最新人教版七年级数学下册期末总复习学案精华版及答案
- 格式:doc
- 大小:795.92 KB
- 文档页数:14
最新人教版七年级数学下册期末复习资料(共6套附答案)期末复习(一) 相交线与平行线考点一命题【例1】已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③两点之间,线段最短;④同位角相等,两直线平行.其中真命题的个数是( )A.1个B.2个C.3个D.4个【方法归纳】要判断一个命题是假命题,只需要举出一个反例即可.1.下列语句不是命题的是( )A.两直线平行,同位角相等B.锐角都相等C.画直线AB平行于CDD.所有质数都是奇数考点二相交线中的角【例2】如图所示,O是直线AB上一点,∠AOC=13∠BOC,OC是∠AOD的平分线.(1)求∠COD的度数;(2)判断OD与AB的位置关系,并说出理由.思路:根据邻补角互补,得∠AOC与∠BOC的和为180°.利用已知条件,即可求得∠AOC的度数.根据角平分线的定义得∠COD,∠AOD的度数,从而判定出两直线的位置关系.【方法归纳】求角的度数问题时,要善于从图形中挖掘隐含条件,如:邻补角、对顶角,然后结合条件给出的角的和、差、倍、分等关系进行计算.2.如图,直线AB,CD相交于点O,已知:∠AOC=70°,OE把∠BOD分成两部分,且∠BOE∶∠EOD=2∶3,求∠AOE 的度数.考点三平行线的性质与判定【例3】已知:如图,四边形ABCD中,∠A=106°-α,∠ABC=74°+α,BD⊥DC于点D,EF⊥DC于点F.求证:∠1=∠2.思路:由条件得∠A+∠ABC=180°,得AD∥BC,从而∠1=∠DBC.由BD⊥DC,EF⊥DC,可得BD∥EF,从而∠2=∠DBC,所以∠1=∠2,结论得证.【方法归纳】本题既考查了平行线的性质又考查了平行线的判定.题目的证明用到了“平行线迁移等角”.3.(2013²盐城)如图,直线a∥b,∠1=120°,∠2=40°,则∠3等于( )A.60°B.70°C.80°D.90°4.(2012²宜宾)如图,已知∠1=∠2=∠3=59°,则∠4=__________.(第3题)(第4题)考点四平移变换【例4】(2013²晋江)如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,△ABC扫过的面积.【分析】(1)根据网格结构找出点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出坐标即可;(2)观察图形可得△ABC扫过的面积为四边形AA′B′B的面积与△ABC的面积的和,然后列式进行计算即可.5(2012²济南)如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB方向向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于__________.复习测试一选择题(每小题3分,共30分)1.如图,直线AB、CD相交于点O,所形成的∠1,∠2,∠3,∠4中,属于对顶角的是( )A.∠1和∠2B.∠2和∠3C.∠3和∠4D.∠2和∠42.如图,直线AB、CD被直线EF所截,则∠3的同旁内角是( )A.∠1B.∠2C.∠4D.∠53.如图,已知AB⊥CD,垂足为点O,图中∠1与∠2的关系是( )A.∠1+∠2=180°B.∠1+∠2=90°C.∠1=∠2D.无法确定4.如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是( )A.80°B.100°C.110°D.120°(第1题)(第2题)(第3题)(第4题)5.在下列图形中,哪组图形中的右图是由左图平移得到的?( )6.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )A.1个B.2个C.3个D.4个7.平面内三条直线的交点个数可能有( )A.1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个8.下列图形中,由AB∥CD,能得到∠1=∠2的是( )9.如图,直线a∥b,直线c分别与a、b相交于点A、B.已知∠1=35°,则∠2的度数为( )A.165°B.155°C.145°D.135°10.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是( )A.∠1=∠2B.∠3=∠4C.∠5=∠BD.∠B+∠BDC=180°(第9题)(第10题)二、填空题(每小题3分,共15分)11.将命题“两直线平行,同位角相等”写成“如果……那么……”的形式是____________________.12.两条平行线被第三条直线所截,同旁内角的度数之比是2∶7,那么这两个角的度数分别是__________.13.如图,AB,CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A等于__________.14.如图,BC⊥AE,垂足为点C,过C作CD∥AB.若∠ECD=48°,则∠B=__________.15.(2014²温州)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=__________度.(第13题)(第14题)(第15题)三、解答题(共50分)16.(7分)如图,已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的位置关系,并说明你的理由.解:BE∥CF.理由:∵AB⊥BC,BC⊥CD(已知),∴∠______________=∠_________________=90°(垂直的定义).∵∠1=∠2(已知),∴∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF.∴BE∥CF(____________________________________________).17.(9分)如图,直线AB、CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于F点;(3)说明线段PE、PO、FO三者的大小关系,其依据是什么?18.(10分)如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数;(2)若∠AOD和∠DOE互余,且∠AOD=13∠AOE,请求出∠AOD和∠COE的度数.19.(12分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?20.(12分)如图,已知AB∥CD,分别探究下面四个图形中∠APC和∠PAB、∠PCD的关系,请从你所得四个关系中选出任意一个,说明你探究的结论的正确性.结论:(1)____________________;(2)____________________;(3)____________________;(4)____________________. 选择结论:____________________,说明理由.参考答案变式练习1.C2.∵∠AOC=70°,∴∠BOD=∠AOC=70°.∵∠BOE∶∠EOD=2∶3,∴∠BOE=223³70°=28°.∴∠AOE=180°-28°=152°.3.C4.121°5.C6.8复习测试1.D2.B3.B4.B5.C6.C7.D8.B9.C 10.A11.如果两直线平行,那么同位角相等12.40°,140°13.52°14.42°15.8016.ABC BCD 内错角相等,两直线平行17.(1)(2)图略;(3)PE<PO<FO,依据是垂线段最短.18.(1)∵OD平分∠AOC,∠AOC=60°,∴∠AOD=12³∠AOC=30°,∠BOC=180°-∠AOC=120°.(2)∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°.∵∠AOD=13∠AOE,∴∠AOD=13³90°=30°.∴∠AOC=2∠AOD=60°.∴∠COE=90°-∠AOC=30°.19.(1)AE∥FC.理由:∵∠1+∠2=180°,∠2+∠CDB=180°, ∴∠1=∠CDB.∴AE∥FC.(2)AD∥BC.理由:∵AE∥CF,∴∠C=∠CBE.又∠A=∠C,∴∠A=∠CBE.∴AD∥BC.(3)BC平分∠DBE.理由:∵DA平分∠BDF,∴∠FDA=∠ADB.∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD.∴∠CBE=∠CBD.∴BC平分∠DBE.20.(1)∠PAB+∠APC+∠PCD=360°(2)∠APC=∠PAB+∠PCD(3)∠APC=∠PCD-∠PAB(4)∠APC=∠PAB-∠PCD(1)过P点作EF∥AB,。
新人教版七年级数学(下册)期末复习及答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c 2.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°3.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.已知x是整数,当30x取最小值时,x的值是( )A.5 B.6 C.7 D.86.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A .两点之间线段最短B .点到直线的距离C .两点确定一条直线D .垂线段最短7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .09.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.如图a 是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是__________°.3.分解因式:32x 2x x -+=_________.4+x x -有意义,+1x =___________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解分式方程:33122x x x-+=--.2.若2a+b=12,其中a ≥0,b ≥0,又P=3a+2b .试确定P 的最小值和最大值.3.如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.=;(1)试说明:BD CE(2)试说明:M N∠=∠.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、D4、C5、A6、D7、C8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、105°3、()2 x x1-.4、15、16、5三、解答题(本大题共6小题,共72分)1、x=1.2、当a=0时,P有最大值,最大值为p=24;当a=6时,P有最小值,最小值为P=18.3、(1)略;(2)112.5°.4、(1)略;(2)略.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
七年级数学人教版下学期期末总复习学案考试内容第五章 相交线与平行线 第六章 平面直角坐标系 第七章 三角形 第八章 二元一次方程组第九章 不等式与不等式组 第十章 数据的收集、整理与描述第五章 相交线与平行线(二)例题与习题:一、对顶角和邻补角:1.如图所示,∠1和∠2是对顶角的图形有( )个 个 个 个2.如图1-1,直线AB 、CD 、EF 都经过点O , 图中有几对对顶角。
( )3.如图1-2,若∠AOB 与∠BOC 是一对邻补角,OD 平分∠12121221OE 在∠BOC 内部,并且∠BOE =12∠COE ,∠DOE =72°。
求∠COE 的度数。
( )二、垂线:已知:如图,在一条公路l 的两侧有A 、B 两个村庄.<1>现在乡政府为民服务,沿公路开通公交汽车,并在路边修建一个公共汽车站P ,同时修建车站P 到A 、B 两个村庄的道路,并要求修建的道路之和最短,请你设计出车站的位置,在图中画出点P 的位置,(保留作图的痕迹).并在后面的横线上用一句话说明道理. .<2>为方便机动车出行,A 村计划自己出资修建一条由本村直达公路l 的机动车专用道路,你能帮助A 村节省资金,设计出最短的道路吗?,请在图中画出你设计修建的最短道路,并在后面的横线上用一句话说明道理. .三、同位角、内错角和同旁内角的判断1.如图3-1,按各角的位置,下列判断错误的是( )(A )∠1与∠2是同旁内角 (B )∠3与∠4是内错角 (C )∠5与∠6是同旁内角 (D )∠5与∠8是同位角2.如图3-2,与∠EFB 构成内错角的是_ ___,与∠FEB _ ___.四、平行线的判定和性质: 1.如图4-1, 若∠3=∠4,则 ∥ ;若AB ∥CD,则∠ =∠ 。
2.已知两个角的两边分别平行,其中一个角为52°,则另一个角为_______. 3.两条平行直线被第三条直线所截时,产生的八个角中, 角平分线互相平行的两个角是( ) A.同位角 B.同旁内角C.内错角D. 同位角或内错角4.如图4-2,要说明 AB ∥CD ,需要什么条件? 试把所有可能的情况写出来,并说明理由。
人教版七年级数学下册期末复习含答案一、选择题1.36的平方根是()A .6-B .6C .6±D .4±2.下列四种汽车车标,可以看做是由某个基本图案经过平移得到的是( )A .B .C .D .3.在平面直角坐标系中,点(3,-3)所在的象限是( ).A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题是假命题的是( )A .同位角相等,两直线平行B .三角形的一个外角等于与它不相邻的两个内角的和C .平行于同一条直线的两条直线平行D .平面内,到一个角两边距离相等的点在这个角的平分线上5.如图,点E 在CA 延长线上,DE 、AB 交于F ,且BDE AEF ∠=∠,B C ∠=∠,EFA 比FDC ∠的余角小10︒,P 为线段DC 上一动点,Q 为PC 上一点,且满足FQP QFP ∠=∠,FM 为EFP ∠的平分线.则下列结论:①//AB CD ;②FQ 平分AFP ∠;③140B E ∠+∠=︒;④QFM ∠的角度为定值.其中正确结论的个数有( )A .1个B .2个C .3个D .4个 6.下列各式中,正确的是( ) A 16B .16C 3273-=- D 2(4)4-=- 7.如图,将△OAB 绕点O 逆时针旋转55°后得到△OCD ,此时//CD OB ,若20AOB ∠=︒,则A ∠的度数是( )A .20°B .25°C .30°D .35°8.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2021次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)九、填空题9.如果一个正方形的面积为3,则这个正方形的边长是 _____________.十、填空题10.若(),3A m -与()4,3B -关于y 轴对称,则m =______.十一、填空题11.如图,在△ABC 中,∠A=50°,∠C=72°,BD 是△ABC 的一条角平分线,求∠ADB=__度.十二、填空题12.如图,∠ABC 与∠DEF 的边BC 与DE 相交于点G ,且BA //DE ,BC //EF ,如果∠B =54°,那么∠E =__________.十三、填空题13.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图2中115AEF ∠=︒,则图3中CFE ∠的度数为_______.十四、填空题14.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____.十五、填空题15.已知点()6,23A m m --,且点A 到两坐标轴的距离相等,则点A 的坐标是____. 十六、填空题16.如图,在平面直角坐标系中,点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,按照这样的规律下去,点2021A 的坐标为__________.十七、解答题17.计算:(1);(2)十八、解答题18.求下列各式中的x :(1)x 2﹣12149=0. (2)(x ﹣1)3=64.十九、解答题19.请补全推理依据:如图,已知:12180∠+∠=︒,3A ∠=∠,求证:B C ∠=∠.证明:∵12180∠+∠=︒(已知)∴//AD EF ( )∴3D ∠=∠( )又∵3A ∠=∠(已知)∴D A ∠=∠( )∴//AB CD ( )∴B C ∠=∠( )二十、解答题20.以学校为坐标原点建立平面直角坐标系,图中标明了这所学校附近的一些地方, (1)公交车站的坐标是 ,宠物店的坐标是 ;(2)在图中标出公园()300,200-,书店()100,100的位置;(3)将医院的位置怎样平移得到人寿保险公司的位置.二十一、解答题21.阅读下面的文字,解答问题.22的小数部分我们不可能全部地写出来,但是由于122<<2 1.21,差就是21.根据以上的内容,解答下面的问题:(15___________,小数部分是___________;(2)若设23+x ,小数部分是y ,求x y -的值.二十二、解答题22.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上.(1)请求出图中阴影部分(正方形)的面积和边长(2)若边长的整数部分为a ,小数部分为b ,求213a b +-的值.二十三、解答题23.如图①,将一张长方形纸片沿EF 对折,使AB 落在''A B 的位置;(1)若1∠的度数为a ,试求2∠的度数(用含a 的代数式表示);(2)如图②,再将纸片沿GH 对折,使得CD 落在''C D 的位置.①若//'EF C G ,1∠的度数为a ,试求3∠的度数(用含a 的代数式表示);②若''B F C G ⊥,3∠的度数比1∠的度数大20︒,试计算1∠的度数.二十四、解答题24.如图,已知//AB CD P ,是直线AB CD ,间的一点,PF CD ⊥于点F PE ,交AB 于点120E FPE ∠=︒,.(1)求AEP ∠的度数;(2)如图2,射线PN 从PF 出发,以每秒40︒的速度绕P 点按逆时针方向旋转,当PN 垂直AB 时,立刻按原速返回至PF 后停止运动:射线EM 从EA 出发,以每秒15︒的速度绕E 点按逆时针方向旋转至EB 后停止运动,若射线PN ,射线EM 同时开始运动,设运动间为t 秒.①当20MEP ∠=︒时,求EPN ∠的度数;②当 //EM PN 时,求t 的值.二十五、解答题25.如图所示,已知射线//,//,100CB OA AB OC C OAB ︒∠=∠=.点E 、F 在射线CB 上,且满足FOB AOB ∠=∠,OE 平分COF ∠(1)求EOB ∠的度数;(2)若平行移动AB ,那么:OBC OFC ∠∠的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB 的过程中,是否存在某种情况,使OEC OBA ∠=∠?若存在,求出其度数.若不存在,请说明理由.【参考答案】一、选择题1.C解析:C【分析】根据平方根的定义求解即可.【详解】解:∵2(6)36=±,∴36的平方根是6±,故选:C .【点睛】此题考查的是求一个数的平方根,掌握平方根的定义是解决此题的关键.2.B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C解析:B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;D. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;故选B .【点睛】本题主要考查平移变换的性质,掌握平移变换的性质,是解题的关键.3.D【分析】根据各象限内点的坐标特征解答即可.【详解】点(3,-3)的横坐标为正数,纵坐标为负数,所以点(3,-3)所在的象限是第四象限,故选D .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.D【分析】利用平行线的判定、三角形的外角的性质、角平分线的判定等知识分别判断后即可确定正确的选项.【详解】解:A 、同位角相等,两直线平行,正确,是真命题,不符合题意;B 、三角形的一个外角等于与它不相邻的两个内角的和,正确,是真命题,不符合题意;C 、平行于同一条直线的两条直线平行,正确,是真命题,不符合题意;D 、角的内部,到一个角两边距离相等的点在这个角的平分线上,故原命题错误,是假命题,符合题意;故选:D .【点睛】考查了命题与定理的知识,解题的关键是了解平行线的判定、三角形的外角的性质、角平分线的判定等知识,难度不大.5.D【分析】①由BDE AEF ∠=∠可得AE ∥BD ,进而得到B EAF ∠=∠,结合B C ∠=∠即可得到结论;②由//AB CD 得出AFQ FQP ∠=∠,结合FQP QFP ∠=∠即可得解;③由平行线的性质和内角和定理判断即可;④根据角平分线的性质求解即可;【详解】∵BDE AEF ∠=∠,∴AE ∥BD ,∴B EAF ∠=∠,∵B C ∠=∠,∴EAF C ∠=∠,∴//AB CD ,结论①正确;∵//AB CD ,∴AFQ FQP ∠=∠,∵FQP QFP ∠=∠,∴AFQ QFP ∠=∠,∴FQ 平分AFP ∠,结论②正确;∵//AB CD ,∴EFA FDC ∠=∠,∵EFA 比FDC ∠的余角小10︒,∴40EFA ∠=︒,∵B EAF ∠=∠,180EFA E EAF ∠+∠+∠=︒,∴180140B E EFA ∠+∠=︒-∠=︒,结论③正确;∵FM 为EFP ∠的平分线, ∴111222MFP EFP EFA AFP ∠=∠=∠+∠, ∵AFQ QFP ∠=∠, ∴12QFP AFP ∠=∠, ∴1202QFM MFP QFP EFA ∠=∠-∠=∠=︒,结论④正确; 故正确的结论是①②③④;故答案选D .【点睛】本题主要考查了平行线的判定与性质、余角和补角的性质,准确分析计算是解题的关键. 6.C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A 4,此项错误;B、4±,此项错误;C 3-,此项正确;D 4,此项错误;故选:C .【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.7.D【分析】由旋转的性质得出∠AOC =55°,∠A =∠C ,根据平行线的性质得出∠BOC =∠C =35°,则可得出答案.【详解】解:∵将△OAB绕点O逆时针旋转55°后得到△OCD,∴∠AOC=55°,∠A=∠C,∵∠AOB=20°,∴∠BOC=∠AOC−∠AOB=55°−20°=35°,∵CD∥OB,∴∠BOC=∠C=35°,∴∠A=35°,故选:D.【点睛】本题考查了旋转的性质,平行线的性质,求出∠BOC的度数是解题的关键.8.B【分析】根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置.【详解】解:由图可得,点(1,0)第一次碰撞后的点的坐标为(0解析:B【分析】根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置.【详解】解:由图可得,点(1,0)第一次碰撞后的点的坐标为(0,1),第二次碰撞后的点的坐标为(3,4),第三次碰撞后的点的坐标为(7,0),第四次碰撞后的点的坐标为(8,1),第五次碰撞后的点的坐标为(5,4),第六次碰撞后的点的坐标为(1,0),…,∵2021÷6=336…5,∴小球第2021次碰到球桌边时,小球的位置是(5,4),故选:B.【点睛】本题考查了坐标确定位置,解答本题的关键是明确题意,发现点的坐标位置的变化特点,利用数形结合的思想解答.九、填空题9.【分析】设这个正方形的边长为x(x>0),由题意得x2=3,根据算术平方根的定义解决此题.【详解】解:设这个正方形的边长为x(x>0).由题意得:x2=3.∴x=.故答案为:.【点睛【分析】设这个正方形的边长为x(x>0),由题意得x2=3,根据算术平方根的定义解决此题.【详解】解:设这个正方形的边长为x(x>0).由题意得:x2=3.∴x【点睛】本题主要考查正方形的面积以及算术平方根,熟练掌握算术平方根的定义是解决本题的关键.十、填空题10.【分析】根据关于y轴对称的点的坐标特征,即可求出m的值.【详解】解:∵A(m,-3)与B(4,-3)关于y轴对称,∴m=-4,故答案为:-4.【点睛】本题主要考查了关于y轴对称点的坐解析:4【分析】根据关于y轴对称的点的坐标特征,即可求出m的值.【详解】解:∵A(m,-3)与B(4,-3)关于y轴对称,∴m=-4,故答案为:-4.【点睛】本题主要考查了关于y轴对称点的坐标,解题的关键在于能够熟练掌握,如果两点关于y 轴对称,那么这两个点的横坐标互为相反数,纵坐标相等.十一、填空题11.101【分析】直接利用三角形内角和定理得出∠ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案.【详解】∵在△ABC中,∠A=50°,∠C=72°,∴∠ABC=180°−50°解析:101【分析】直接利用三角形内角和定理得出∠ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案.【详解】∵在△ABC中,∠A=50°,∠C=72°,∴∠ABC=180°−50°−72°=58°,∵BD是△ABC的一条角平分线,∴∠ABD=29°,∴∠ADB=180°−50°−29°=101°.故答案为:101.【点睛】此题考查三角形内角和定理,解题关键在于掌握其定理.十二、填空题12.126°【分析】根据两直线平行同位角相等得到,,结合邻补角的和180°解题即可.【详解】BA//DE,BC//EF,,∠B=54°,,故答案为:126°.【点睛】本题考查解析:126°【分析】根据两直线平行同位角相等得到CGE B ∠=∠,DGC E ∠=∠,结合邻补角的和180°解题即可.【详解】BA //DE ,BC //EF ,CGE B ∴∠=∠,DGC E ∠=∠∠B =54°,54CGE B ∴∠=∠=︒180CGE DGC ∠+∠=︒18054126DGC ∴∠=︒-︒=︒126E ∴∠=︒,故答案为:126°.【点睛】本题考查平行线的性质,是重要考点,难度较易,掌握相关知识是解题关键. 十三、填空题13.15°【分析】利用“两直线平行,同旁内角互补”可求出∠BFE ,利用折叠的性质求出∠BFC 的度数,再利用角的和差求出∠CFE .【详解】解:∵AE ∥BF ,∴∠BFE=180°-∠AEF=65°解析:15°【分析】利用“两直线平行,同旁内角互补”可求出∠BFE ,利用折叠的性质求出∠BFC 的度数,再利用角的和差求出∠CFE .【详解】解:∵AE ∥BF ,∴∠BFE =180°-∠AEF =65°,∵2∠BFE +∠BFC =180°,∴∠BFC =180°-2∠BFE =50°,∴∠CFE =∠BFE -∠BFC =15°,故答案为:15°.【点睛】本题考查了平行线的性质、折叠的性质以及角的计算,通过角的计算,求出∠BFE 的度数是解题的关键.十四、填空题14.4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4. 故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.十五、填空题15.或;【分析】根据点A 到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.【详解】解:∵点A 到两坐标轴的距离相等,且点A 为,∴,∴或,解得:或,∴点A 的坐标为:或;故答案为:或解析:()4,4--或()8,8-;【分析】根据点A 到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.【详解】解:∵点A 到两坐标轴的距离相等,且点A 为()6,23m m --, ∴623m m -=-,∴623m m -=-或6(23)m m -=--,解得:2m =或2m =-,∴点A 的坐标为:()4,4--或()8,8-;故答案为:()4,4--或()8,8-;【点睛】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x 轴上点的纵坐标为0,在y 轴上点的横坐标为0;记住各象限点的坐标特点.十六、填空题16.【分析】观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标;【详解】,,,,,故答案为:【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.解析:(4040,2020)【分析】观察点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,点的横坐标为22n -,纵坐标为1n -,据此即可求得2021A 的坐标;【详解】()10,0A ,()22,1A ,()34,2A ,()46,3A ,,(22,1)n A n n --,∴2021(4040,2020)A故答案为:(4040,2020)【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.十七、解答题17.(1)0 ;(2)2【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;试题解析:①原式=2+2-4=0解析:(1)0 ;(2)【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;试题解析:①原式=2+2-4=0②原式==十八、解答题18.(1);(2)【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1)∵,∴,∴;(2)∵,∴,∴.【点睛】本题主要考查解析:(1)117x=±;(2)5x=【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1)∵21210 49x-=,∴212149x=,∴117x=±;(2)∵()3164x-=,∴14x-=,∴5x=.【点睛】本题主要考查了平方根和立方根,解题的关键在于能够熟练掌握平方根和立方根的求解方法.十九、解答题19.同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可.【详解】证明:∵∠1+∠2=180解析:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可.【详解】证明:∵∠1+∠2=180°(已知),∴AD∥EF(同旁内角互补,两直线平行),∴∠3=∠D(两直线平行,同位角相等),又∵∠3=∠A(已知),∴∠D=∠A(等量代换),,∴AB∥CD(内错角相等,两直线平行),∴∠B=∠C(两直线平行,内错角相等).故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解本题的关键.二十、解答题20.(1),;(2)见解析;(3)向右5个单位,再向上5个单位【分析】(1)观察平面直角坐标系得:公交车站在 轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离 轴2个单位,距离 轴3个单位,即解析:(1)()100,0-,()300,200-;(2)见解析;(3)向右5个单位,再向上5个单位【分析】(1)观察平面直角坐标系得:公交车站在x 轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离x 轴2个单位,距离y 轴3个单位,即可求解;(2)公园在第二象限内,距离x 轴2个单位,距离y 轴3个单位;书店在第一象限内,距离x 轴1个单位,距离y 轴1个单位;即可解答;(3)将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置,即可.【详解】解:(1)观察平面直角坐标系得:公交车站在x 轴负半轴距离坐标原点1个单位,故公交车站的坐标是()100,0-;宠物店在第四象限内,距离x 轴2个单位,距离y 轴3个单位,故宠物店的坐标是()300,200-;(2)∵公园()300,200-,书店()100,100∴公园在第二象限内,距离x 轴2个单位,距离y 轴3个单位;书店在第一象限内,距离x 轴1个单位,距离y 轴1个单位;位置如图所示:(3))将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置.【点睛】本题主要考查了平面直角坐标系,用坐标来表示点的位置,根据位置写出点的坐标,熟练掌握平面直角坐标系内每个象限内点的坐标的特征是解题的关键.二十一、解答题21.(1)2,;(2).【分析】(1)利用求解;(2)由于,则,,然后计算.【详解】解:(1)的整数部分是2,小数部分是;(2),而整数部分是,小数部分是,,,.【点睛】本题考查了解析:(1)2,52-;(2)43-.【分析】(1)利用253<<求解;(2)由于132<<,则3x =,23331y =+-=-,然后计算x y -.【详解】解:(1)5的整数部分是2,小数部分是52-;(2)132<<,而23+整数部分是x ,小数部分是y ,3x ∴=,23331y =+-=-,3(31)33143x y .【点睛】本题考查了估算无理数的大小,熟悉相关性质是解题得关键.二十二、解答题22.(1)S=13,边长为 ;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a 和b 的值,然后得出答案.解析:(1)S=13,边长为 13;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a 和b 的值,然后得出答案.详解:解:(1)S=25-12=13, 边长为 ,(2)a=3,b= -3 原式=9+-3-=6.点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长.二十三、解答题23.(1) ;(2)① ;②【分析】(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;(2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义解析:(1)1902a ︒- ;(2)①1454a ︒+ ;②50︒ 【分析】(1)由平行线的性质得到4'B FC a ∠=∠=,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;(2) ①由(1)知,1902BFE a ∠=︒-,根据平行线的性质得到1BFE C'GB 902a ∠=∠=︒- ,再由折叠的性质及平角的定义求解即可;②由(1)知,∠BFE = 19012EFB '∠=︒-∠,由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,再根据条件和折叠的性质得到''11402190B FC FGC +=∠+∠=∠︒-∠︒,即可求解.【详解】解:(1)如图,由题意可知'//'A E B F ,∴14a ∠=∠=,∵//AD BC ,∴4'B FC a ∠=∠=,180BFB a '∴∠=︒-,∴由折叠可知1129022BFE BFB a '∠=∠=∠=︒-.(2)①由题(1)可知1902BFE a ∠=︒- , ∵//'EF C G ,1902BFE C'GB a ∴∠=∠=︒-,再由折叠可知: 113180*********HGC C GB a a ⎛⎫∠+∠=︒-∠=︒-︒-=︒+ ⎪⎝⎭', 13454HGC a ∴∠=∠=︒+;②由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,由(1)知19012BFE ∠=︒-∠, 11802180290112B FC BFE ⎛⎫'∴∠=︒-∠=︒-︒-∠=∠ ⎪⎝⎭, 又3∠的度数比1∠的度数大20︒,∴3=1+20∠∠︒,()18023180212014021FGC '∴∠=︒-∠=︒-∠+︒=︒-∠,''11402190B FC FGC +=∴∠+∠=∠︒-∠︒,1=50∴∠︒.【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键. 二十四、解答题24.(1);(2)①或;②秒或或秒【分析】(1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果;(2)①当时,分两种情况,Ⅰ当在和之间,Ⅱ当在和之间,由,计算出的运动时间解析:(1)30;(2)①2803︒或403︒;②185秒或5411或9011秒 【分析】(1)通过延长PG 作辅助线,根据平行线的性质,得到90∠=︒PGE ,再根据外角的性质可计算得到结果;(2)①当20MEP ∠=︒时,分两种情况,Ⅰ当ME 在AE 和EP 之间,Ⅱ当ME 在EP 和EB 之间,由20MEP ∠=︒,计算出EM 的运动时间t ,根据运动时间可计算出FPN ∠,由已知120FPE ∠=︒可计算出EPN ∠的度数;②根据题意可知,当//EM PN 时,分三种情况,Ⅰ射线PN 由PF 逆时针转动,//EM PN ,根据题意可知15AEM t ∠=︒,40FPN t ∠=︒,再平行线的性质可得AEM AHP ∠=∠,再根据三角形外角和定理可列等量关系,求解即可得出结论;Ⅱ射线PN 垂直AB 时,再顺时针向PF 运动时,//EM PN ,根据题意可知,15AEM t ∠=︒,//ME PN ,15GHP t ∠=︒,可计算射线PN 的转动度数1809015t ︒+︒-︒,再根据PN 转动可列等量关系,即可求出答案;Ⅲ射线PN 垂直AB 时,再顺时针向PF 运动时,//EM PN ,根据题意可知,15AEM t ∠=︒,940()2GPN t ∠=-︒,根据(1)中结论,30PEG ∠=︒,60PGE ∠=,可计算出PEM ∠与EPN ∠代数式,再根据平行线的性质,可列等量关系,求解可得出结论.【详解】解:(1)延长FP 与AB 相交于点G ,如图1,PF CD ⊥,90PFD PGE ∴∠=∠=︒,EPF PGE AEP ∠=∠+∠,1209030AEP EPF PGE ∴∠=∠-∠=︒-︒=︒;(2)①Ⅰ如图2,30AEP ∠=︒,20MEP ∠=︒,10AEM ∴∠=︒,∴射线ME 运动的时间102153t ==(秒), ∴射线PN 旋转的角度2804033FPN ︒∠=⨯︒=, 又120EPF ∠=︒,8028012033EPN EPF EPN ︒︒∴∠=∠-∠=︒-=;Ⅱ如图3所示,30AEP ∠=︒,20MEP ∠=︒,50AEM ∴∠=︒,∴射线ME 运动的时间5010153t ==(秒), ∴射线PN 旋转的角度104004033FPN ︒∠=⨯︒=, 又120EPF ∠=︒,4004012033EPN FPN EPF ︒︒∴∠=∠-∠=-︒=; EPN ∴∠的度数为2803︒或403︒;②Ⅰ当PN 由PF 运动如图4时//EM PN ,PN 与AB 相交于点H ,根据题意可知,经过t 秒,15AEM t ∠=︒,40FPN t ∠=︒,//EM PN ,15AEM AHP t ∴∠=∠=︒,又=FPN PGH PHA ∠∠+∠,409015t t ∴︒=︒+︒,解得185t =(秒);Ⅱ当PN 运动到PG ,再由PG 运动到如图5时//EM PN ,PN 与AB 相交于点H ,根据题意可知,经过t 秒,15AEM t ∠=︒,//EM PN ,15GHP t ∴∠=︒,9015GPH t ∠=︒-︒,PN ∴运动的度数可得,18040GPH t ︒+∠=︒, 解得5411t =;Ⅲ当PN 由PG 运动如图6时,//EM PN ,根据题意可知,经过t 秒,15AEM t ∠=︒,40180GPN t ∠=-︒,30AEP ∠=︒,60EPG ∠=︒,1530PEM t ∴∠=︒-︒,24040EPN t ∠=︒-,又//EM PN ,180PEM EPN ∴∠+∠=︒,153040240180t t ∴︒-︒+-︒=︒,解得9011t =(秒), 当t 的值为185秒或5411或9011秒时,//EM PN .【点睛】本题主要考查平行线性质,合理添加辅助线和根据题意画出相应的图形时解决本题的关键.二十五、解答题25.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=∠COA ,从而得出答案;(2解析:(1)40°;(2):OBC OFC ∠∠的值不变,比值为12;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=12∠COA ,从而得出答案;(2)根据平行线的性质,即可得出∠OBC=∠BOA ,∠OFC=∠FOA ,再根据∠FOA=∠FOB+∠AOB=2∠AOB ,即可得出∠OBC :∠OFC 的值为1:2.(3)设∠AOB=x ,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x ,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC ,然后利用三角形的内角和等于180°列式表示出∠OBA ,然后列出方程求解即可.【详解】(1)∵CB ∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB ,OE 平分∠COF∴∠FOB+∠EOF=12(∠AOF+∠COF )=12∠COA=40°;∴∠EOB=40°;(2)∠OBC :∠OFC 的值不发生变化∵CB ∥OA∴∠OBC=∠BOA ,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)当平行移动AB至∠OBA=60°时,∠OEC=∠OBA.设∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【点睛】本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.。
人教版七年级数学下册期末综合复习题含答案图文一、选择题1.25的平方根是()A .±5B .5C .±5D .﹣52.下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A . B . C . D . 3.下列各点中,在第四象限的是( )A .3,0B .()2,5-C .()5,2--D .()2,3- 4.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个 5.如图,////AF BE CD ,若140∠=︒,250∠=︒,3120∠=︒,则下列说法正确的是( )A .100F ∠=︒B .140C ∠=︒ C .130A ∠=︒D .60D ∠=︒ 6.下列说法正确的是( )A .23π-是分数 B .互为相反数的数的立方根也互为相反数 C .25xy -的系数是15- D .64的平方根是4±7.①如图1,//AB CD ,则180A E C ∠+∠+∠=︒;②如图2,//AB CD ,则–P A C ∠=∠∠;③如图3,//AB CD ,则1E A ∠=∠+∠;④如图4,直线////AB CD EF ,点O 在直线EF 上,则–180∠∠+∠=︒αβγ.以上结论正确的个数是( )A .1个B .2个C .3个D .4个8.如图,一个蒲公英种子从平面直角坐标系的原点O 出发,向正东走3米到达点1A ,再向正北方向走6米到达点2A ,再向正西方向走9米到达点3A ,再向正南方向走12米到达点4A ,再向正东方向走15米到达点5A ,以此规律走下去,当蒲公英种子到达点10A 时,它在坐标系中坐标为( )A .(12,12)--B .(15,18)C .(15,12)-D .(15,18)-九、填空题9.已知3x ++|3x +2y ﹣15|=0,则x y +=_____.十、填空题10.点A (2,4)关于x 轴对称的点的坐标是_____.十一、填空题11.如图,在ABC 中,70A ∠=︒,ABC ∠的角平分线与ABC 的外角角平分线交于点E ,则E ∠=__________度.十二、填空题12.已知//AB CD ,ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,请直接写出α、β、γ的数量关系________.十三、填空题13.如图,将ABC 沿着AC 边翻折得到AB 1C ,连接BB 1交AC 于点E ,过点B 1作B 1D //AC 交BC 延长线于点D ,交BA 延长线于点F ,连接DA ,若∠CBE =45°,BD =6cm ,则ADB 1的面积为_________.十四、填空题14.规定,()221x f x x =+,例如:()223931310f ==+,221113310113f ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫÷ ⎪⎝⎭,通过观察,那么()()()()11111239910099982f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+++++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()100f +=______. 十五、填空题15.如果点P (x ,y )的坐标满足x +y =xy ,那么称点P 为“美丽点”,若某个“美丽点”P 到y 轴的距离为2,则点P 的坐标为___.十六、填空题16.如图所示,已知A 1(1,0),A 2(1,﹣1)、A 3(﹣1,﹣1),A 4(﹣1,1),A 5(2,1),…,按一定规律排列,则点A 2021的坐标是________.十七、解答题17.计算:(1)()4129-⨯()432054⎛⎫-⨯- ⎪⎝⎭十八、解答题18.求下列各式中的x 的值.(1)21(1)24x -=; (2)32(2)160x --=.十九、解答题19.填充证明过程和理由.如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B +∠BCD =180°(已知),∴AB ∥CD ( ).∴∠B = ( ).又∵∠B =∠D (已知),∴∠D =∠ .∴AD ∥BE ( ).∴∠E =∠DFE ( ).二十、解答题20.如图,每个小正方形的边长为1,利用网格点画图和无刻度的直尺画图(保留画图痕迹):(I )在方格纸内将三角形ABC 经过一次平移后得到三角形A B C ''',图中标出了点B 的对应点B ',画出三角形A B C ''';(2)过点A 画线段AD 使//AD BC 且AD BC =;(3)图中AD 与C B ''的关系是______;(4)点E 在线段AD 上,4CE =,点H 是直线CE 上一动点线段BH 的最小值为______. 二十一、解答题21.已知a 172的整数部分,b 173的小数部分.(1)求a ,b 的值;(2)求()()324a b -++的平方根. 二十二、解答题22.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图AB BC将它剪开后,重新拼成一个大正方形ABCD.2的虚线,(1)基础巩固:拼成的大正方形ABCD的面积为______,边长AD为______;(2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的1-重合.以点B为圆心,BC边为半径画圆弧,交数轴于点E,则点E表示的数是______;(3)变式拓展:⨯的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的①如图4,给定55正方形吗?若能,请在图中画出示意图;②请你利用①中图形在数轴上用直尺和圆规.....表示面积为13的正方形边长所表示的数.二十三、解答题23.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,①试判断PM与MN的位置关系,并说明理由;②若PA 平分∠EPM ,∠MNQ =20°,求∠EPB 的度数.(提示:过N 点作AB 的平行线) (2)点M ,N 分别在直线CD ,EF 上时,请你在备用图中画出满足PM ⊥MN 条件的图形,并直接写出此时∠APM 与∠QMN 的关系.(注:此题说理时不能使用没有学过的定理) 二十四、解答题24.如图1所示:点E 为BC 上一点,∠A =∠D ,AB ∥CD(1)直接写出∠ACB 与∠BED 的数量关系;(2)如图2,AB ∥CD ,BG 平分∠ABE ,BG 的反向延长线与∠EDF 的平分线交于H 点,若∠DEB 比∠GHD 大60°,求∠DEB 的度数;(3)保持(2)中所求的∠DEB 的度数不变,如图3,BM 平分∠EBK ,DN 平分∠CDE ,作BP ∥DN ,则∠PBM 的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角).二十五、解答题25.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠= n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.【参考答案】一、选择题1.A解析:A【分析】根据平方根的定义,进行计算求解即可.【详解】解:∵(±5)2=25∴25的平方根±5.故选A.【点睛】本题主要考查了平方根的定义,解题的关键在于能够熟练掌握平方根的定义.2.B【分析】根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.【详解】A,C,D选项中的图案不能通过平移得到,B选项中的图案通过平移后可以得到.故选B.解析:B【分析】根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.【详解】A,C,D选项中的图案不能通过平移得到,B选项中的图案通过平移后可以得到.故选B.【点睛】本题考查了平移的性质和平移的应用等有关知识,熟练掌握平移的性质是解答本题的关键. 3.B【分析】根据第四象限的点的横坐标是正数,纵坐标是负数解答.【详解】解:A、(3,0)在x轴上,不合题意;B、(2,-5)在第四象限,符合题意;C、(-5,-2)在第三象限,不合题意;D、(-2,3),在第二象限,不合题意.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确; ∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确; 过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C .【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.5.D【分析】根据平行线的性质进行求解即可得到答案.【详解】解:∵BE ∥CD∴∠ 2+∠C =180°,∠ 3+∠D =180°∵∠ 2=50°,∠ 3=120°∴∠C =130°,∠D =60°又∵BE ∥AF ,∠ 1=40°∴∠A =180°-∠ 1=140°,∠F =∠ 3=120°故选D.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.6.B【分析】根据分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,即可得到答案.【详解】 ∵23π-是无理数, ∴A 错误,∵互为相反数的数的立方根也互为相反数,∴B 正确, ∵25xy -的系数是52-, ∴C 错误,∵64的平方根是±8,∴D 错误,故选B .【点睛】本题主要考查分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,掌握上述定义和性质,是解题的关键.7.B【分析】如图1所示,过点E 作EF //AB ,由平行线的性质即可得到∠A +∠AEF =180°,∠C +∠CEF =180°,则∠A +∠C +∠AEC =360°,故①错误;如图2所示,过点P 作PE //AB ,由平行线的性质即可得到∠A =∠APE =180°,∠C =∠CPE ,再由∠APC =∠APE =∠CPE ,即可得到∠APC =∠A -∠C ,即可判断②;如图3所示,过点E 作EF //AB ,由平行线的性质即可得到∠A +∠AEF =180°,∠1=∠CEF ,再由∠AEF +∠CEF =∠AEC ,即可判断③ ;由平行线的性质即可得到=180BOE α∠+∠,180COF γ∠+=∠,再由180BOE COF β∠+∠+∠=,即可判断④.【详解】解:①如图所示,过点E 作EF //AB ,∵AB //CD ,∴AB //CD //EF ,∴∠A +∠AEF =180°,∠C +∠CEF =180°,∴∠A +∠AEF +∠C +∠CEF =360°,又∵∠AEF +∠CEF =∠AEC ,∴∠A +∠C +∠AEC =360°,故①错误;②如图所示,过点P 作PE //AB ,∵AB //CD ,∴AB //CD //PE ,∴∠A =∠APE =180°,∠C =∠CPE ,又∵∠APC =∠APE =∠CPE ,∴∠APC =∠A -∠C ,故②正确;③如图所示,过点E 作EF //AB ,∵AB //CD ,∴AB //CD //EF ,∴∠A +∠AEF =180°,∠1=∠CEF ,又∵∠AEF +∠CEF =∠AEC ,∴180°-∠A +∠1=∠AEC ,故③错误;④∵////AB CD EF ,∴=180BOE α∠+∠,180COF γ∠+=∠,∵180BOE COF β∠+∠+∠=,∴180180180αβγ-∠+∠+-∠=,∴–180αβγ∠∠+∠=,故④正确;故选B【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质8.B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:An ﹣1An =3n ,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可解析:B【分析】由题意可知:OA 1=3;A 1A 2=3×2;A 2A 3=3×3;可得规律:A n ﹣1A n =3n ,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可知:OA1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18•••,A9A10=30,∴A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(﹣6,6),A4点坐标为(﹣6,﹣6),A5点坐标为(9,﹣6),A6点坐标为(9,12),以此类推,A9点坐标为(15,﹣12),所以A10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【点睛】本题主要考查了坐标确定位置的运用,解题的关键是发现规律,利用规律解决问题,解题时注意:各象限内点P(a,b)的坐标特征为:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.九、填空题9.3【分析】直接利用非负数的性质得出x,y的值进而得出答案.【详解】∵+|3x+2y﹣15|=0,∴x+3=0,3x+2y-15=0,∴x=-3,y=12,∴=.故答案是:3.【点睛解析:3【分析】直接利用非负数的性质得出x,y的值进而得出答案.【详解】∵+|3x+2y﹣15|=0,∴x+3=0,3x+2y-15=0,∴x=-3,y=12,∴3.故答案是:3.【点睛】考查了非负数的性质,正确得出x,y的值是解题关键.十、填空题10.(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛解析:(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛】此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律.十一、填空题11.35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠EBC表示出∠ECD,再利用∠E与∠EBC表示出∠ECD,然后整理即可得到∠A与∠E的关系,进而可求出∠E.【详解】解解析:35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠EBC表示出∠ECD,再利用∠E与∠EBC表示出∠ECD,然后整理即可得到∠A与∠E的关系,进而可求出∠E.【详解】解:∵BE和CE分别是∠ABC和∠ACD的角平分线,∴∠EBC=12∠ABC,∠ECD=12∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠ECD =12(∠A +∠ABC )=12∠A +∠ECD ,∵∠ECD 是△BEC 的一外角,∴∠ECD =∠EBC +∠E ,∴∠E =∠ECD -∠EBC =12∠A +∠EBC -∠EBC =12∠A =12×70°=35°,故答案为:35.【点睛】本题考查了三角形的外角性质与内角和定理,角平分线的定义,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键. 十二、填空题12.(上式变式都正确)【分析】过点E 作,过点F 作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图解析:90γαβ+=︒+(上式变式都正确)【分析】过点E 作//EM AB ,过点F 作//FN AB ,可得出//////AB EM FN CD (根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图所示,过点E 作//EM AB ,过点F 作//FN AB ,∵//AB CD ,∴//////AB EM FN CD ,∵//AB EM ,∴ABE BEM ∠=∠,∵//EM FN ,∴MEF EFN ∠=∠,∵//NF CD ,∴NFC FCD ∠=∠,∴ABE EFN NFC BEM MEF FCD ∠+∠+∠=∠+∠+∠,∴ABE EFC BEF FCD ∠+∠=∠+∠,∵ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,∴90αγβ+=︒+,故答案为:90αγβ+=︒+.【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键.十三、填空题13.cm²【分析】根据翻折变换的性质可知AC 垂直平分BB1,且B1D 平行AC ,得到AC 为三角形ADB 中位线,从而求解.【详解】解:根据翻折变换的性质可知AC 垂直平分BB1,∵B1D ∥AC ,∴ 解析:92cm ²【分析】根据翻折变换的性质可知AC 垂直平分BB 1,且B 1D 平行AC ,得到AC 为三角形ADB 中位线,从而求解.【详解】解:根据翻折变换的性质可知AC 垂直平分BB 1,∵B 1D ∥AC ,∴AC 为三角形ADB 中位线,∴BC =CD =12BD =3cm , 在Rt △BCE 中,∠CBE =45°,BC =3cm ,∴CE 2+BE 2=BC 2,解得BE =CE . ∴EB1=BE ∵CE 为△BDB 1中位线,∴DB1=2CE ,△ADB 1的高与EB 1相等,∴S△ADB 1=12×DB 1×EB 1=1292cm ², 故答案为:92cm ². 【点睛】本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC 为△ADB 的中位线从而得出答案.十四、填空题14.【分析】由题干得到,将原式进行整理化简即可求解.【详解】∵,∴,∴.【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键. 解析:1992【分析】由题干得到()11⎛⎫+= ⎪⎝⎭f n f n ,将原式进行整理化简即可求解. 【详解】∵()1913131010f f ⎛⎫+=+= ⎪⎝⎭, ∴()()()()111,111,12f n f f f f n ⎛⎫+=+=∴= ⎪⎝⎭, ∴()()()1199100110099f f f f f ⎛⎫⎛⎫++⋅⋅⋅+++ ⎪ ⎪⎝⎭⎝⎭ 119999112=+=+. 【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键.十五、填空题15.(2,2),(-2,)【分析】直接利用某个“美丽点”到y 轴的距离为2,得出x 的值,进而求出y 的值求出答案.【详解】解:∵某个“美丽点”到y轴的距离为2,∴x=±2,∵x+y=xy,∴当解析:(2,2),(-2,23)【分析】直接利用某个“美丽点”到y轴的距离为2,得出x的值,进而求出y的值求出答案.【详解】解:∵某个“美丽点”到y轴的距离为2,∴x=±2,∵x+y=xy,∴当x=2时,则y+2=2y,解得:y=2,∴点P的坐标为(2,2),当x=-2时,则y-2=-2y,解得:y=23,∴点P的坐标为(-2,23),综上所述:点P的坐标为(2,2)或(-2,23).故答案为:(2,2)或(-2,23).【点睛】此题主要考查了点的坐标,正确分类讨论是解题关键.十六、填空题16.(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1解析:(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1,纵坐标依次加﹣1,在第四象限的点的横坐标依次加1,纵坐标依次加﹣1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A 2021的坐标.【详解】解:根据题意得4的整数倍的各点如A 4,A 8,A 12等点在第二象限,∵2021÷4=505…1;∴A 2021的坐标在第一象限,横坐标为|(2021﹣1)÷4+1|=506;纵坐标为505,∴点A 2021的坐标是(506,505).故答案为:(506,505).【点睛】本题考查了学生阅读理解及总结规律的能力,解决本题的关键是找到所求点所在的象限,难点是得到相应的计算规律.十七、解答题17.(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是解析:(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)()412-⨯ (2)()()()434320=-20--20=-1615=-15454⎛⎫-⨯-⨯⨯+ ⎪⎝⎭【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.十八、解答题18.(1)或;(2).【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x ﹣2)3=8,开立方根得出x ﹣2=2,求出即可.【详解】解:(1),,,或解析:(1)52x =或12x =-;(2)4x =. 【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x ﹣2)3=8,开立方根得出x ﹣2=2,求出即可.【详解】解:(1)29(1)4x -=, 312x -=±, 312x =±, 52x =或12x =-; (2)32(2)160x --=,32(2)16x -=,3(2)8x -=,22x -=,4x =.【点睛】本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x 2=a (a ≥0)或x 3=b 的形式,再根据定义开平方或开立方,注意开平方时,有两个解.十九、解答题19.同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B =∠DCE ,求出 解析:同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B =∠DCE ,求出∠DCE =∠D ,根据平行线的判定得出AD ∥BE ,根据平行线的性质得出即可.【详解】证明:∵∠B +∠BCD =180°( 已知 ),∴AB ∥CD (同旁内角互补,两直线平行),∴∠B =∠DCE (两直线平行,同位角相等),又∵∠B =∠D (已知 ),∴∠D =∠DCE (等量代换),∴AD ∥BE (内错角相等,两直线平行),∴∠E =∠DFE (两直线平行,内错角相等).故答案为:同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查平行线的判定和性质,掌握同旁内角互补,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等是解题的关键.二十、解答题20.(1)见解析;(2)见解析;(3),AD ∥;(4)【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A 画线段AD ∥BC ,AD=BC ,即可;(3)由平移的性质可得,∥BC ,,从而可以解析:(1)见解析;(2)见解析;(3)AD B C ''=,AD ∥B C '';(4)154【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A 画线段AD ∥BC ,AD =BC ,即可;(3)由平移的性质可得B C BC ''=,B C ''∥BC ,,从而可以得到AD B C ''=,AD ∥B C ''; (4)根据点到直线的距离垂线段最短,可知当BH ⊥CE 时BH 最短,由此利用三角形面积公式求解即可.【详解】解:(1)如图所示,即为所求:(2)如图所示,即为所求:(3)平移的性质可得B C BC ''= ,B C ''∥BC ,由AD =BC ,AD ∥BC ,从而可以得到AD B C ''=,AD ∥B C '';故答案为:AD B C ''=,AD ∥B C '';(4)根据点到直线的距离垂线段最短,可知当BH ⊥CE 时BH 最短,如图所示:∵AD ∥BC , ∴1115==3134=222BCE ABC S S ⨯⨯+⨯⨯△△ , ∴115=22CE BH , ∴154BH =, ∴点H 是直线CE 上一动点线段BH 的最小值为154. 故答案为:154.【点睛】本题主要考查了平移作图,点到直线的距离垂线段最短,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.二十一、解答题21.(1)a=2,b=;(2)±3【分析】(1)首先估算出的范围,从而得到和的范围,可得a ,b 值;(2)将a ,b 的值代入计算,再求平方根即可.【详解】解:(1)∵,∴,∴,,∴a=2,b解析:(1)a =2,b 4;(2)±3【分析】(123的范围,可得a ,b 值; (2)将a ,b 的值代入计算,再求平方根即可.【详解】解:(1)∵< ∴45<,∴223<,132<<,∴a =2,b 314-;(2)()()324a b -++=())23424++- =9∴()()324a b -++的平方根为±3. 【点睛】此题主要考查了估算无理数的大小,平方根的定义,正确得出a ,b 的值是解题关键. 二十二、解答题22.(1)10,;(2);(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实解析:(1)10;(21;(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实数与数轴的关系可得结果;(3)以2×3的长方形的对角线为边长即可画出图形;(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.【详解】解:(1)∵图1中有10个小正方形,∴面积为10,边长AD(2)∵B 表示的数为-1,∴∴点E 1;(3)①如图所示:②∵正方形面积为13,∴边长为13,如图,点E表示面积为13的正方形边长.【点睛】本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.二十三、解答题23.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM+∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决.【详解】解:(1)①PM⊥MN,理由见解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ +∠QMN=90°,∴PM⊥MN;②过点N作NH∥CD,∵AB//CD,∴AB// NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,∴∠MNQ +∠MNH +∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度数为125°;(2)当点M,N分别在射线QC,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,∴∠APM +∠QMN=90°;当点M,N分别在射线QC,线段PQ上时,如图:∵PM ⊥MN ,AB //CD ,∴∠PMN =90°,∠APM =∠PMQ ,∴∠PMQ -∠QMN =90°,∴∠APM -∠QMN =90°;当点M ,N 分别在射线QD ,QF 上时,如图:∵PM ⊥MN ,AB //CD ,∴∠PMQ +∠QMN =90°,∠APM +∠PMQ =180°,∴∠APM +90°-∠QMN =180°,∴∠APM -∠QMN =90°;综上,∠APM +∠QMN =90°或∠APM -∠QMN =90°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.二十四、解答题24.(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥E 解析:(1) +180ACB BED ∠∠=︒;(2) 100︒;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出+180ACB BED ∠∠=︒;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥ES 推出BED ABE CDE ∠=∠+∠,再根据AB ∥TH ,AB ∥CD 推出GHD THD THB ∠=∠-∠,最后根据BED ∠比BHD ∠大60︒得出BED ∠的度数;(3)如图3,过点E 作EQ ∥DN ,根据DEB CDE ABE ∠=∠+∠得出βα-的度数,根据条件再逐步求出PBM ∠的度数.【详解】(1)如答图1所示,延长DE 交AB 于点F .AB ∥CD ,所以D EFB ∠=∠,又因为A D ∠=∠,所以A EFB ∠=∠,所以AC ∥DF ,所以ACB CED ∠=∠.因为+180CED BED ∠∠=︒,所以+180ACB BED ∠∠=︒.(2)如答图2所示,过点E 作ES ∥AB ,过点H 作HT ∥AB .设ABG EBG α∠=∠=,FDH EDH β∠=∠=,因为AB ∥CD ,AB ∥ES ,所以ABE BES ∠=∠,SED CED ∠=∠,所以21802BED BES SED ABE CDE αβ∠=∠+∠=∠+∠=+︒-,因为AB ∥TH ,AB ∥CD ,所以ABG THB ∠=∠,FDH DHT ∠=∠,所以GHD THD THB βα∠=∠-∠=-,因为BED ∠比BHD ∠大60︒,所以2+1802()60αββα︒---=︒,所以40βα-=︒,所以40BHD ∠=︒,所以100BED ∠=︒(3)不发生变化如答图3所示,过点E 作EQ ∥DN .设CDN EDN α∠=∠=,EBM KBM β∠=∠=,由(2)易知DEB CDE ABE ∠=∠+∠,所以2+1802100αβ︒-=︒,所以40βα-=︒, 所以180()180DEB CDE EDN EBM PBM PBM αβ∠=∠+∠+︒-∠+∠=+︒--∠, 所以80()40PBM βα∠=︒--=︒.【点睛】本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键.二十五、解答题25.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒,∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒;∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;(3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.。
人教版七年级数学下册期末复习含答案完整一、选择题1.16的算术平方根是() A .4B .4-C .2D .2-2.下列现象中是平移的是( ) A .翻开书中的每一页纸张 B .飞碟的快速转动 C .将一张纸沿它的中线折叠 D .电梯的上下移动 3.在平面直角坐标系中,点(3,1) P -所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限 4.在以下三个命题中,正确的命题有( )①a ,b ,c 是三条不同的直线,若a 与b 相交,b 与c 相交,则a 与c 相交 ②a ,b ,c 是三条不同的直线,若a ∥b ,b ∥c ,则a ∥c ③若∠α与∠β互补,∠β与∠γ互补,则∠a 与∠γ互补 A .②B .①②C .②③D .①②③5.如图,点E 在BA 的延长线上,能证明BE ∥CD 是( )A .∠EAD =∠B B .∠BAD =∠BCDC .∠EAD =∠ADC D .∠BCD +∠D =180°6.下列说法中正确的是( ) ①1的平方根是1;②5是25的算术平方根; ③(﹣4)2的平方根是﹣4; ④(﹣4)3的立方根是﹣4; ⑤0.01是0.1的一个平方根. A .①④ B .②④C .②③D .②⑤7.如图,将一块三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为( )A .55°B .45°C .40°D .35°8.如图,长方形BCDE 的各边分别平行于x 轴、y 轴,物体甲和物体乙由点()2,0A 同时出发,沿长方形BCDE 的边做环绕运动,物体甲按逆时针方向以每秒1个单位长度的速度匀速运动,物体乙按顺时针方向以每秒2个单位长度的速度匀速运动则两个物体运动后的第2021次相遇地点的坐标是( )A .()1,1--B .()2,0C .()1,1-D .()1,1-九、填空题9.已知 6.213=2.493, 62.13=7.882,则621.3=______________.十、填空题10.已知点P 关于x 轴的对称点为(,1)a -,关于y 轴的对称点为(2,)b -,那么点P 的坐标是________.十一、填空题11.如图,在ABC ∆中A α∠=,作ABC ∠的角平分线与ACB ∠的外角的角平分线交于点1A ;1A BC ∠的角平分线与1A CB ∠角平分线交于2A ,如此下去,则2021A ∠=__________.十二、填空题12.如图,直线 a//b ,若∠1 = 40°,则∠2 的度数是______.十三、填空题13.如图,把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若56EFG ∠=︒,则1∠=____________,2∠=____________.十四、填空题14.已知57a ,57b ,则2019()a b +=________.十五、填空题15.把所有的正整数按如图所示规律排列形成数表.若正整数6对应的位置记为()2,3,则()12,7对应的正整数是_______.第1列 第2列 第3列 第4列 ...... 第1行 1 2 5 10 ...... 第2行 4 3 6 11 ...... 第3行 9 8 7 12 ...... 第4行 16 15 14 13 (5)…………………………十六、填空题16.如图,一只跳蚤在第一象限及x 轴、y 轴上跳动,第一秒它从原点跳动到点(0,1),第二秒它从点(0,1)跳到点(1,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],每秒跳动一个单位长度,那么43秒后跳蚤所在位置的坐标是________.十七、解答题17.(1)计算:()()23121273-+-⨯--(2)解方程:123123x x+--= 十八、解答题18.求下列各式中x 的值. (1)4x 2=64; (2)3(x ﹣1)3+24=0.十九、解答题19.已知如图,//BC EF ,80AOB ∠=︒,1160C ∠+∠=︒,60B ∠=︒,求证:A D ∠=∠. 完成下面的证明过程: 证明:∵80AOB ∠=︒,∴80COD AOB ∠=∠=︒(______________________________) ∵____________________(已知)∴1180COD ∠+∠=︒.(______________________________) ∴1100∠=︒.∵1160C ∠+∠=︒,(已知) ∴1601______C ∠=︒-∠= 又∵60B ∠=︒, ∴B C ∠=∠,∴//AB CD ,(______________________________) ∴A D ∠=∠.(______________________________)二十、解答题20.如图,在平面直角坐标系中,三角形OBC 的顶点都在网格格点上,一个格是一个单位长度.(1)将三角形OBC 先向下平移3个单位长度,再向左平移2个单位长度(点1C 与点C 是对应点),得到三角形111O B C ,在图中画出三角形111O B C ; (2)直接写出三角形111O B C 的面积为____________.二十一、解答题21.阅读下面的文字,解答问题22的小数部分我们不可能全部212 21,将这个数减去其整数部分,差就是小数部分.479273, ∴7272)请解答:(157整数部分是 ,小数部分是 .(2)如果11的小数部分为a ,7的整数部分为b ,求|a ﹣b |+11的值. (3)已知:9+5=x +y ,其中x 是整数,且0<y <1,求x ﹣y 的相反数.二十二、解答题22.观察下图,每个小正方形的边长均为1, (1)图中阴影部分的面积是多少?边长是多少? (2)估计边长的值在哪两个整数之间.二十三、解答题23.如图,已知直线12//l l ,点A B 、在直线1l 上,点C D 、在直线2l 上,点C 在点D 的右侧,()80,2,ADC ABC n BE ∠=︒∠=︒平分,ABC DE ∠平分ADC ∠,直线BE DE 、交于点E .(1)若20n =时,则BED ∠=___________; (2)试求出BED ∠的度数(用含n 的代数式表示);(3)将线段BC 向右平行移动,其他条件不变,请画出相应图形,并直接写出BED ∠的度数.(用含n 的代数式表示)二十四、解答题24.(感知)如图①,//,40,130AB CD AEP PFD ︒︒∠=∠=,求EPF ∠的度数.小明想到了以下方法:解:如图①,过点P 作//PM AB ,140AEP ︒∴∠=∠=(两直线平行,内错角相等)//AB CD (已知),//∴PM CD (平行于同一条直线的两直线平行),2180PFD ︒∴∠+∠=(两直线平行,同旁内角互补). 130PFD ︒∠=(已知),218013050︒︒︒∴∠=-=(等式的性质). 12405090︒︒︒∴∠+∠=+=(等式的性质).即90EPF ︒∠=(等量代换).(探究)如图②,//AB CD ,50,120AEP PFC ︒︒∠=∠=,求EPF ∠的度数.(应用)如图③所示,在(探究)的条件下,PEA ∠的平分线和PFC ∠的平分线交于点G ,则G ∠的度数是_______________︒.二十五、解答题25.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图①,当AE ⊥BC 时,写出图中所有与∠B 相等的角: ;所有与∠C 相等的角: .(2)若∠C -∠B =50°,∠BAD =x °(0<x ≤45) . ① 求∠B 的度数;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.【参考答案】一、选择题 1.A 解析:A 【分析】根据算术平方根的意义求解即可. 【详解】解:16的算术平方根为4, 故选:A . 【点睛】本题考查了算术平方根,理解算术平方根的意义是解决问题的关键.2.D 【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现解析:D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现象;C:将一张纸沿它的中线折叠,这是轴对称现象;D:电梯的上下移动这是平移现象.故选:D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.B【分析】根据点的横纵坐标的符号可得所在象限.【详解】解:∵点P的横坐标是负数,纵坐标是正数,∴点P(-3,1)在第二象限,故选:B.【点睛】本题主要考查点的坐标,熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-).4.A【分析】根据直线与直线的位置关系、平行线的判定定理和同角的补角相等逐一判断即可.【详解】解:①a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c不一定相交,如下图所示,故①错误;②a,b,c是三条不同的直线,若a∥b,b∥c,则a∥c,故②正确;③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ相等,故③错误综上:正确的命题是②.故选A.【点睛】此题考查的是直线的位置关系的判断和补角的性质,掌握直线与直线的位置关系、平行线的判定定理和同角的补角相等是解决此题的关键.5.C【分析】根据平行线的判定定理对四个选项进行逐一判断即可.【详解】解:A、若∠EAD=∠B,则AD∥BC,故此选项错误;B、若∠BAD=∠BCD,不可能得到BE∥CD,故此选项错误;C、若∠EAD=∠ADC,可得到BE∥CD,故此选项正确;D、若∠BCD+∠D=180°,则BC∥AD,故此选项错误.故选:C.【点睛】本题考查了平行线的判定定理,熟练掌握平行线的判定方法是解题的关键.6.B【分析】根据平方根,算术平方根,立方根的概念进行分析,从而作出判断.【详解】解:1的平方根是±1,故说法①错误;5是25的算术平方根,故说法②正确;(-4)2的平方根是±4,故说法③错误;(-4)3的立方根是-4,故说法④正确;0.1是0.01的一个平方根,故说法⑤错误;综上,②④正确,故选:B.【点睛】本题考查了算术平方根,平方根,立方根的概念,理解相关定义,注意符号是解题关键.7.D【分析】先根据平行线的性质得到∠3=55°,再结合平角的定义即可得到结论.【详解】解:如图,∵AB//CD,∴∠1=∠3=55°,∵∠2+90°+∠3=180°,∴∠2=35°,故选:D.【点睛】本题考查了平行线的性质,平角的定义,熟记平行线的性质是解题的关键.8.A【分析】根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律.【详解】解:由已知,矩形周长为12,∵甲、乙速度分别为1单位/秒,2单位/秒则两个物体解析:A【分析】根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律.【详解】解:由已知,矩形周长为12,∵甲、乙速度分别为1单位/秒,2单位/秒则两个物体每次相遇时间间隔为12142秒,则两个物体相遇点依次为(-1,1)、(-1,-1)、(2,0),∵2021=3×673+2,∴第2021次两个物体相遇位置为(-1,-1),故选:A.【点睛】本题为平面直角坐标系内的动点坐标规律探究题,解答关键是找到两个物体相遇的位置的变化规律.九、填空题9.93【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开解析:93【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则24.93点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开方数每缩小100倍,则算术平方根就缩小10倍;对于立方根,当被开方数每扩大1000倍,则算术平方根就扩大10倍,当被开方数每缩小1000倍,则算术平方根就缩小10倍.十、填空题10.【分析】根据点坐标关于坐标轴的对称规律即可得.【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴解析:(2,1)【分析】根据点坐标关于坐标轴的对称规律即可得.【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变a-,则点P的纵坐标为1点P关于x轴的对称点为(,1)-,则点P的横坐标为2点P关于y轴的对称点为(2,)b则点P的坐标为(2,1)故答案为:(2,1).【点睛】本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键.十一、填空题11.【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可.【详解】解:设BC延长与点D,∵,的角平分线与的外角的角平分线交于点,∴,同 解析:202112α【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出A ∠与1A ∠,A ∠与2A ∠的关系,找出规律即可.【详解】解:设BC 延长与点D ,∵180ACD ACB ∠=︒-∠, ABC ∠的角平分线与ACD ∠的外角的角平分线交于点1A ,∴111180()A A BC ACB ACA ∠=︒-∠+∠+∠11180(180)22ABC ACB ACB =︒-∠-∠-︒-∠ 190()2ABC ACB =︒-∠+∠ 190(180)2A =︒-︒-∠ 12A =∠, 同理可得1221122A A A ∠=∠=∠, 2331122A A A ∠=∠=∠, ∴2021202112A A ∠=∠, ∵A α∠=, ∴2021202112A α∠=,故答案为:202112α.【点睛】 本题主要考查三角形外角的性质,角平分线的定义,三角形内角和等知识点,熟知以上知识点,找出角度之间的规律是解题的关键.十二、填空题12.140°【详解】解:∵a ∥b ,∠1=40°,∴∠3=∠1=40°,∴∠2=180°-∠3=180°-40°=140°.故答案为:140°.解析:140°【详解】解:∵a ∥b ,∠1=40°,∴∠3=∠1=40°,∴∠2=180°-∠3=180°-40°=140°.故答案为:140°.十三、填空题13.68°; 112°.【分析】首先根据折叠的性质和平行线的性质求∠FED 的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数.【详解】解:∵延折叠得到,解析:68°; 112°.【分析】首先根据折叠的性质和平行线的性质求∠FED 的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数.【详解】解:∵EDCF 延EF 折叠得到EMNF ,∴DEF MEF ∠=∠,∵//AD BC ,56EFG ∠=︒,∴56DEF EFG ∠=∠=︒(两直线平行,内错角相等),∴56MEF DEF ∠=∠=︒,∴1180180565668DEF MEF ∠=︒-∠-∠=︒-︒-︒=︒,又∵//AD BC ,∴12180∠+∠=︒,∴2180118068112∠=︒-∠=︒-︒=︒.综上168∠=︒,2112∠=︒.故答案为:68°;112°.【点睛】本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键.十四、填空题14.1【分析】根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果.【详解】解析:1【分析】根据4<7<9可得,2<3,从而有7<<8,由此可得出7,小数部分a用b的值,再将a,b的值代入所求式子即可得出结果.【详解】解:∵4<7<9,∴23,∴-3<<-2,∴7<<8,2<3,∴7,2,∴,∴2019+=12019=1.()a b故答案为:1.【点睛】此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键.十五、填空题15.138【分析】根据表格中的数据,以及正整数6对应的位置记为,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n解析:138【分析】2,3,可得表示方法,观察出1行1列根据表格中的数据,以及正整数6对应的位置记为()数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,由此进一步解决问题.【详解】2,3,解:∵正整数6对应的位置记为()即表示第2行第3列的数,12,7表示第12行第7列的数,∴()由1行1列的数字是12-0=12-(1-1)=1,2行2列的数字是22-1=22-(2-1)=3,3行3列的数字是32-2=32-(3-1)=7,…n行n列的数字是n2-(n-1)=n2-n+1,∴第12行12列的数字是122-12+1=133,∴第12行第7列的数字是138,故答案为:138.【点睛】此题考查观察分析归纳总结顾虑的能力,解答此题的关键是找出两个规律,即n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,此题有难度.十六、填空题16.(5,6)【分析】根据题意判断出跳蚤跳到(n,n)位置用时n(n+1)秒,然后根据43秒时n 是偶数,即可判断出所在位置的坐标.【详解】解:跳蚤跳到(1,1)位置用时1×2=2秒,下一步向下跳解析:(5,6)【分析】根据题意判断出跳蚤跳到(n,n)位置用时n(n+1)秒,然后根据43秒时n是偶数,即可判断出所在位置的坐标.【详解】解:跳蚤跳到(1,1)位置用时1×2=2秒,下一步向下跳动;跳到(2,2)位置用时2×3=6秒,下一步向左跳动;跳到(3,3)位置用时3×4=12秒,下一步向下跳动;跳到(4,4)位置用时4×5=20秒,下一步向左跳动;…由以上规律可知,跳蚤跳到(n,n)位置用时n(n+1)秒,当n为奇数时,下一步向下跳动;当n为偶数时,下一步向左跳动;∴第6×7=42秒时跳蚤位于(6,6)位置,下一步向左跳动,则第43秒时,跳蚤需从(6,6)向左跳动1个单位到(5,6),故答案为:(5,6).【点睛】此题考查了点的坐标问题,解题的关键是读懂题意,能够正确确定点运动的规律,从而可以得到到达每个点所用的时间.十七、解答题17.(1);(2)x=【分析】(1)先算乘方、绝对值和开方,再算乘法,最后算加减;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:(1)==解析:(1)19-;(2)x =79【分析】(1)先算乘方、绝对值和开方,再算乘法,最后算加减;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:(1)()312123-+-⨯- =()181273-+-⨯- =847---=19-;(2)123123x x +--=, 去分母,可得:3(x +1)-6=2(2-3x ),去括号,可得:3x +3-6=4-6x ,移项,可得:3x +6x =4-3+6,合并同类项,可得:9x =7,系数化为1,可得:x =79. 【点睛】此题主要考查了实数的混合运算,解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.十八、解答题18.(1)x=±4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可.【详解】解:(1)4x2=64,∴x2=16,∴x=±4;(2)3(x-1)解析:(1)x=±4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可.【详解】解:(1)4x2=64,∴x2=16,∴x=±4;(2)3(x-1)3+24=0,∴3(x-1)3=-24,∴(x-1)3=-8,∴x-1=-2,∴x=-1.【点睛】本题主要考查了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解.十九、解答题19.见解析【分析】根据平行线的判定和性质定理以及对顶角相等即可得到结论.【详解】解:证明:∵∠AOB=80°,∴∠COD=∠AOB=80°(对顶角相等).∵BC∥EF(已知),∴∠COD+解析:见解析【分析】根据平行线的判定和性质定理以及对顶角相等即可得到结论.【详解】解:证明:∵∠AOB=80°,∴∠COD=∠AOB=80°(对顶角相等).∵BC ∥EF (已知),∴∠COD +∠1=180°(两直线平行,同旁内角互补).∴∠1=100°.∵∠1+∠C =160°(已知),∴∠C =160°-∠1=60°.又∵∠B =60°,∴∠B =∠C .∴AB ∥CD (内错角相等,两直线平行).∴∠A =∠D (两直线平行,内错角相等).【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了对顶角的定义.二十、解答题20.(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积解析:(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O 1、B 1、C 1的坐标,然后顺次连接O 1、B 1、C 1即可;(2)根据111O B C 的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可.【详解】解:(1)如图所示,111O B C 即为所求;(2)由题意得:11111143421313=5222O B C S =⨯-⨯⨯-⨯⨯-⨯⨯△. 【点睛】本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法.二十一、解答题21.(1)7;-7;(2)5;(3)13-.【分析】(1)估算出的范围,即可得出答案;(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求解析:(1)7;(2)5;(3)【分析】(1(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求.【详解】解:(1)∵78,∴7.故答案为:7.(2)∵34,∴a,3∵23,∴b=2∴=5(3)∵23∴11<12,∵,其中x是整数,且0﹤y<1,∴x=11,y=,∴x-y==【点睛】本题考查的是无理数的小数部分和整数部分及其运算.估算无理数的整数部分是解题关键.二十二、解答题22.(1)图中阴影部分的面积17,边长是;(2)边长的值在4与5之间【分析】(1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可解析:(1)图中阴影部分的面积17;(2)边长的值在4与5之间【分析】(1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可以得到阴影正方形的边长;(2【详解】(1)由图可知,图中阴影正方形的面积是:5×5−1442=17答:图中阴影部分的面积17(2)∵所以45∴边长的值在4与5之间;【点睛】本题主要考查了无理数的估算及算术平方根的定义,解题主要利用了勾股定理和正方形的面积求解,有一定的综合性,解题关键是无理数的估算.二十三、解答题23.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;(2)同(1)中方法求解解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;(2)同(1)中方法求解即可;(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可.【详解】解:(1)当n=20时,∠ABC=40°,过E作EF∥AB,则EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°;当点B在点A右侧时,如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=12∠ABC=n°,∠CDG=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=12∠ABC=n°,∠CDG=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=12∠ABC=n°,∠CDE=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°.【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键.二十四、解答题24.[探究] 70°;[应用] 35【分析】[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线解析:[探究] 70°;[应用] 35【分析】[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数.【详解】解:[探究]如图②,过点P作PM∥AB,∴∠MPE=∠AEP=50°(两直线平行,内错角相等)∵AB∥CD(已知),∴PM∥CD(平行于同一条直线的两直线平行),∴∠PFC=∠MPF=120°(两直线平行,内错角相等).∴∠EPF=∠MPF-MPE=120°50°=70°(等式的性质).答:∠EPF 的度数为70°;[应用]如图③所示,∵EG 是∠PEA 的平分线,PG 是∠PFC 的平分线,∴∠AEG=12∠AEP=25°,∠GCF=12∠PFC=60°,过点G 作GM ∥AB ,∴∠MGE=∠AEG=25°(两直线平行,内错角相等)∵AB ∥CD (已知),∴GM ∥CD (平行于同一条直线的两直线平行),∴∠GFC=∠MGF=60°(两直线平行,内错角相等).∴∠G=∠MGF-MGE=60°-25°=35°.答:∠G 的度数是35°.故答案为:35.【点睛】本题考查了平行线的判定与性质、平行公理及推论,解决本题的关键是掌握平行线的判定与性质.二十五、解答题25.(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得,解析:(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得90B C ∠+∠=︒,再由50C B ∠∠︒-=根据角的和差计算即可得∠C 的度数,进而得∠B 的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x 的代数式表示出∠FDE 、∠DFE 的度数,分三种情况讨论求出符合题意的x 值即可.【详解】(1)由翻折的性质可得:∠E =∠B ,∵∠BAC =90°,AE ⊥BC ,∴∠DFE =90°,∴180°-∠BAC =180°-∠DFE =90°,即:∠B +∠C =∠E +∠FDE =90°,∴∠C =∠FDE ,∴AC ∥DE ,∴∠CAF =∠E ,∴∠CAF =∠E =∠B故与∠B 相等的角有∠CAF 和∠E ;∵∠BAC =90°,AE ⊥BC ,∴∠BAF +∠CAF =90°, ∠CFA =180°-(∠CAF +∠C )=90°∴∠BAF +∠CAF =∠CAF +∠C =90°∴∠BAF =∠C又AC ∥DE ,∴∠C =∠CDE ,∴故与∠C 相等的角有∠CDE 、∠BAF ;(2)①∵90BAC ∠=︒∴90B C ∠+∠=︒又∵50C B ∠∠︒-=,∴∠C =70°,∠B =20°;②∵∠BAD =x °, ∠B =20°则160ADB x ∠︒︒=-,20ADF x ∠︒︒=+,由翻折可知:∵160ADE ADB x ∠∠︒︒==-, 20E B ∠∠︒==,∴1402FDE x ∠︒︒=-, 202DFE x ∠︒︒=+,当∠FDE =∠DFE 时,1402202x x ︒︒︒︒-=+, 解得:30x ︒︒=;当∠FDE =∠E 时,140220x ︒︒︒-=,解得:60x ︒︒=(因为0<x ≤45,故舍去); 当∠DFE =∠E 时,20220x ︒︒︒+=,解得:0x ︒=(因为0<x ≤45,故舍去);综上所述,存在这样的x 的值,使得△DEF 中有两个角相等.且30x =.【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.。
七年级数学人教版下学期期末总复习学案12第五章相交线与平行线3本章知识结构图:45知识要点61、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
782、在同一平面内,不相交的两条直线叫平行线。
如果两条直线只有一个9公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两1011个角是邻补角。
邻补角的性质:邻补角互补。
如图1所示,与互为邻1213补角,14与互为邻补角。
+ =180°; + =180°;+ =180°; + =180°。
15164、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边17的反向延长线,这样的两个角互为对顶角。
对顶角的性质:对顶角相等。
如18图1所示,与互为对顶角。
= ; = 。
195、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直20线互相垂直,其中一条叫做另一条的垂线。
如图2所示,当= 90°时,2122⊥。
23垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
2425性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
26性质3:如图2所示,当a⊥b时,= =2790°。
28点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距29离。
306、同位角、内错角、同旁内角基本特征:31①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,32这样33的两个角叫同位角。
图3中,共有对同位角:与是同位34角;35与是同位角;与是同位角;与是同位36角。
37②在两条直线(被截线) 之间,并且在第三条直线(截线)的两侧,这样38的两个角叫内错角。
图3中,共有对内错角:与是内错角;与是内错角。
3940③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。
最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改七年级数学人教版下学期期末总复习学案第五章相交线与平行线本章知识结构图:知识要点1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
2、在同一平面内,不相交的两条直线叫平行线。
如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角的性质:邻补角互补。
如图1所示,与互为邻补角,与 互为邻补角。
+ = 180°; + = 180°; + = 180°; + = 180°。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。
对顶角的性质:对顶角相等。
如图1所示, 与 互为对顶角。
= ; = 。
5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直, 其中一条叫做另一条的垂线。
如图2所示,当 = 90°时, ⊥ 。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。
点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样的两个角叫 同位角 。
图3中,共有 对同位角: 与 是同位角; 与 是同位角; 与 是同位角; 与 是同位角。
②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。
人教版七年级下册数学期末综合复习(及答案)一、选择题1.81的平方根是() A .9B .9和﹣9C .3D .3和﹣32.下列是四个汽车标志图案,其中可看作由“基本图案”经过平移得到的是( ) A .B .C .D .3.在平面直角坐标系中,平行于坐标轴的线段5PQ =,若点P 坐标是()2,1-,则点Q 不在( ) A .第一象限 B .第二象限C .第三象限D .第四象限4.下列命题是假命题的是( )A .垂线段最短B .内错角相等C .在同一平面内,不重合的两条直线只有相交和平行两种位置关系D .若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直5.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE 固定不动,将含30°的三角尺ABC 绕顶点A 顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当15BAD ∠=︒时,//BC DE ,则BAD ∠(0180BAD ︒<∠<︒)其它所有可能符合条件的度数为( )A .60°和135°B .60°和105°C .105°和45°D .以上都有可能6.如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根7.如图,AB //CD ,∠EBF =2∠ABE ,∠ECF =3∠DCE ,设∠ABE =α,∠E =β,∠F =γ,则α,β,γ的数量关系是( )A .4β﹣α+γ=360°B .3β﹣α+γ=360°C .4β﹣α﹣γ=360°D .3β﹣2α﹣γ=360°8.如图,过点()02,0A 作直线l :33y x =的垂线,垂足为点1A ,过点1A 作12A A x ⊥轴,垂足为点2A ,过点2A 作23A A l ⊥,垂足为点3A ,…,这样依次作下去,得到一组线段:01A A ,12A A ,23A A ,…,则线段20202021A A 的长为( )A .201932⎛⎫ ⎪ ⎪⎝⎭B .202032⎛⎫⎪ ⎪⎝⎭C .202132⎛⎫⎪⎝⎭D .202232⎛⎫⎪⎝⎭九、填空题9.计算:4﹣1=___.十、填空题10.在平面直角坐标系中,已知点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,点P 与点Q 关于x 轴对称,则点P 的坐标是___.十一、填空题11.如图,DB 是ABC 的高,AE 是角平分线,26BAE ∠=,则BFE ∠=______.十二、填空题12.如图,∠B =∠C ,∠A =∠D ,有下列结论:①AB //CD ;②AE //DF ;③AE ⊥BC ;④∠AMC =∠BND .其中正确的有_____.(只填序号)十三、填空题13.如图1是//AD BC 的一张纸条,按图示方式把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中21CFE ∠=︒,则图2中AEF ∠的度数为______.十四、填空题14.“⊗”定义新运算:对于任意的有理数a 和b ,都有21a b b ⊗=+.例如:2955126⊗=+=.当m 为有理数时,则(3)m m ⊗⊗等于________.十五、填空题15.()2260a b ++-=,则(),a b 在第_____象限.十六、填空题16.如图,点()00,0A ,()11,2A ,()22,0A ,()33,2A -,()44,0A ,……根据这个规律,探究可得点2021A 的坐标是________.十七、解答题17.计算: 22331(84)6(3)27-- (2253(52)5-十八、解答题18.求下列各式中x 的值. (1)x 2﹣81=0; (2)2x 2﹣16=0; (3)(x ﹣2)3=﹣27.十九、解答题19.完成下列证明过程,并在括号内填上依据.如图,点E 在AB 上,点F 在CD 上,∠1=∠2,∠B =∠C ,求证AB ∥CD .证明:∵∠1=∠2(已知),∠1=∠4 ∴∠2= (等量代换), ∴ ∥BF ( ), ∴∠3=∠ ( ). 又∵∠B =∠C (已知), ∴∠3=∠B ∴AB ∥CD ( ).二十、解答题20.如图所示正方形网格中,每个小正方形的边长均为1个单位,ABC 的三个顶点都在格点上.(1)分别写出点A 、B 、C 的坐标;(2)将ABC 向右平移6个单位长度,再向下平移4个单位长度,得到A 1B 1C 1,其中点A 的对应点是A 1,点B 的对应点是B 1,点C 的对应点是C 1,请画出A 1B 1C 1,并分别写出点A 1、B 1、C 1的坐标; (3)求ABC 的面积.二十一、解答题21.已知:a 173的整数部分,b 173的小数部分. 求: (1)a ,b 值(2)()()224a b -++的平方根.二十二、解答题22.如图1,用两个边长相同的小正方形拼成一个大的正方形.(1)如图2,若正方形纸片的面积为12dm ,则此正方形的对角线AC 的长为 dm . (2)如图3,若正方形的面积为162cm ,李明同学想沿这块正方形边的方向裁出一块面积为122cm 的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由.二十三、解答题23.已知,//AB CD .点M 在AB 上,点N 在CD 上.(1)如图1中,BME ∠、E ∠、END ∠的数量关系为: ;(不需要证明);如图2中,BMF ∠、F ∠、FND ∠的数量关系为: ;(不需要证明)(2)如图 3中,NE 平分FND ∠,MB 平分FME ∠,且2180E F ∠+∠=,求FME ∠的度数;(3)如图4中,60BME ∠=,EF 平分MEN ∠,NP 平分END ∠,且//EQ NP ,则FEQ ∠的大小是否发生变化,若变化,请说明理由,若不变化,求出么FEQ ∠的度数.二十四、解答题24.已知直线//AB CD ,M ,N 分别为直线AB ,CD 上的两点且70MND ∠=︒,P 为直线CD 上的一个动点.类似于平面镜成像,点N 关于镜面MP 所成的镜像为点Q ,此时,,NMP QMP NPM QPM MNP MQP ∠=∠∠=∠∠=∠.(1)当点P 在N 右侧时:①若镜像Q 点刚好落在直线AB 上(如图1),判断直线MN 与直线PQ 的位置关系,并说明理由;②若镜像Q 点落在直线AB 与CD 之间(如图2),直接写出BMQ ∠与DPQ ∠之间的数量关系;(2)若镜像PQ CD ⊥,求BMQ ∠的度数.二十五、解答题25.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN 与CD相交于点E,求∠CEN的度数;(3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果)【参考答案】一、选择题1.D解析:D【分析】先化简,再根据平方根的地红衣求解.【详解】解:∵81,∴819=3±,故选D.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作a x=±.2.B【分析】根据平移的概念观察即可【详解】解:由“基本图案”经过旋转得到由“基本图案”经过平移得到由“基本图案”经过翻折得到不能由“基本图案”经过平移得到故选:B【点睛】 本题考查解析:B 【分析】根据平移的概念观察即可 【详解】解:由“基本图案”经过旋转得到 由“基本图案”经过平移得到 由“基本图案”经过翻折得到 不能由 “基本图案”经过平移得到 故选:B 【点睛】本题考查平移的概念,考查观察能力 3.D 【分析】设点(),Q a b ,分//PQ x 轴和//PQ y 轴,两种情况讨论,即可求解. 【详解】 解:设点(),Q a b ,若//PQ x 轴,则点P 、Q 的纵坐标相等, ∵线段5PQ =,若点P 坐标是()2,1-, ∴()25a --= ,1b = , 解得:3a = 或7- , ∴()3,1Q 或()7,1- ;若//PQ y 轴,则点P 、Q 的横坐标相等, ∵线段5PQ =,若点P 坐标是()2,1-, ∴15b -= ,2a =- , 解得:6b = 或4- , ∴()2,6Q - 或()2,4-- ,∴点()3,1Q 或()7,1-或()2,6- 或()2,4-- , ∴点Q 不在第四象限. 故选:D . 【点睛】本题主要考查了坐标与图形,线段与坐标轴平行时点的坐标特征,分//PQ x 轴和//PQ y 轴,两种情况讨论是解题的关键. 4.B 【分析】根据点到直线的距离、平行线的判定定理及平行线和相交线的基本性质等进行判断即可得出答案. 【详解】A 、垂线段最短,正确,是真命题,不符合题意;B 、内错角相等,错误,是假命题,必须加前提条件(两直线平行,内错角相等),符合题意;C 、在同一平面内,不重合的两条直线只有相交和平行两种位置关系,正确,是真命题,不符合题意;D 、若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直,正确,相交所成的四个角中,形成两组对顶角,有三个角相等,则四个角一定全相等,都是90︒,所以互相垂直,不符合题意; 故选:B . 【点睛】题目主要考察真假命题与定理的联系,解题关键是准确掌握各个定理. 5.D 【分析】根据题意画出图形,再由平行线的性质定理即可得出结论. 【详解】 解:如图当AC ∥DE 时,45BAD DAE ∠=∠=︒; 当BC ∥AD 时,60DAB B ∠=∠=︒; 当BC ∥ AE 时,∵60EAB B ∠=∠=︒, ∴4560105BAD DAE EAB ∠=∠+∠=︒+︒=︒; 当AB ∥DE 时,∵ 90E EAB ∠=∠=︒, ∴4590135BAD DAE EAB ∠=∠+∠=︒+︒=︒. 故选:D . 【点睛】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键. 6.C 【详解】解:由题意可知4的算术平方根是2,43434的算术平方根是2 2<22,8的立方根是2,故根据数轴可知, 故选C 7.A 【分析】由∠EBF =2∠ABE ,可得∠EBF =2α.由∠EBF +∠BEC +∠F +∠ECF =360°,可得∠ECF =360°﹣(2α+β+γ),那么∠DCE =13ECF ∠.由∠BEC =∠M +∠DCE ,可得∠M =∠BEC ﹣∠DCE .根据AB //CD ,得∠ABE =∠M ,进而推断出4β﹣α+γ=360°. 【详解】解:如图,分别延长BE 、CD 并交于点M .∵AB //CD , ∴∠ABE =∠M .∵∠EBF =2∠ABE ,∠ABE =α, ∴∠EBF =2α.∵∠EBF +∠BEC +∠F +∠ECF =360°, ∴∠ECF =360°﹣(2α+β+γ). 又∵∠ECF =3∠DCE ,∴∠DCE =11(3602)33ECF a βγ︒∠=---.又∵∠BEC =∠M +∠DCE ,∴∠M =∠BEC ﹣∠DCE =β﹣1(3602)3a βγ︒---.∴β﹣1(3602)3a βγ︒---=α.∴4β﹣α+γ=360°. 故选:A . 【点睛】本题考查了平行线的性质,三角形的外角性质,角度的计算,构造辅助线转化角度是解题的关键.8.B 【分析】由,可得,然后根据形的性质結合图形即可得到规律,然后按规律解答即可. 【详解】解:由,可得∵点A0坐标为(2,0) ∴OA0=2, ∴ ∴ ∴∴A2020A2021= 故答案为:解析:B 【分析】由y x =,可得130AOA ︒∠=,然后根据形的性质結合图形即可得到规律12nnn n OA OA -==⎝⎭⎝⎭,然后按规律解答即可.【详解】解:由y =,可得130AOA ︒∠= ∵点A 0坐标为(2,0) ∴OA 0=2,∴1021324339,,28OA OA OA OA ========⋯∴12nnn n OA OA -==⎝⎭⎝⎭∴202020202OA =⨯⎝⎭∴A 2020A 2021=20202020122⨯⨯=⎝⎭⎝⎭故答案为:B 【点睛】本题考查了规律型中点的坐标以及含30°角的直角三角形,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”,结合图形找出变化规律是解题的关键.九、填空题 9.1 【分析】先计算算术平方根,然后计算减法. 【详解】解:原式=2-1=1.故答案是:1.【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x解析:1【分析】先计算算术平方根,然后计算减法.【详解】解:原式=2-1=1.故答案是:1.【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.十、填空题10.(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q的坐标为(2,5),∵点P与点Q关于x轴解析:(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q的坐标为(2,5),∵点P与点Q关于x轴对称,∴点P的坐标是(2,﹣5).故答案为:(2,﹣5).【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.十一、填空题11.【分析】由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE 是对顶角,故可求得∠BFE的度数.【详解】∵AE是角平分线,∠BAE=26°,∴∠FAD=∠B解析:64【分析】由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数.【详解】∵AE是角平分线,∠BAE=26°,∴∠FAD=∠BAE=26°,∵DB是△ABC的高,∴∠AFD=90°−∠FAD=90°−26°=64°,∴∠BFE=∠AFD=64°.故答案为64°.【点睛】本题考查了三角形内角和定理,三角形的角平分线、中线和高,熟练掌握三角形内角和定理是解题的关键.十二、填空题12.①②④【分析】根据平行线的判定与性质分析判断各项正确与否即可.【详解】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC解析:①②④【分析】根据平行线的判定与性质分析判断各项正确与否即可.【详解】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC=∠FNM,又∵∠BND=∠FNM,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故答案为:①②④.【点睛】本题考查了对顶角的性质及平行线的判定与性质,难度一般.十三、填空题13.113°【分析】如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定解析:113°【分析】如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定义可计算出x=67°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=113°,所以∠AEF=113°.【详解】解:如图,设∠B′FE=x,∵纸条沿EF折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,∴∠BFC=∠BFE﹣∠CFE=x﹣21°,∵纸条沿BF折叠,∴∠C′FB=∠BFC=x﹣21°,而∠B′FE+∠BFE+∠C′FE=180°,∴x+x+x﹣21°=180°,解得x=67°,∵A′D′∥B′C′,∴∠A′EF=180°﹣∠B′FE=180°﹣67°=113°,∴∠AEF=113°.故答案为113°.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形. 十四、填空题14.101【分析】根据“”的定义进行运算即可求解.【详解】解:=== =101.故答案为:101.【点睛】本题考查了新定义运算,理解新定义的法则是解题关键.解析:101【分析】根据“⊗”的定义进行运算即可求解.【详解】解:(3)m m ⊗⊗=2(31)m ⊗+=10m ⊗=2101+ =101.故答案为:101.【点睛】本题考查了新定义运算,理解新定义的法则是解题关键.十五、填空题15.二【分析】根据非负数的性质列方程求出a 、b 的值,再根据各象限内点的坐标特征解答.【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答解析:二【分析】根据非负数的性质列方程求出a 、b 的值,再根据各象限内点的坐标特征解答.【详解】解:由题意得,a +2=0,b -6=0,解得a =-2,b =6,所以,点(-2,6)在第二象限;故答案为:二【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).十六、填空题16.【分析】由图形得出点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,继而求得答案.【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、2021,2解析:()【分析】由图形得出点的横坐标依次是0、1、2、3、4、⋯、n,纵坐标依次是0、2、0、2-、0、2、0、2-、⋯,四个一循环,继而求得答案.【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、⋯、n,纵坐标依次是0、2、0、2-、0、2、0、2-、⋯,四个一循环,÷=⋯,202145051A坐标是(2021,2).故点2021故答案是:(2021,2).【点睛】本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律.十七、解答题17.(1) 3;(2) 2【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果.【详解】解:(1解析:【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果.【详解】解:(1)原式=13--(2-4)÷6+3=13-+13+3=3;(2)原式=.故答案为:(1)3;(2).【点睛】本题考查实数的运算,熟练掌握运算法则是解题的关键.十八、解答题18.(1)x=±9;(2);(3)x=﹣1.【分析】(1)式子整理后,利用平方根的定义求解即可;(2)式子整理后,利用平方根的定义求解即可;(3)利用立方根的定义求解即可.【详解】解:(1)解析:(1)x=±9;(2)x=±3)x=﹣1.【分析】(1)式子整理后,利用平方根的定义求解即可;(2)式子整理后,利用平方根的定义求解即可;(3)利用立方根的定义求解即可.【详解】解:(1)x2﹣81=0,x2=81,x=±9;(2)2x2﹣16=0,2x2=16,x2=8,x=±(3)(x﹣2)3=﹣27,x﹣2=﹣3,x=2﹣3,x=﹣1.【点睛】本题主要考查了平方根与立方根的定义:求a的立方根,实际上就是求哪个数的立方等于a,熟记相关定义是解答本题的关键.十九、解答题19.∠4;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行【分析】根据平行线的判定和性质解答.【详解】解∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=解析:∠4;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行【分析】根据平行线的判定和性质解答.【详解】解∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠3=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.【点睛】此题考查平行线的判定和性质,关键是根据平行线的判定和性质解答.二十、解答题20.(1)A(﹣3,4),B(﹣5,2),C(﹣2,0);(2)见解析,A1(3,0),B1(1,﹣2),C1(4,﹣4);(3)5【分析】(1)根据点的坐标的表示方法求解;(2)根据点平移的坐标解析:(1)A(﹣3,4),B(﹣5,2),C(﹣2,0);(2)见解析,A1(3,0),B1(1,﹣2),C1(4,﹣4);(3)5【分析】(1)根据点的坐标的表示方法求解;(2)根据点平移的坐标变换规律写出点A1、B1、C1的坐标,然后描点即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积.【详解】解:(1)由题意得:A(﹣3,4),B(﹣5,2),C(﹣2,0);(2)如图,△A1B1C1为所作,∵A1是经过点A(-3,4)右平移6个单位长度,再向下平移4个单位长度得到的,∴A1(-3+6,4-4)即(3,0)同理得到B1(1,﹣2),C1(4,﹣4);(3)△ABC的面积=3×4﹣12×2×3﹣12×4×1﹣12×2×2=5.【点睛】本题主要考查了平移作图,坐标与图形,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解.二十一、解答题21.(1),.(2).【分析】(1)首先得出接近的整数,进而得出a,b的值;(2)根据平方根即可解答.【详解】,∴整数部分,小数部分.(2)原式,则的平方根为.【点睛】此题解析:(1)1a =,4b =.(2)±【分析】(1接近的整数,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】 1754<<∴ 132<<,∴整数部分1a =,小数部分314b -=.(2)()()224a b -++原式())22144=-++ 11718=+=,则()()224a b -++的平方根为±【点睛】此题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键. 二十二、解答题22.(1);(2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可.【详解】解:解析:(1)2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可.【详解】解:(1)∵正方形纸片的面积为21dm ,∴正方形的边长1AB BC dm ==, ∴AC =.(2)不能;根据题意设长方形的长和宽分别为3xcm和2xcm.x x=,∴长方形面积为:2?312解得:2x=,∴长方形的长边为32cm.∵324>,∴他不能裁出.【点睛】本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键.二十三、解答题23.(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°.【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质解析:(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°.【分析】(1)过E作EH//AB,易得EH//AB//CD,根据平行线的性质可求解;过F作FH//AB,易得FH//AB//CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=180°,可求解∠BMF=60°,进而可求解;∠BME,进而可求解.(3)根据平行线的性质及角平分线的定义可推知∠FEQ=12【详解】解:(1)过E作EH//AB,如图1,∴∠BME=∠MEH,∵AB//CD,∴HE//CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN−∠END.如图2,过F作FH//AB,∴∠BMF=∠MFK,∵AB//CD,∴FH//CD,∴∠FND=∠KFN,∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF−∠FND=180°,∴2∠BME+2∠END+∠BMF−∠FND=180°,即2∠BMF+∠FND+∠BMF−∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=12∠MEN=12(∠BME+∠END),∠ENP=12∠END,∵EQ//NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN−∠NEQ=12(∠BME+∠END)−12∠END=12∠BME,∵∠BME=60°,∴∠FEQ=12×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键.二十四、解答题24.(1)①,证明见解析,②,(2)或.【分析】(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q作QF∥CD,根据平行线的性质证即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,解析:(1)①//MN PQ ,证明见解析,②70DPQ BMQ ∠∠+=︒,(2)160︒或20︒.【分析】(1) ①根据//AB CD 和镜像证出NMP QPM ∠=∠,即可判断直线MN 与直线PQ 的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证DPQ BM MQP Q ∠=∠∠+即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,分类讨论,依据平行线的性质求解即可.【详解】(1)①//MN PQ ,证明:∵//AB CD ,∴NPM QMP ∠=∠,∵,NMP QMP NPM QPM ∠=∠∠=∠,∴NMP QPM ∠=∠,∴//MN PQ ;②过点Q 作QF ∥CD ,∵//AB CD ,∴////AB CD QF ,∴1BMQ ∠=∠,2QPD ∠=∠,∴DPQ BM MQP Q ∠=∠∠+,∵70MNP MQP ∠=∠=︒,∴70DPQ BMQ ∠∠+=︒;(2)如图,当点P 在N 右侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF ,∴180NP FQP Q ∠=∠+︒,FQM BMQ ∠=∠,∵PQ CD ⊥,∴90NPQ ∠=︒,∴90FQP ∠=︒,∵70MND PQM ∠=∠=︒,∴20FQM ∠=︒,∴20BMQ ∠=︒,如图,当点P 在N 左侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF , 同理可得,90FQP ∠=︒,∵70MND ∠=︒,∴110MNP PQM ∠=∠=︒,∴20FQM ∠=︒,∵//AB QF ,∴180BM FQM Q ∠=∠+︒,∴160BMQ ∠=︒;综上,BMQ ∠的度数为160︒或20︒.【点睛】本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系.二十五、解答题25.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN 中,用三角形内角和定理即可求出;(2)由∠BON =30°,∠N=30°可得MN ∥CB ,再根据两直线平行,同旁内角 解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN 中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数.(3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果.【详解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直.【点睛】本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去∠DOM的度数.。
七年级数学人教版下学期期末总复习学案第五章 相交线与平行线本章知识结构图:知识要点1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊情况。
2、在同一平面内,不相交的两条直线叫 平行线 。
如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是 邻补角。
邻补角的性质: 邻补角互补 。
如图1所示, 与 互为邻补角, 与 互为邻补角。
+ = 180°; + = 180°; + = 180°; + = 180°。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。
对顶角的性质:对顶角相等。
如图1所示, 与 互为对顶角。
= ; = 。
5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直, 其中一条叫做另一条的垂线。
如图2所示,当 = 90°时, ⊥ 。
垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。
点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
6、同位角、内错角、同旁内角基本特征: ①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样 的两个角叫 同位角 。
图3中,共有 对同位角: 与 是同位角;与 是同位角; 与 是同位角; 与 是同位角。
②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。
图3中,共有 对内错角: 与 是内错角; 与 是内错角。
③在两条直线(被截线)的 之间 ,都在第三条直线(截线)的 同一旁 ,这样的两个角叫 同旁内角 。
最新人教版七年级数学下册期末总复习学案 第五章 相交线与平行线 (一)本章知识结构图:(二)例题与习题: 一、对顶角和邻补角:1.如图所示,∠1和∠2是对顶角的图形有( )A.1个B.2个C.3个D.4个 2.如图1-1,直线AB 、CD 、EF 都经过点O , 图中有几对对顶角。
( )3.如图1-2,若∠AOB 与∠BOC 是一对邻补角,OD 平分∠AOB, OE 在∠BOC 内部,并且∠BOE =12∠COE ,∠DOE =72°。
求∠COE 的度数。
( )二、垂线: 已知:如图,在一条公路l 的两侧有A 、B 两个村庄. <1>现在乡政府为民服务,沿公路开通公交汽车,并在路边修建一个公共汽车站P ,同时修建车站P 到A 、B 两个村庄的道路,并要求修建的道路之和最短,请你设计出车站的位置,在图中画出点P 的位置,(保留作图的痕迹).并在后面的横线上用一句话说明道理. . <2>为方便机动车出行,A 村计划自己出资修建一条由本村直达公路l 的机动车专用道路,你能帮助A 村节省资金,设计出最短的道路吗?,请在图中画出你设计修建的最短道路,并在后面的横线上用一句话说明道理. . 三、同位角、内错角和同旁内角的判断1.如图3-1,按各角的位置,下列判断错误的是( ) (A )∠1与∠2是同旁内角 (B )∠3与∠4是内错角(C )∠5与∠6是同旁内角 (D )∠5与∠8是同位角 2.如图3-2,与∠EFB 构成内错角的是_ ___,与∠_ ___.一般情况相交成直角相交线相交两条直线 第三条所截两条直线被邻补角 垂线 邻补角互补 点到直线的距离 同位角、内错角、同旁内角 平行线平行公理及其推论 平行线的性质 平行线的判定 平移 对顶角 对顶角相等 垂线段最短 存在性和唯一性两条平行线的距离 平移的特征 12121221 D B E A C O (图1-2) 12四、平行线的判定和性质: 1.如图4-1, 若∠3=∠4,则∥ ; 若AB ∥CD,则∠ =∠ 。
2.已知两个角的两边分别平行,其中一个角为52°, 则另一个角为_______. 3.两条平行直线被第三条直线所截时,产生的八个角中, 角平分线互相平行的两个角是( ) A.同位角 B.同旁内角 C.内错角 D. 同位角或内错角 4.如图4-2,要说明 AB ∥CD ,需要什么条件? 试把所有可能的情况写出来,并说明理由。
5.如图4-3,EF ⊥GF ,垂足为F ,∠AEF=150°, ∠DGF=60°。
试判断AB 和CD 的位置关系,并说明理由。
6.如图4-4,AB ∥DE ,∠ABC =70°,∠CDE =147°,求∠C 的度数. ( ) 7.如图4-5,CD ∥BE ,则∠2+∠3−∠1的度数等于多少?( ) 8.如图4-6:AB ∥CD ,∠ABE =∠DCF ,求证:BE ∥CF .五、平行线的应用:1.某人从A 点出发向北偏东60°方向走了10米,到达B 点,再从B 点方向向南偏西15°方向走了10米,到达C 点,则∠ABC 等于( ) A.45° B.75° C.105° D.135° 2.一位学员练习驾驶汽车,发现两次拐弯后,行驶方向与原来的方向相同,这两次的拐弯角度可能是( ) A 第一次向右拐50°,第二次向左拐130°B 第一次向左拐50°,第二次向右拐50°C 第一次向左拐50°,第二次向左拐130°D 第一次向右拐50°,第二次向右拐50° 3.如图5-2,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置, 若∠EFB =65°,则∠AED ′等于 ° 4.计算(图6-1)中的阴影部分面积。
(单位:厘米)⌒⌒⌒⌒A B C D 1432 (1) 图4-1 GCD EA BF 图4-3D B ECFA图4-6 F E DCBA (图4-2)图4-4321E AC BD 图4-5 图5-2 D5.如(图6-2)所示,已知大正方形的边长为10厘米,小正方形的边长为7厘米,求阴影部分面积。
(结果保留π )6.求(图6-3)中阴影部分的面积(单位:厘米) 7.下列命题中,真命题的个数为( )个 ① 一个角的补角可能是锐角;② 两条平行线上的任意一点到另一条平行线的距离是这两条平行线间的距离;③ 平面内,过一点有且只有一条直线与已知直线垂直; ④ 平面内,过一点有且只有一条直线与已知直线平行;A.1B.2C.3D.4 8.已知:如图8-1,AD ⊥BC ,EF ⊥BC ,∠1=∠2。
求证:∠CDG=∠B.9. 已知:如图8-2,AB ∥CD ,∠1=∠2,∠E=65°20′,求:∠F 的度数。
10.已知:如图8-3, AE ⊥BC , FG ⊥BC , ∠1=∠2, ∠D =∠3+60︒, ∠CBD =70︒ .(1)求证:AB ∥CD ; (2)求∠C 的度数。
( )11.如图8-4,在长方形ABCD 中,∠ADB =20°,现将这一长方形纸片沿AF 折叠,若使AB ’ ∥BD ,则折痕AF 与AB 的夹角∠BAF 应为多少度?( )12. 如图8-5, B 点在A 点的北偏西30︒方向,距A 点100米, C 点在B 点的北偏东60︒, ∠ACB = 40︒ (1) 求A 点到直线BC 的距离;(100米) (2) 问:A 点在C 点的南偏西多少度 ? (写出计算和推理过程)( )13.如图,在1010⨯的正方形网格中,每个小正方形的边长均为1个单位,将ABC △向下平移4个单位,得到A B C '''△,请你画出A B C '''△(不要求写画法).E21G F DC B A 3图8-1 1 32 D B C A E FG 图8-3 AB CB 'DFCB AA B E FC D1 2 图2 图8-2图8-4 图6-3 图6-2第七章 平面直角坐标系(二)例题与习题: 一、填空:1.已知点P(3a-8,a-1).(1) 点P 在x 轴上,则P 点坐标为 ;(2) 点P 在第二象限,并且a 为整数,则P 点坐标为 ; (3)Q 点坐标为(3,-6),并且直线PQ ∥x 轴,则P 点坐标为 . 2.如图的棋盘中,若“帅” 位于点(1,-2)上,“相”位于点(3,-2)上,则“炮”位于点___ 上.3.点)1,2(A 关于x 轴的对称点'A 的坐标是 ;点)3,2(B 关于y 轴的对称点'B 的坐标是 ;点)2,1(-C 关于坐标原点的对称点'C 的坐标是 .4.已知点P 在第四象限,且到x 轴距离为52,到y 轴距离为2,则点P的坐标为_____.5.已知点P 到x 轴距离为52,到y 轴距离为2,则点P 的坐标为 .6. 已知),(111y x P ,),(122y x P ,21x x ≠,则⊥21P P 轴,21P P ∥ 轴; 7.把点),(b a P 向右平移两个单位,得到点),2('b a P +,再把点'P 向上平移三个单位,得到点''P ,则''P 的坐标是 ; 8.在矩形ABCD 中,A (-4,1),B (0,1),C (0,3),则D 点的坐标为 ; 9.线段AB 的长度为3且平行与x 轴,已知点A 的坐标为(2,-5),则点B 的坐标为_____. 二、选择题:10.线段AB 的两个端点坐标为A(1,3)、B(2,7),线段CD 的两个端点坐标为C(2,-4)、D(3,0),则线段AB A.平行且相等 B.行且不相等 三、解答题: 1.已知:如图,)3,1(-A 确定平面内点的位置 建立平面直角坐标系 点 坐标(有序数对)P (x , y )BM (北)AN (北)图8-52.已知:)0,4(A ,),3(y B ,点C 在x 轴上,5=AC . ⑴ 求点C 的坐标;⑵ 若10=∆ABC S ,求点B 的坐标.3.已知:四边形ABCD 各顶点坐标为A(-4,-2),B(4,-2),C(3,1),D(0,3).(1)在平面直角坐标系中画出四边形ABCD ; (2)求四边形ABCD 的面积.(3)如果把原来的四边形ABCD 各个顶点横坐标减2,纵坐标加3,所得图形的面积是多少?4. 已知:)1,0(A ,)0,2(B ,)3,4(C .⑴ 求△ABC 的面积; ⑵ 设点P 在坐标轴上,且△ABP 与△ABC 的面积相等, 求点P 的坐标.5.如图,是某野生动物园的平面示意图. 建立适当的直角 坐标系,写出各地点的坐标,并求金鱼馆与熊猫馆的实际距离.6.如图,平移坐标系中的△ABC ,使AB 平移到1A 置,再将111C B A ∆向右平移3个单位,得到22B A ∆画出222C B A ∆,并求出△ABC到222C B A ∆第八章 二元一次方程组(二)例题与习题:1、下列方程中是二元一次方程的有( )个。
① 1225=-n m ② 161147=-y x ③ 2532-=-z x④ 311=-+ba ⑤ 6=+y xA.2B.3C.4D.5 2、若方程03)2()32()4(22=+-+-+-k y k x k x k 为二元一次方程,则k 的值为( )A. 2B. -2C. 2或-2D.以上均不对。
3、如果⎩⎨⎧-==13y x 是二元一次方程3x-2y=11的一个解,那么当31-=x 时,y=_________。
4、方程 2x+y=5的非负整数解为_________________.5、在方程2(x+y)-3(y-x)=3中用含x 的代数式表示y ,则是( )A.y=5x-3B.y=-x-3C.y=-5x-3D.y=-5x+36、已知⎩⎨⎧-==23y x 是一个二元一次方程组的解,试写出一个符合条件的二第5题图 第6题图元一次方程组_______________ __。
7、 解下列方程组:(1)⎩⎨⎧=-=+56345y x y x (2)⎪⎩⎪⎨⎧=-+=-73443231n m n m (3)⎪⎩⎪⎨⎧=---=+43)1(3)43(2023y x yx (4)⎩⎨⎧=-=+2463247y x y x (5)⎪⎪⎩⎪⎪⎨⎧=--=+-131221231y x y x9.若方程组⎩⎨⎧=-=+m y x my x 28的解满足152-=-y x ,则m=________.10、解下列方程组:(1)⎪⎩⎪⎨⎧=++=-+=+-202132323z y x z y x z y x (2)⎪⎩⎪⎨⎧=+=+=+101216m t t n n m11、若方程组⎩⎨⎧=++-=+4)1()1(132y k x k y x 的解x 与y 相等,则k=_________。