选C .【点睛】本题考查的知识点是一元二次方程根的判别式的应用,解题关键是熟记一元二次方程根的情况与判别式△的关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.10.D【分析】先把方程化为一般式,再根据根与系数的关系得到x 1+x 2=2,x 1x 2=-1,然后把1211x x +通分得到1212x x x x +,再利用整体代入的方法计算.【详解】方程化为一般式x 2−2x−1=0,根据题意得x 1+x 2=2,x 1x 2=−1, 所以1211x x +=1212x x x x +=21-=−2, 故选D.【点睛】此题考查了一元二次方程的根与系数的关系,熟练掌握这个关系对所求代数式进行变形是解此题的关键.11.C【分析】根据用配方法解一元二次方程的方法解答即可.【详解】解:移项,得242x x -=-,方程两边同时加上4,得24424x x -+=-+,即2(2)2x -=.故选:C .【点睛】本题考查了一元二次方程的解法,属于基础题目,掌握配方的方法是解题的关键. 12.B【分析】利用直接开平方法解方程,然后根据二次根式被开方数的非负性列出关于a 的不等式,然后可求得a 的取值范围.【详解】解:∵方程2(4)x a -=有实数解,∴x−4=∴a≥0;故选:B .【点睛】本题考查了解一元二次方程−−直接开平方法.用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.解答该题时,还利用了二次根式有意义的条件这一知识点.13.323-【分析】直接根据根与系数的关系求解.【详解】解:根据题意得x 1+x2=3322;x1•x2=632,故答案为:32,3-.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=ba-,x1·x2=ca.14.20°【分析】首先根据矩形的性质求得∠EAD的度数,然后由翻折的性质得到∠EAF=∠DAF即可得解.【详解】解:∵四边形ABCD为矩形,∴∠BAD=90°,∵∠BAE=50°,∴∠EAD=40°,由翻折的性质可知:∠EAF=∠DAF.∴∠DAF=20°,故答案为:20°.【点睛】本题主要考查的是翻折变换、矩形的性质,熟练掌握翻折的性质是解题的关键.15.90°45°【详解】解:由已知△AFG≌△CAB,∴∠AFG=∠CAB,AF=AC ∵∠AFG+∠FAG=90°,∴∠CAB+∠FAG=90°,∴∠FAC=90°.又∵AF=AC,∴∠FCA=(180°-90°)×12=45°.故答案为90;45.16.20cm 24cm2【解析】根据菱形的对角线互相垂直平分,求出对角线的一半,然后利用勾股定理求出菱形的边长,最后根据周长公式计算即可求解;根据菱形的面积等于对角线乘积的一半列式计算即可求解.解:∵菱形的两条对角线的长分别是6cm和8cm,∴两条对角线的长的一半分别是3cm和4cm,∴菱形的边长为,∴菱形的周长=5×4=20cm;面积=12×8×6=24cm2.故答案为20,24.17.43m≤且m≠0【分析】根据一元二次方程的定义和根的判别式,建立关于m的不等式组,求解即可.【详解】解:∵关于x 的一元二次方程mx2+4x+3=0有实数根,∴m≠0,△=16−12m≥0,解得:43m≤且m≠0,故答案为:43m≤且m≠0.【点睛】本题考查了一元二次方程的定义和根的判别式.熟知一元二次方程的根和判别式之间的关系18.﹣2或1【详解】试题分析:方程的解就是能使方程左右两边相等的未知数的值,把x=﹣1代入方程,即可得到一个关于a的方程:22a a0--=,解得a=﹣2或1.19.5【分析】移项可得一元二次方程的一般形式,然后根据常数项的定义直接得出答案.【详解】解:方程x2−4x=−5整理成一般形式为:x2−4x+5=0,其中常数项是5,故答案为:5.【点睛】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.20.-2【详解】试题分析:根据一元二次方程的定义,二次项系数不为0,未知数的次数为2,可得220 22m m -≠⎧⎨-=⎩,可求得m=-2.故答案为-2点睛:本题考查了一元二次方程的定义,属于基础题,注意掌握一元二次方程的定义是解答本题的关键.21.±4【分析】利用完全平方公式的结构特征即可确定出n的值.【详解】解:∵4x2-nx+1=(2x)2-nx+12是完全平方式,∴n=±4,【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.22.2008【分析】先求出x 2+4x =2,然后把代数式3x 2+12x +2002变形为含x 2+4x 的形式,再整体代入求值即可.【详解】解:∵x 2+4x−2=0,∴x 2+4x =2,∴原式=3(x 2+4x )+2002=6+2002=2008.故答案为:2008.【点睛】本题考查了代数式求值,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x 2+4x 的值,然后把x 2+4x 看作一个整体,整体代入计算.23.113x =-(),21x =-;(2)1x =,2x =1635x =-(),265x =;144x =-(),21x =.【分析】()1用因式分解法解方程即可.()2用公式法解方程即可.()3用因式分解法解方程即可.()4用因式分解法解方程即可.【详解】()2143x x +=-,2430x x ++=,∴()()310x x ++=,∴30x +=或10x +=,解得,13x =-,21x =-;()222340x x +-=,∵2a =,3b =,4c =-,∴()23424410=-⨯⨯-=>,∴x ==∴1x =,2x = ()2325360x -=,()()56560x x +-=,∴560x +=或560x -=, 解得,165x =-,265x =; ()()24(4)54x x +=+,()2(4)540x x +-+=,()()4450x x ++-=,()()410x x +-=,∴40x +=,10x -=,解得,14x =-,21x =.【点睛】考查一元二次方程的解法,根据题目选取合适的方法是解题的关键.24.(1)证明见解析;(2)证明见解析.【分析】(1)由四边形ABCD 是菱形,即可求得AB =AD ,∠B =∠D ,又由BE =DF ,根据SAS 即可证得△ABE ≌△ADF ;(2)由全等得AE =AF ,利用等边对等角得出结论.【详解】证明:(1)∵四边形ABCD 是菱形,∴AB=AD,∠B=∠D,在△ABE和△ADF中,AD ABD B DF BE⎧⎪∠∠⎨⎪⎩===,∴△ABE≌△ADF(SAS);(2)∵△ABE≌△ADF,∴AE=AF,∴∠AEF=∠AFE.【点睛】此题考查了菱形的性质与全等三角形的判定和性质,解题的关键是熟练掌握菱形的性质,注意菱形的四条边都相等,对角相等.25.见解析【分析】首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形判定出结论.【详解】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OC=OD=12AC=12BD∴四边形OCED是菱形.26.证明见解析【详解】试题分析:证明有三个角是直角是矩形,再证明一组邻边相等. 试题解析:∵CD平分∠ACB,DE⊥BC,DF⊥AC,∴DE=DF,∠DFC=90°,∠DEC=90°又∵∠ACB=90°,∴四边形DECF是矩形,∴矩形DECF是正方形.点睛:证明正方形(1)对角线相等的菱形是正方形.(2)对角线互相垂直的矩形是正方形,正方形是一种特殊的矩形.(3)四边相等,有三个角是直角的四边形是正方形.(4)一组邻边相等的矩形是正方形.(5)一组邻边相等且有一个角是直角的平行四边形是正方形.(6)四边均相等,对角线互相垂直平分且相等的平行四边形是正方形.27.x1=﹣0.5,x2=1【分析】解方程x2﹣|x﹣1|﹣1=0.方程中|x﹣1|的值有两个,所以就要分情况讨论,然后去掉绝对值.一种是当x﹣1≥0时,求解;另一种情况是当x﹣1<0时,求解.【详解】解:当x﹣1≥0,即x≥1时,原方程可化为x2﹣x(x﹣1)﹣1=0即x﹣1=0,解得x=1当x﹣1<0,即x<1时,原方程可化为x2﹣x(1﹣x)﹣1=0即2x2﹣x﹣1=0,解得x1=﹣0.5,x2=1(不合题意.舍去)∴原方程的解为x1=﹣0.5,x2=1【点睛】本题考查了解一元二次方程的应用,易出错的地方是要分情况而解,所以学生容易出现漏解的现象.28.m=5,x1=x2=2.【分析】首先根据原方程根的情况,利用根的判别式求出m的值,即可确定原一元二次方程,进而可求出方程的根.【详解】由题意可知△=0,即(﹣4)2﹣4(m﹣1)=0,解得:m=5.当m=5时,原方程化为x2﹣4x+4=0.解得:x1=x2=2.所以原方程的根为x1=x2=2.【点睛】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.。
2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第1章~第3章(北师版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
最新北师大版九年级数学上册第一次月考考试题及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠- 3.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A .BE=DFB .AE=CFC .AF//CED .∠BAE=∠DCF4.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .6.已知x 1,x 2是方程x 2﹣3x ﹣2=0的两根,则x 12+x 22的值为( )A .5B .10C .11D .137.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .8.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A.30°B.32°C.42°D.58°9.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45°B.60°C.75°D.85°10.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45︒B.50︒C.60︒D.75︒二、填空题(本大题共6小题,每小题3分,共18分)1.27的立方根为__________.2.因式分解:3269a a a-+=_________.3.若代数式1x-在实数范围内有意义,则x的取值范围是__________.4.如图,点A在双曲线1y=x上,点B在双曲线3y=x上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为__________.5.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是__________.6.如图,将正方形OEFG 放在平面直角坐标系中,O 是坐标原点,点E 的坐标为(2,3),则点F 的坐标为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:22x 1x 4x 2+=--2.已知关于x 的一元二次方程220x x k +-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个不相等实数根是a ,b ,求111a ab -++的值.3.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)当x ≥30,求y 与x 之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?4.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.5.央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.6.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、C5、B6、D7、D8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、32、2(3)a a -3、1x ≥4、25、.6、(﹣1,5)三、解答题(本大题共6小题,共72分)1、x 3=-2、(1)k>-1;(2)13、(1)y=3x ﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.4、(1)32)3x 323x 2﹣8333)点P 存在,坐标为(9453).5、(1)200;(2)补图见解析;(3)12;(4)300人.6、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.。
九年级数学上册第一次月考检测试题(满分:150分 时间:120分钟)一.选择题。
(每小题4分,共48分)1.如图,已知AB ∥CD ∥EF ,AD :AF =3:5,BC =6,CE 的长为( ) A.2 B.4 C.3 D.5(第1题图) (第3题图) (第5题图) 2.若△ABC ∽△A'B'C',∠A=55°,∠B=100°,则∠C'的度数是( ) A .100° B .55° C .25° D .不能确定3.如图,已知菱形ABCD 的边长为2,∠DAB=60°,则对角线BD 的长是( ) A.1 B.3 C.2 D.234.关于x 的方程0242=+-x kx 有两个不相等的实数根,则k 的取值范围是( ) A.k ≤2 B.k>2 C.k<2且k ≠0 D.k ≤2且k ≠05.如图,在△ABC 中,D 是边AB 上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC 的长为( ) A .2 B .4 C .6 D .86.如图,在△ABC 中,EF ∥BC ,AE EB =23,四边形BCFE 的面积为21,则△ABC 的面积是( )A .913 B .25 C .35 D .63(第6题图) (第7题图) (第10题图)7.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE=AD ,连接EB ,EC ,DB ,添加一个条件,不能使四边形DBCE 成为矩形的是( )A.∠ADB=90°B.BE ⊥DCC.AB=BED.CE ⊥DE8.近几年,我国经济高速发展,但退休人员待遇持续偏低,为了促进社会和平,国家决定大幅增加退休人员退休金,企业退休职工李师傅2020年月退休金为4500元,2022年达到5445元,设李师傅的月退休金从2020年到2022年年平均增长率为x ,可列方程为( ) A.54452)1(x -=4500 B.45002)1(x +=5445C.45002)1(x -=5445 D.4500+4500(1+x )+45002)1(x +=54459.在平面直角坐标系中,已知点E (-4,2)F (-2,-2),以原点O 为位似中心,相似比为2:1,把△EFO 放大,则点E 对应点'E 的坐标是( )A.(-2,1)B.(-8,4)C.(-2,1)或(2,-1)D.(-8,4)或(8,-4) 10.如图,在正方体网格上,与△ABC 相似的三角形是( ) A.△AFD B.△AED C.△FED D.不能确定11.如图所示,一电线杆AB 的影子落在地面和墙壁上,同一时刻,小明在地面上竖立一根1米高的标杆(PQ ),量得其影长(QR )为0.5米,此时他又量得电线杆AB 落在地面上的影子BD 长为3米,墙壁上的影子CD 高为2米,小明用这些数据很快算出了电线杆AB 的高为( ) A .5米 B .6米 C .7米 D .8米(第11题图) (第12题图)12.如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =4,则下列结论:①21FD AF =;②S △BCE =36;③S △ABE =12;④△AEF ~△ACD ,其中一定正确的是( ) A .①②③④ B .①④ C .②③④ D .①②③ 二.填空题。
九年级上学期第一学月数学学科练习试卷一、选择题(10小题,每小题3分,共30分)1. 若关于x 的方程()2220m m x x −−+=是一元二次方程,则m 的值是( ) A. 2− B. 2±C. 3D. 3± 2. 将方程221210x x −+=配方成()2x m n −=的形式,下列配方结果正确的是( ) A. ()2317x += B. ()21732x += C. ()2317x −= D. ()21732x −= 3. 如图,在菱形ABCD 中,对角线AC BD ,相交于点O ,点M ,N 分别是边AD CD ,的中点,连接MN OM ,,若3MN =,24ABCD S =菱形,则OM 的长为( )A. 3B. 3.5C. 2D. 2.54. 如图,在矩形ABCD 中,O 是对角线AC BD ,的交点,AE BD ⊥于点E ,若:1:2OE OD =,2cm OD =,则AE 的长为( )A. 1cmB.C.D. 2cm5. 根据下列表格的对应值,判断方程20ax bx c ++=(0a ≠,a ,b ,c 为常数)的一个解x 的范围是( ) x 3.23 3.24 3.25 3.262ax bx c ++ 0.06− 0.02− 0.03 0.09A. 3 3.23x <<B. 3.23 3.24x <<C. 3.24 3.25x <<D. 3.25 3.26x <<6. 下列四个命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②有一组邻边相等的四边形是菱形;③对角线互相平分且相等的四边形是矩形;④一组对角互补的平行四边形是矩形.其中真命题的个数是( )A. 1B. 2C. 3D. 47. 在平面直角坐标系中,若直线3y x b =−+不经过第一象限,则关于x 的方程220230bx x ++=的实数根的个数为( )A. 0个B. 1个C. 2个D. 1或2个8. 如图,在ABC 中,90ACB ∠=°,8AC =,7BC =,以斜边AB 为边向外作正方形ABDE ,EF 垂直于CA 的延长线于F ,连接CE ,则CE 的长为( )A. 13B. 15C. 17D. 209. 顺次连结任意四边形ABCD 四边中点,所得的图形是一个矩形,则四边形ABCD 一定是 ( )A. 矩形B. 菱形C. 对角线相等的四边形D. 对角线互相垂直的四边形10. 如图,四边形ABCD 是矩形,AB AD =P 是边AD 上一点(不与点A ,D 重合),连接PB PC ,.点M ,N 分别是PB PC ,的中点,连接MN ,AM ,DN ,点E 在边AD 上,ME DN ∥,则AM ME +的最小值是( )A. B. 3 C. D.二、填空题(每小题3分,共15分)11. 一元二次方程254x x =的根是_________________.12. 如图,菱形ABCD 的对角线AC ,BD 相交于点O ,AC =16cm .BD =12cm ,则菱形边AB 上的高,DH 的长是 _____cm .13. 已知关于x 的一元二次方程()21210k x x −−+=有两个实数根,则k 的取值范围是__________. 14. 等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程x 2﹣12x+k=0的两个根,则k 的值是________.15. 如图,在正方形ABCD 中,E 为AB 中点,连接DE ,过点D 作⊥DF DE 交BC 的延长线于点F ,连接EF .若1AE =,则EF 的长为______.三、解答题(共75分)16 解方程:(1)21240x x −−=(配方法解). (2)25820y y −+=(公式法解). (3)()()22223x x −=+.(4)()22324x x −=−. 17. 关于x 一元二次方程()222110x k x k −−++=有两个不相等的实数根1x ,2x . (1)求实数k 的取值范围;(2)若方程的两实数根1x ,2x 满足1212x x x x +=−⋅,求k 的值. 18. 已知关于x 的方程()2310x m x m ++++=(1)求证:无论m 取何值,原方程总有两个不相等的实数根.(2)若方程的一个根是1,求m 的值及方程的另一个根 .19. 已知关于x 方程()2121402x k x k−++−=. (1)求证:无论k 取何值,此方程总有实数根;.的的(2)若等腰ABC 的一边长4a =,另两边b c 、恰好是这个方程的两个根,求这个等腰三角形的周长是多少?20. 如图,在ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF BD =,连接BF .(1)BD 与CD 有什么数量关系,并说明理由;(2)当ABC 满足什么条件时,四边形AFBD 是菱形?请说出理由.21. 在矩形ABCD 中,已知5cm 6cm AB BC ==,,点P 从点A 开始沿边AB 向终点B 以1cm/s 的速度运动;同时,点Q 从点B 开始沿边BC 向终点C 以2cm/s 的速度运动.当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)分别用含t 的代数式表示PB 与BQ ;(2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于226cm ?若存在,请求出此时t 的值;若不存在,请说明理由.22. 如图,在ABC 中,点F 是BC 中点,点E 是线段AB 延长线上一动点,连接EF ,过点C 作AB 的平行线CD ,与线段EF 的延长线交于点D ,连接CE 、BD .(1)求证:四边形DBEC 是平行四边形.(2)若120ABC ∠=°,4ABBC ==,则在点E 的运动过程中:①当当BE = 时,四边形BECD的是矩形;②当BE = 时,四边形BECD 是菱形.23. 如图①,QPN ∠的顶点P 在正方形ABCD 两条对角线的交点处,QPN α∠=, 将QPN ∠绕点P 旋转,旋转过程中QPN ∠的两边分别与正方形ABCD 的边AD 和CD 交于点E 和点F (点F 与点C ,D 不重合).(1)如图①,当90α=°时,DE ,DF ,AD 之间满足的数量关系是______________;(2)如图②,将图①中正方形ABCD 改为120ADC ∠=°的菱形, 其他条件不变, 当60α=°时,(1)中的结论变为_____________________,请给出证明;(3)在(2)的条件下,若旋转过程中QPN ∠的边PQ 与直线AD 交于点E ,PF 与直线DC 相交与点F ,其他条件不变,探究在整个运动变化过程中.........,DE ,DF ,AD 之间满足的数量关系,直接写出结论,不用证明.的。
【导语】做题时要认真审题,积极思考,细⼼答题,发挥你的⽔平。
下⾯是⽆忧考为您整理的北师⼤版初三数学上册第⼀次⽉考试卷及答案【四篇】,仅供⼤家学习参考。
【篇⼀】北师⼤版初三数学上册第⼀次⽉考试卷 ⼀、选择题(每⼩题3分,共30分) 1.已知关于的⼀元⼆次⽅程的⼀个根是2,则的值是()A、-2B、2C、1D、﹣1 2.下列形中,既时轴对称形,⼜是中⼼对称形的是() 3.如(1),在ABCD中,下列说法⼀定正确的是()A、AC=BDB、AC⊥BDC、AB=CDD、AB=BC 4.⼀个等腰三⾓形的两边长分别为3和7,则它的周长是()A、17B、15C、13D、13或17 5.菱形的两条对⾓线把菱形分成全等的直⾓三⾓形的个数是()A、1个B、2个C、3个D、4个 6.下列性质中,矩形具有但平⾏四边形不⼀定具有的是()A、对边相等B、对⾓相等C、对⾓线相等D、对边平⾏ 7.下列各未知数的值是⽅程的解的是() 8.下列各式是⼀元⼆次⽅程的是() 9.把⽅程左边化成含有的完全平⽅式,其中正确的是() 10.顺次连接矩形ABCD各边中点得到四边形EFGH,它的形状是()A、平⾏四边形B、矩形C、菱形D、正⽅形 ⼆、填空题(每⼩题4分,共24分) 11.⼀元⼆次⽅程的⼀次项系数是____________, 常数项是____________。
12.已知菱形ABCD的周长为40㎝,O是两条对⾓线的交点,AC=8㎝, DB=6㎝,菱形的边长是________㎝,⾯积是________㎝2。
13.⽅程是关于的⼀元⼆次⽅程, 则的值是______________。
14.如(2),△ABC中,∠ACB=90°,D为AB中点,BC=6, CD=5,则AB=__________,AC=_____________。
15.如(3),已知P是正⽅形ABCD对⾓线BD上的⼀点, 且BP=BC,则∠ACP的度数是_________。
新北师大版九年级数学上册第一次月考考试及答案【全面】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的相反数是( )A .13-B .13C .3-D .32.若a ≠b ,且22410,410a a b b -+=-+=则221111a b+++的值为( ) A .14 B .1 C ..4 D .33.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( )A .有两不相等实数根B .有两相等实数根C .无实数根D .不能确定4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x =的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<6.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.抛物线()2y ax bx c a 0=++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是x 1.=下列结论中:abc 0>①;2a b 0+=②;③方程2ax bx c 3++=有两个不相等的实数根;④抛物线与x 轴的另一个交点坐标为()2,0-;⑤若点()A m,n 在该抛物线上,则2am bm c a b c ++≤++.其中正确的有( )A .5个B .4个C .3个D .2个8.下列图形中,是中心对称图形的是( )A .B .C .D .9.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD =60°,则花坛对角线AC 的长等于( )A .63米B .6米C .33米D .3米10.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算:23⨯=______________.2.分解因式:244m m ++=___________.3.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为__________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .6.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.三、解答题(本大题共6小题,共72分)1.解方程:12133x x x-+=--2.计算:()011342604sin π-----+().3.如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C 两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q 的坐标;若不存在,请说明理由.4.如图,ABC 中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G(1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.5.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、A4、B5、B6、A7、B8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1.2、()22m +3、﹣34、10.5、13 6、8.三、解答题(本大题共6小题,共72分)1、1x =2、33、(1)抛物线的解析式21722y x x =-++;(2)PD PA +;(3)点Q 的坐标:1(0,2Q 、2(0,2Q .4、(1)略;(2)78°.5、(1)215;(2)39件;仅从工资收入的角度考虑,小明应到乙公司应聘.6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。
北师大版九年级上册数学第一次月考测试卷及完整答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的相反数是( )A .13-B .13C .3-D .32.若实数m 、n 满足 02m =-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .63有意义,则实数m 的取值范围是( ) A .m 2>- B .m 2>-且m 1≠C .m 2≥-D .m 2≥-且m 1≠ 4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.下面四个手机应用图标中是轴对称图形的是( )A.B.C.D.8.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.29.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为()A.8 B.9 C.10 D.11二、填空题(本大题共6小题,每小题3分,共18分)1.8 的立方根是__________.2.分解因式:x3﹣16x=_____________.3.已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是__________.4.如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为__________.5.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,可列方程为_______.6.如图,菱形ABCD 顶点A 在例函数y =3x (x >0)的图象上,函数 y =k x (k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠DAB =30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+2.已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.3.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.4.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、D4、B5、B6、C7、D8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-22、x(x+4)(x–4).3、k<44、140°5、12x(x﹣1)=216、三、解答题(本大题共6小题,共72分)1、4x2、(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.3、(1) 65°;(2) 25°.4、(1)略;(2)AC.5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.6、(1)w=﹣x2+90x﹣1800;(2)当x=45时,w有最大值,最大值是225;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.。
九年级上册数学十月份单元质量测试 卷一
请把选择填空的答案填在卷二的表格中,只交卷二
一 ,选择题 (每小题3分,共24分) 1. 关于x 的一元二次方程01)1(22=-++-a x x a 有一个根为0,则a 的值是( ) A 、±1 B 、-1 C 、1 D 、0 2.一次同时抛两枚硬币,至少一枚正面朝上的概率是( A 21 B 41 C 43D 32 3. 菱形具有而矩形不一定具有的性质是 ( ) A .对角线互相垂直 B .对角线相等 C .对角线互相平分 D .对角互补 4. 如果顺次连接一个四边形各边中点所得新的四边形是菱形,那么对这个四边形的形状描述最准确的是( ) A 、矩形 B 、等腰梯形 C 、菱形 D 、对角线相等的四边形 5、已知等腰三角形的腰长、底边长分别是一元二次方程x 2-7x +10=0的两根,则该等腰三角形的周长是( ) A 、9或12 B 、9 C 、12 D 、21 6.如下图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边做 平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边做平行四边形AO 1C 2B ;…; 依此类推,则平行四边形AO 4C 5B 的面积为( ) A .85 cm 2 B . 45cm 2 C
.cm 2 D
.cm 2 7、如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM+PN 的最小值是___________. 6
6
6
题图
7题图
(第8题图)
E D C B A
8. 如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重
合,点B 落在点F 处,折痕为AE ,且EF=3,则AB 的长为( )
A .3
B .4
C .5
D .6
二、填空题(每题3分,共24分)
9.方程26)7)(5(-=-+x x ,化成一般形式是
10.如果方程022=++-k x x 有实数根,那么k 的范围是 ;
11.在四边形ABCD 中,AB=DC ,AD=BC.请再添加一个条件,使四边形ABCD 是
矩形.你添加的条件是 .(写出一种即可)
12 参加一次商品交易会的每两家公司之间都照一次相,所有公司共照了45次
相,设共有x 家公司参加本次交易会,则可列方程为
_____________ .
第13题图 第14题图 第15题图
13.如上图,菱形ABCD 中,60A ∠= ,对角线8BD =,则菱形ABCD 的面积等于 .
14.已知长方形ABCD ,AB=3cm ,AD=4cm ,过对角线BD 的中点O 做BD 的垂直
平分线EF ,分别交AD 、BC 于点E 、F ,则AE 的长为_______________.
15如图所示,某小区规划在一个长为40 m 、宽为26 m 的矩形场地ABCD 上修建三条同样宽的甬路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每一块草坪的面积为144 m 2,求甬路的宽度.若设甬路的宽度为x m ,则x 满足的方程为 .
16、我国政府为解决老百姓看病难问题,决定下调药品价格.某种药品经过两次降价,由每盒50元调至32元.则平均每次降价的百分率为 .
九年级上册数学十月份单元质量测试 卷二 (上交)
选择填空答案
一.1 2 3 4 5 6 7 8
二.9 10 11 12 13 14 15 16 三.17尺规画图(4分) 画一个菱形,使它的两条对角线得长分别等于已知线段a 和b
a b
四解答题
18.用指定的方法解方程:(每题5分,共20分)
(1)022=-x x (2)12)3)(1(=-+x x (用配方法)
(3)08922=+-x x (用公式法) (4)22)32()2(+=-x x (用合适的方
法)、
19.(8分)小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1~4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字。
若两次数字之和大于5,则小颖胜,否则小丽胜。
这个游戏对双方公平吗?用树状图或表格说明理由。
20.(10分)某种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进价不变时,若每千克涨价1元,每天销售量将减少20千克,现要保证每天盈利6000元,同时要使顾客得到实惠,那么每千克水果应涨价多少元?为了保证水果质量,每天应该进水果多少千克?
21.(10分)已知:如图,在⊿ABC 中,AB =AC ,AD ⊥BC ,垂足为D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为E ,连接DE 交AC 于F 。
(1)求证:四边形ADCE 为矩形;
(2)求证:DF ∥AB ,DF =12
AB ; (3)当⊿ABC 满足什么条件时,四边形ADCE 是一个正方形?简述你的理由。
21(10分)有一个面积为150平方米的长方形鸡场,鸡场的一边靠墙(墙长18
米),另三边用竹篱笆围成,如果竹篱笆的长为35米,求鸡场的长与宽各为多少米?
C D F E N M
A P
B 篱笆墙长18米150平方米
22(10分)如下图,在△ABC 中,∠B= 90°,点P 从A 点开始沿AB 边向点B 以1厘米/秒的速度移动,点Q 从B 点开始沿BC 边向点C 以2厘米/秒的速度移动。
如果P 、Q 分别从A 、B 两点同时出发,经过几秒钟,△PBQ 的面积等于△ABC 面积的 31?。