人教版2010年武汉市七下数学期末模拟试题(一)
- 格式:doc
- 大小:227.00 KB
- 文档页数:6
章节测试题1.【题文】已知关于的方程组(1)若求方程组的解;(2)若方程组的解满足求的取值范围.【答案】(1) ;(2) a>-.【分析】(1)将a=2代入方程组计算即可求出解;(2)将a看做已知数求出x与y,根据x大于y得到a的范围. 【解答】解:(1)当a=2时,方程组为,①-②得:3y=6,即y=2,将y=2代入①得:x=9,则方程组的解为;(2)方程组两方程相减得:3y=10-2a,即y=,将y=代入第一个方程得:x=,根据题意得:>,解得:a>-.2.【题文】为了了解某地区“雾霾天气的主要成因”,随机调查了该地区部分市民,并对调査结果随机调査了该市部分市民,并对调査结果进行整理,绘制了如下尚不完整的统计图表.根据图表中提供的信息解答下列问题:(1)求接受调查的总人数;(2)填空:扇形统计图中E组所占的百分比为______%;(3)扇形统计图中,C组所对应扇形圆心角的度数为________;(4)若该地区人口约有100万人,请你估计持D组观点的市民人数.【答案】(1)600人;(2)60,150,15%;(3)90°;(4)30万人.【分析】(1)根据A组的人数和所占的百分比可以求得接受调查的总人数;(2)根据接受调查的总人数和B组观点的百分比可以求得m,总人数减去其余各组的人数可以求得n的值,根据E组人数和总人数可求得所占的百分比;(3)根据C组观点的人数占的百分比可以求得C组所对应扇形圆心角的度数;(4)根据D组观点占的百分比可以求得持D组观点的市民人数.【解答】解:(1)由题意可得,接受调查的总人数是:120÷20%=600,即接受调查的一共有600人;(2)m=600×10%=60,n=600-180-120-90-60=150,扇形统计图中E组所占的百分比为:×100%=15%,故答案为:60,150,15%;(3)扇形统计图中,C组所对应扇形圆心角的度数为:360°×=90°,故答案为:90°;(4)100×=30(万人),答:持D组观点的市民有30万人.3.【题文】某体育器材公司最新推出A、B两种不同型号的跳绳,我区某学校第一次订购两种跳绳共计640条,该公司共获利2160元,两种跳绳的成本价、销售价如下表:(1)求学校第一次订购A、B两种跳绳各多少条?(2)第二次订购A、B两种跳绳的条数皆为第一次的2倍,销售时,A种跳绳按原售价销售,B种跳绳全部降价出售,该公司为使利润不小于4080元,则B种跳绳每条的最低销售价应为多少元?【答案】(1)学校第一次订购A种跳绳400条,B种跳绳240条;(2)第二次B 种跳绳每条的最低销售价应为9.5元.【分析】(1)设学校第一次订购A种跳绳x条B种跳绳y条,根据“两种跳绳共计640条,该公司共获利2160元”列出方程组进行求解;(2)设第二次B种跳绳每条的最低销售价应为a元,根据“该公司的利润不少于4080元”列出不等式,继而即可求解.【解答】解:(1)设学校第一次订购A种跳绳x条,B种跳绳y条,根据题意得:,解得:.答:学校第一次订购A种跳绳400条,B种跳绳240条.(2)设第二次B种跳绳每条的最低销售价应为a元,根据题意得:(8-5)×400×2+(a-6)×240×2≥4080,解得:a≥9.5.答:第二次B种跳绳每条的最低销售价应为9.5元.4.【题文】如图1,在平面直角坐标系中,点A(0,4),C(2,0).(1)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿轴正方向移动,点Q到达A点整个运动随之结束,AC的中点D的坐标是(1,2),设运动时间为秒,问:是否存在这样的使若存在,请求出的值;若不存在,请说明理由.(2)如图2,点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF,点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中,以下两个式子:哪个式子为定值,请求出这个定值.【答案】(1) t=;(2)的值不变,其值为2.【分析】(1)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据,列出关于t的方程,求得t的值即可;(2)过H点作AC的平行线,交x轴于P,先判定OG∥AC,再根据角的和差关系以及平行线的性质,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入进行计算即可.【解答】解:(1)由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,∴0<t≤2时,点Q在线段AO上,即 CP=t,OP=2-t,OQ=2t,AQ=4-2t,∴S△DOP=OP•y D=(2−t)×2=2−t,S△DOQ=OQ•x D=×2t×1=t,∵,∴2(2-t)=t,∴t=;(2)的值不变,其值为2.∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如图,过H点作AC的平行线,交x轴于P,则∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴==,不能确定.===2.5.【题文】已知,平面直角坐标系中,A(2,0),B(),且满足(1)求点B坐标;(2)P(0,)为轴上一点,求的取值范围;(3)若Q为直线AB上一点,连接OQ,且直接写出点Q 的纵坐标的取值范围.【答案】(1)B(-2,4);(2)m≥6或m≤-2;(3)≤y≤3或6≤y≤8.【分析】(1)根据非负数的性质列出方程组,解方程组求出a、b,得到点B的坐标;(2)先利用待定系数法求得直线AB的解析式为y=-x+2,进而得出直线AB交y 轴于(0,2),根据三角形的面积公式求出根据S△ABP不小于8时,×|y-2|×(2+2)≥8,得到点P的纵坐标m的取值范围;(3)分两种情况,当点Q在线段AB上时,可得2(4-y)≤y≤3(4-y)计算可得;当点Q在线段AB的延长线上时,可得2(y-4)≤y≤3(y-4)计算即可.【解答】解:(1)∵∴2a+b=0,3a+2b-2=0,解得a=-2,b=4,∴B(-2,4);(2)设直线AB的解析式为y=kx+b,把A(2,0),B(-2,4)代入,可得,解得,∴直线AB的解析式为y=-x+2,令x=0,则y=2,即直线AB交y轴于(0,2),=4,根据得,8,即×|m-2|×(2+2)≥8,解得m≥6或m≤-2;(3)≤y≤3或6≤y≤8.6.【答题】下列方程中,是二元一次方程的是()A.3x﹣2y=4zB.4x+y=2C.D.6xy+9=0 【答案】B【分析】直接利用二元一次方程的定义分析得出答案.【解答】A、,是三元一次方程,故此选项错误;B、,是二元一次方程,故此选项正确;C、,是分式方程,故此选项错误;D、,是二元二次方程,故此选项错误;选B.7.【答题】若m<1,则下列各式中错误的是()A.m+2<3B.m﹣1<0C.2m<2D.m+1>0【答案】D【分析】根据不等式的性质即可求出答案.【解答】∵m<1∴m+1<2故D错误选D.8.【答题】在下列调查中,适宜采用全面调查的是()A.了解明德集团所有中学生的视力情况B.了解某校七(4)班学生校服的尺码情况C.调查北京2017年的游客流量D.调查中国“2018俄罗斯世界杯”栏目的收视率【答案】B【分析】根据实际问题的需要选择合适的调查方式.【解答】A、适合用抽样调查;B、适合用全面调查;C、适合用抽样调查;D、适合用抽样调查,所以答案选B.9.【答题】不等式组的解在数轴上表示正确的是()A. B.C. D.【答案】C【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:解得:x<3,x≥-1故不等式组的解集为:-1≤x<3在数轴上表示为:.选C.10.【答题】已知是二元一次方程2x+y=14的解,则k的值是()A.2B.﹣2C.3D.﹣3【答案】A【分析】根据方程的解的定义,将方程2x+y=14中x,y用k替换得到k的一元一次方程进行求解.【解答】将代入二元一次方程2x+y=14,得7k=14,解得k=2.选A.11.【答题】在一个三角形中,一个外角是其相邻内角的2倍,那么这个外角是()A.150B.120°C.100°D.90°【答案】B【分析】设与外角相邻的内角为x°,根据平角的定义得到方程3x=180,求出x即可.【解答】设与外角相邻的内角为x°,∵一个三角形中,一个外角是其相邻内角的2倍∴这个外角为2x°∴3x=180∴x=60.即这个外角为120°选B.12.【答题】由方程组可得出x与y的关系式是()A.x+y=9B.x+y=3C.x+y=﹣3D.x+y=﹣9【答案】A【分析】本题考查了二元一次方程组的解法。
人教版七年级下数学期末模拟提优练试题一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列实数中,有理数是()A.B.0.1010010001C.D.2.(3分)下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查3.(3分)如图所示,能判定直线AB∥CD的条件是()A.∠1=∠2B.∠3=∠4C.∠1+∠4=180°D.∠3+∠4=90°4.(3分)如图,将北京市地铁部分线路图置于正方形网格中,若设定崇文门站的坐标为(0,﹣1),雍和宫站的坐标为(0,4),则西单站的坐标为()A.(0,5)B.(5,0)C.(0,﹣5)D.(﹣5,0)5.(3分)若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.>D.m2>n26.(3分)观察市统计局公布的“十五”时期重庆市农村居民人均收入每年比上一年增长率的统计图,下列说法正确的是()A.2003年农村居民人均收入低于2002年B.农村居民人均收入比上年增长率低于9%的有2年C.农村居民人均收入最多时2004年D.农村居民人均收入每年比上一年的增长率有大有小,但农村居民人均收入在持续增加7.(3分)下列运算中,正确的是()A.=24B.=C.﹣=﹣D.=±28.(3分)一根直尺和一块含有30°角的直角三角板如图所示放置,已知直尺的两条长边互相平行,若∠1=25°,则∠2等于()A.25°B.35°C.45°D.65°9.(3分)若不等式组有解,则a的取值范围是()A.a≤3B.a<3C.a<2D.a≤210.(3分)在平面直角坐标系中,一动点从原点出发按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动的路线如图所示,则该动点移动到点A100时的坐标是()A.(49,0)B.(49,1)C.(50,0)D.(50,1)二、填空题(本小题共8小题,每小题3分,共24分)11.(3分)4的平方根是.12.(3分)用不等式表示“比x的5倍大1的数不小于4”:.13.(3分)已知是二元一次方程ax﹣2y=4的一个解,则a的值是.14.(3分)化简:||=.15.(3分)如图,将一个长方形条折成如图所示的形状,若已知∠1=100°,则∠2=°.16.(3分)有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了.”问:两个牧童各有多少只羊?设甲牧童有x只羊,乙牧童有y只羊,可列方程组为.17.(3分)已知AB∥y轴,点A的坐标为(﹣2,3),且AB=3,则点B的坐标为.18.(3分)已知实数x,y同时满足三个条件:①3x﹣2y=4+p;②3y﹣2x=2﹣p;③x>y,那么实数p的取值范围是.三、解答题(本题共46分)19.(6分)解方程组:.20.(7分)解不等式组:并把它的解集在所给数轴上表示出来.21.(8分)如图,在由边长为1的小正方形组成的网格图中建立平面直角坐标系.(1)直接写出点D的坐标(,);(2)平移△ABC,使得点A与点D重合,请在坐标系中画出平移后的三角形,记为△DB1C1(其中B、C的对应点分别是B1、C1);(3)若P1(a,b)在线段DB1上,则其平移前的对应点P的坐标为(,).22.(6分)完成下面填空.已知:如图,AE平分∠BAD,AB∥CD,CD与AE相交于点F,∠CFE=∠E,求证:AD∥BC证明:∵AB∥CD(已知)∴∠1=∠(两直线平行,同位角相等)∵AE平分∠BAD(已知)∴∠1=∠(角平分线定义)又∵∠CFE=∠E(已知)∴∠=∠E(等量代换)∴AD∥BC()23.(9分)今年央视举办的“经典咏流传”节目受到中学生的广泛关注,某中学为了了解学生对观看“经典咏流传”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制了如下所示的两幅统计图.在条形统计图中,从左往右依次为A类(非常喜欢),B 类(较喜欢),C类(一般),D类(不喜欢),已知A类和B类所占人数比是5:9,请结合两幅统计图,回答下列问题:(1)此次抽样调查的样本容量是:.(2)请补全两幅统计图:并计算扇形统计图“D类(不喜欢)”部分的圆心角度数;(3)该校有2000名学生,请你估计对观看“经典咏流传”节目较喜欢的学生人数.24.(10分)某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.【分析】依据实数的分类进行判断即可.【解答】解:是开方开不尽的数,是无理数;0.1010010001是有限小数,是有理数;是开方开不尽的数,是无理数;是无理数.故选:B.【点评】本题主要考查的是实数的概念,熟练掌握实数的定义是解题的关键.2.【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、审核书稿中的错别字,必须准确,故必须普查;B、此种情况数量不是很大,故必须普查;C、人数不多,容易调查,适合普查;D、中学生的人数比较多,适合采取抽样调查;故选:D.【点评】本题考查了全面调查与抽样调查的应用,一般由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.3.【分析】依据平行线的三条判定定理,进行判断.【解答】解:A、B、∠1与∠2,∠3与∠4都不是直线AB与CD形成的同位角,所以不能判断直线AB∥CD,故错误;C、根据对顶角相等,可得∠1=∠5,∠4=∠6,又∠1+∠4=180°,∴∠5+∠6=180°,根据同旁内角互补,两直线平行可得AB∥CD,故正确;D、∠3+∠4=90°,不符合平行线的判断条件,所以不能判断直线AB∥CD,故错误;故选:C.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.4.【分析】首先利用已知点确定原点位置,进而得出答案.【解答】解:如图所示:西单站的坐标为:(﹣5,0).故选:D.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.5.【分析】根据不等式的性质1,可判断A;根据不等式的性质2,可判断B、C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选:D.【点评】本题考查了不等式的性质,.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变6.【分析】解决本题需要从统计图获取信息,由此关键是明确图表中数据的来源及所表示的意义,对选项一一分析,选择正确答案.【解答】解:A、2003年农村居民人均收入每年比上一年增长率低于2002年,但是,人均收入仍是增长,所以A错误;B、农村居民人均收入比上年增长率低于9%的有3年,所以B错误;C、农村居民人均收入比上年增长率最多时2004年,所以C错误;D、农村居民人均收入每年比上一年的增长率有大有小,但都在增长,故D正确.故选:D.【点评】本题考查的是折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.注意读图获取信息、分析问题解决问题的能力.7.【分析】依据算术平方根的性质、立方根的性质求解即可.【解答】解:==4,故A错误;=,3==,故B错误;﹣=﹣,故C正确;=2,故D错误.故选:C.【点评】本题主要考查的是立方根、平方根、算术平方根的概念,熟练掌握相关概念是解题的关键.8.【分析】根据平行线性质得出∠1=∠NFE=25°,∠2=∠NFG,求出∠EFG,即可求出答案.【解答】解:过F作FN∥AD,∵BC∥AD,∴BC∥AD∥FN,∴∠1=∠NFE=35°,∠2=∠NFG,∵∠G=90°,∠E=30°,∴∠EFG=60°,∴∠2=60°﹣25°=35°,故选:B.【点评】本题考查了平行线性质,三角形内角和定理的应用,关键是根据平行线性质得出∠1=∠NFE=25°,∠2=∠NFG.9.【分析】先求出不等式的解集,再根据不等式组有解即可得到关于a的不等式,求出a 的取值范围即可.【解答】解:,由①得,x>a﹣1;由②得,x≤2,∵此不等式组有解,∴a﹣1<2,解得a<3.故选:B.【点评】本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键.10.【分析】根据点A1、A2、A3、A4、A5、A6、A7、A8、…的坐标的变化,可找出A4n(2n,0)(n为正整数),再结合100=4×25,即可得出A100的坐标.【解答】解:∵A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),A7(3,0),A8(4,0),…,∴A4n(2n,0)(n为正整数).∵100=4×25,∴A100的坐标为(50,0).故选:C.【点评】本题考查了规律型中点的坐标,根据点的坐标的变化找出变化规律“A4n(2n,0)(n为正整数)”是解题的关键.二、填空题(本小题共8小题,每小题3分,共24分)11.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.【分析】理解:不小于4就是大于等于4.【解答】解:由题意可知5x+1≥4.故答案是:5x+1≥4.【点评】考查了由实际问题抽象出一元一次不等式.要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.13.【分析】将x与y的值代入方程即可求出a的值.【解答】解:将x=2,y=2代入方程得:2a﹣4=4,解得:a=4.故答案为:4【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.【分析】要先判断出<0,再根据绝对值的定义即可求解.【解答】解:∵<0∴||=2﹣.故答案为:2﹣.【点评】此题主要考查了绝对值的性质.要注意负数的绝对值是它的相反数.15.【分析】根据平行线的性质,即可得到∠3的度数,再根据平角的定义以及折叠的性质,即可得到∠2的度数.【解答】解:根据长方形的对边平行,可得∠1+∠3=180°,∵∠1=100°,∴∠3=80°,由折叠可得,∠2=∠4=(180°﹣80°)=50°,故答案为:50【点评】本题主要考查了平行线的性质以及折叠的性质,解题时注意:两直线平行,同旁内角互补.16.【分析】设甲牧童有x只羊,乙牧童有y只羊,根据题意列出方程组解答即可.【解答】解:设甲牧童有x只羊,乙牧童有y只羊,可得:,故答案为:,【点评】此题考查二元一次方程组的应用,解答此题的关键是弄清题意,设出未知数,再根据数量关系列出方程组解决问题.17.【分析】根据平行于y轴的点的横坐标相同可得点B的横坐标,再分点B在点A的上方与下方两种情况讨论求解.【解答】解:∵AB∥y轴,点A的坐标为(﹣2,3),∴点B的横坐标为﹣2,∵AB=3,∴点B在点A的上方时,点B的纵坐标为6,点B的坐标为(﹣2,6),点B在点A的下方时,点B的纵坐标为0,点B的坐标为(﹣2,0),综上所述,点B的坐标为(﹣2,6)或(﹣2,0)故答案为:(﹣2,6)或(﹣2,0)【点评】本题考查了坐标与图形性质,主要利用了平行于y轴的点的横坐标相同的性质,要注意分情况讨论,作出图形更形象直观.18.【分析】首先根据:①3x﹣2y=4+p,②3y﹣2x=2﹣p,用p表示出x、y;然后根据x >y,求出实数p的取值范围是多少即可.【解答】解:①×2+②×3,可得:5y=14﹣p,解得y=2.8﹣0.2p③,把③代入①,解得x=3.2+0.2p,∵x>y,∴3.2+0.2p>2.8﹣0.2p,解得p>﹣1.故答案为:p>﹣1.【点评】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.三、解答题(本题共46分)19.【分析】利用加减消元法求解可得.【解答】解:①+②×5,得:44y=660,解得:y=15,将y=15代入①,得:5x﹣15=110,解得:x=25,所以方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:解不等式①,得:x≥1,解不等式②,得:x<4,所以不等式组的解集为1≤x<4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.21.【分析】(1)直接利用平面直角坐标系得出D点坐标;(2)利用D点平移规律得出各对应点位置进而得出答案;(3)利用平移规律得出P点坐标.【解答】解:(1)点D的坐标为:(﹣2,3);故答案为:﹣2,3;(2)如图所示:△DB1C1即为所求;(3)P1(a,b)在线段DB1上,则其平移前的对应点P的坐标为:(a+3,b﹣2).故答案为:a+3,b﹣2.【点评】此题主要考查了平移变换,正确得出点的平移规律是解题关键.22.【分析】由AB与CD平行,利用两直线平行内错角相等得到一对角相等,再由AE为角平分线得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【解答】证明:∵AB∥DC(已知),∴∠1=∠CFE(两直线平行,同位角相等).∵AE平分∠BAD(已知),∴∠1=∠2(角平分线的定义),∴∠CFE=∠2(等量代换).∵∠CFE=∠E(已知),∴∠2=∠E(等量代换),∴AD∥BC(内错角相等,两直线平行).故答案为:∠CFE;∠2;∠2;内错角相等,两直线平行.【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.【分析】(1)根据统计图中的数据可以求得此次抽样调查的样本容量;(2)根据统计图中的数据可以求得选择C和D的人数,B和D所占的百分比从而可以将统计图补充完整,并求得扇形统计图“D类(不喜欢)”部分的圆心角度数;(3)根据统计图的数据可以求得对观看“经典咏流传”节目较喜欢的学生有多少人.【解答】解:(1)此次抽样调查的样本容量是:20÷20%=100,故答案为:100;(2)选择C的有:100×19%=19人,选择D的有:100﹣20﹣36﹣19=25人,B所占的百分比是:36÷100×100%=36%,D所占的百分比是:25÷100×100%=25%,补全的统计图如右图所示,扇形统计图“D类(不喜欢)”部分的圆心角度数是:360°×25%=90°;(4)2000×36%=720(人),答:对观看“经典咏流传”节目较喜欢的学生有720人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体、样本容量,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.【分析】(1)根据用8000元购进了大樱桃和小樱桃各200千克,以及大樱桃的进价比小樱桃的进价每千克多20元,分别得出等式求出答案;(2)根据要想让第二次赚的钱不少于第一次所赚钱的90%,得出不等式求出答案.【解答】解:(1)设小樱桃的进价为每千克x元,大樱桃的进价为每千克y元,根据题意可得:,解得:,小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,200×[(40﹣30)+(16﹣10)]=3200(元),∴销售完后,该水果商共赚了3200元;(2)设大樱桃的售价为a元/千克,(1﹣20%)×200×16+200a﹣8000≥3200×90%,解得:a≥41.6,答:大樱桃的售价最少应为41.6元/千克.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确表示出总费用是解题关键.一、七年级数学易错题1.如图,在直角坐标系中,已知点()()3,0,0,4A B -,对OAB ∆连续作旋转变换,,依次得到1,2,3,4?·····∆∆∆∆则2013∆的直角顶点的坐标为( )A .()8052,0B .()8040,0C .()8049,0D .()8048,0【答案】A 【解析】 【分析】根据勾股定理列式求出AB 的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2013除以3,根据商为671可知第2013个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可. 【详解】解:∵点A (-3,0)、B (0,4), ∴22345AB +=,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12, ∵2013÷3=671,∴△2013的直角顶点是第671个循环组的最后一个三角形的直角顶点, ∵671×12=8052,∴△2013的直角顶点的坐标为(8052,0). 故选:A .【点睛】本题考查点的坐标变化规律,注意观察图形,得到每三个三角形为一个循环组依次循环是解题的关键.2.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70°B.80°C.90°D.100°【答案】B【解析】因为AB∥DF,所以∠D+∠DEB=180°,因为∠DEB与∠AEC是对顶角,所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B.3.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是()A.3B.4C.5D.6【答案】D【解析】【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【详解】∵A(1,0),B(1-a,0),C(1+a,0)(a>0),∴AB=1-(1-a)=a,CA=a+1-1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD 交⊙D 于P′,此时AP′最大,∵A (1,0),D (4,4), ∴AD=5, ∴AP′=5+1=6, ∴a 的最大值为6. 故选D . 【点睛】本题考查圆、最值问题、直角三角形性质等知识,解题的关键是发现PA=AB=AC=a ,求出点P 到点A 的最大距离即可解决问题,属于中考常考题型.4.已知关于x 、y 的方程组22331x y kx y k +=⎧⎨+=-⎩以下结论:①当0k =时,方程组的解也是方程24-=-x y 的解;②存在实数k ,使得0x y +=;③当1y x ->-时,1k >;④不论k 取什么实数,3x y +的值始终不变,其中正确的是( ) A .①②③ B .①②④C .①③④D .②③④【答案】B 【解析】 【分析】①把k=0代入方程组求出解,代入方程检验即可;②方程组消元k 得到x 与y 的方程,检验即可;③表示出y-x ,代入已知不等式求出k 的范围,判断即可;④方程组整理后表示出x+3y ,检验即可. 【详解】解:①把k=0代入方程组得:20231x y x y +=⎧⎨+=-⎩,解得:21x y =-⎧⎨=⎩, 代入方程得:左边=-2-2=-4,右边=-4,左边=右边,此选项正确; ②由x+y=0,得到y=-x ,代入方程组得:31x kx k -=⎧⎨-=-⎩,即k=3k-1,解得:12k =, 则存在实数12k =,使x+y=0,本选项正确;③22331x y k x y k +=⎧⎨+=-⎩,解不等式组得:321x k y k=-⎧⎨=-⎩,∵1y x ->-, ∴1(32)1k k --->-, 解得:1k <,此选项错误; ④x+3y=3k-2+3-3k=1,本选项正确; ∴正确的选项是①②④; 故选:B. 【点睛】此题考查了二元一次方程组的解以及解二元一次方程组熟练掌握运算法则是解本题的关键.5.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③【答案】C 【解析】 【分析】 【详解】解:①∵∠B+∠BCD=180°, ∴AB ∥CD ; ②∵∠1=∠2, ∴AD ∥BC ; ③∵∠3=∠4, ∴AB ∥CD ; ④∵∠B=∠5, ∴AB ∥CD ;∴能得到AB ∥CD 的条件是①③④. 故选C . 【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角. 平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行; 同位角相等,两直线平行.6.已知方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是( ) A .12x y =⎧⎨=⎩ B .34x y =⎧⎨=⎩C .10103x y =⎧⎪⎨=⎪⎩D .510x y =⎧⎨=⎩【答案】D 【解析】 【分析】 将方程组变形,设32,55x y m n ==,结合题意得出m=3,n=4,即可求出x ,y 的值. 【详解】 解:方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩可以变形为:方程组11122232··5532··55xy a b c x y a b c ⎧+=⎪⎪⎨⎪+=⎪⎩ 设32,55x ym n ==, 则方程组可变为111222····a m b n c a m b n c +=⎧⎨+=⎩, ∵方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩, ∴方程组111222····a m b n c a m b n c +=⎧⎨+=⎩的解是34m n =⎧⎨=⎩, ∴323,455x y ==,解得:x=5,y=10, 故选:D . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.弄清题意是解本题的关键.7.如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),…,则第100个点的横坐标为()A.12 B.13 C.14 D.15【答案】C【解析】【分析】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),结合图形找出部分a n的值,根据数值的变化找出变化规律“a n=n”,再罗列出部分S n的值,根据数值的变化找出变化规律()12nn nS+=,依次变化规律解不等式()11002n n+≥即可得出结论.【详解】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),观察,发现规律:a1=1,a2=2,a3=3,…,∴a n=n.S1=a1=1,S2=a1+a2=3,S3=a1+a2+a3=6,…,∴S n=1+2+…+n=()12n n+.当100≤S n,即100≤()12n n+,解得:12201n+≤﹣(舍去),或2201n≥﹣1.∵220114﹣113<,故选:C.【点睛】本题考查了规律型中得点的坐标的变化,解题的关键是根据点的坐标的找出变化规律“()12nn nS+=”.8.已知点A(3a,2b)在x轴上方,在y轴左侧,则点A到x轴、y的距离分别为() A.3a,-2b B.-3a,2b C.2b,-3a D.-2b,3a【答案】C【解析】【分析】应先判断出点A的横纵坐标的符号,进而判断点A到x轴、y轴的距离.【详解】∵点A(3a,2b)在x轴上方,∴点A的纵坐标大于0,得到2b>0,∴点A到x轴的距离是2b;∵点A(3a,2b)在y轴的左边,∴点A的横坐标小于0,即3a<0,∴点A到y轴的距离是-3a;故答案为C.【点睛】本题主要考查点的坐标的几何意义,到x轴的距离就是纵坐标的绝对值,到y轴的距离就是横坐标的绝对值.9.某瓶中装有1分,2分,5分三种硬币,15枚硬币共3角5分,则有多少种装法( ) A.1. B.2. C.3. D.4.【答案】C【解析】【分析】【详解】解:设1分的硬币有x枚,2分的硬币有y枚,则5分的硬币有(15-x-y)枚,可得方程x+2y+5(15-x-y)=35,整理得4x+3y=40,即x=10-34 y,因为x ,y 都是正整数,所以y=4或8或12,所以有3种装法,故选C.10.现有如图(1)的小长方形纸片若干块,已知小长方形的长为a ,宽为b .用3个如图(2)的全等图形和8个如图(1)的小长方形,拼成如图(3)的大长方形,若大长方形的宽为30cm ,则图(3)中阴影部分面积与整个图形的面积之比为( )A .15B .16C .17D .18【答案】B【解析】【分析】观察图③可知3个小长方形的宽与1个小长方形的长的和等于大长方形的宽,小长方形的4个长等于小长方形的3个长与3个宽的和,可列出关于a ,b 的方程组,解方程组得出a ,b 的值;利用a ,b 的值分别求得阴影部分面积与整个图形的面积,即可求得影部分面积与整个图形的面积之比.【详解】解:根据题意、结合图形可得:330433a b a a b +=⎧⎨=+⎩, 解得:155a b =⎧⎨=⎩, ∴阴影部分面积223()310300=-=⨯=a b ,整个图形的面积304304151800=⨯=⨯⨯=a , ∴阴影部分面积与整个图形的面积之比300118006==, 故选B .【点睛】本题考查了二元一次方程组的应用,理解题意并利用大长方形的长与宽和小长方形的关系建立二元一次方程组是解题的关键.11.如果关于x 的不等式组02443x m x x -⎧>⎪⎪⎨-⎪-<-⎪⎩的解集为4x >,且整数m 使得关于x y 、的二元一次方程组831mx y x y +=⎧⎨+=⎩的解为整数(x y 、均为整数),则符合条件的所有整数m 的和是( )A .2-B .2C .6D .10【答案】B【解析】【分析】 根据不等式组求得m ≤4,再解方程组求出732113x m y m ⎧=⎪⎪-⎨⎪=-⎪-⎩,根据x y 、均为整数得到整数m=4、2、-4,即可得到答案.【详解】 解不等式02x m ->得x m >, 解不等式443x x --<-得4x >, ∴m ≤4, 解方程组831mx y x y +=⎧⎨+=⎩得732113x m y m ⎧=⎪⎪-⎨⎪=-⎪-⎩, ∵x y 、均为整数,m-3是7的因数,∴m-3=1、-1、-7,7,即m=4、2、-4,10(舍去)符合条件的所有整数m 的和是4+2-4=2,故选:B.【点睛】此题考查解不等式组,解方程组,因式分解,解题中求出方程组的解,确定m-3是7的因数是解题的关键,由此根据m 的取值范围求出符合条件的所有整数m 的值.12.定义新运算,*(1)a b a b =-,若a 、b 是方程2104x x m -+=(0m <)的两根,则**b b a a -的值为() A .0B .1C .2D .与m 有关 【答案】A【解析】 根据题意可得()()22**11b b a a b b a a b b a a -=---=--+,又因为a ,b 是方程2104x x m -+=的两根,所以2104a a m -+=,化简得214a a m -=-,同理2104b b m -+=,214b b m -=-,代入上式可得()()222211044b b a a b b a a m m ⎛⎫⎛⎫--+=--+-=--+-= ⎪ ⎪⎝⎭⎝⎭,故选A .13.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么( ) A .甲比乙大5岁B .甲比乙大10岁C .乙比甲大10岁D .乙比甲大5岁【答案】A【解析】【分析】设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据已知甲是乙现在的年龄时,乙10岁.乙是甲现在的年龄时,甲25岁,可列方程求解.【详解】解:甲现在的年龄是x 岁,乙现在的年龄是y 岁,由题意可得: 1025x y y x y x-=-⎧⎨-=-⎩ 即210225x y x y -=-⎧⎨-=⎩由此可得,3()15x y -=,∴5x y -=,即甲比乙大5岁.【点睛】本题考查了二元一次方程组的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.14.如图所示,A1(1,3),A2(32,3),A3(2,3),A4(3,0).作折线A1A2A3A4关于点A4的中心对称图形,再做出新的折线关于与x轴的下一个交点的中心对称图形……以此类推,得到一个大的折线.现有一动点P从原点O出发,沿着折线一每秒1个单位的速度移动,设运动时间为t.当t=2020时,点P的坐标为()A.(10103B.(20203C.(2016,0)D.(10103【答案】A【解析】【分析】把点P从O运动到A8作为一个循环,寻找规律解决问题即可.【详解】由题意OA1=A3A4=A4A5=A7A8=2,A1A2=A2A3=A5A6=A6A7=1,∴点P从O运动到A8的路程=2+1+1+2+2+1+1+2=12,∴t=12,把点P从O运动到A8作为一个循环,∵2020÷12=168余数为4,∴把点A3向右平移168×3个单位,可得t=2020时,点P的坐标,∵A3(23,168×6=1008,1008+2=1010,∴t=2020时,点P的坐标(10103,【点睛】本题考查坐标与图形变化,规律型问题等知识,解题的关键是学会探究规律的方法.15.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有﹣个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A.8(x﹣1)<5x+12<8B.0<5x+12<8xC.0<5x+12﹣8(x﹣1)<8D.8x<5x+12<8【答案】C【解析】设有x人,则苹果有(5x+12)个,由题意得:0<5x+12﹣8(x﹣1)<8,故选C.16.设边长为3的正方形的对角线长为a,下列关于a的四种说法:① a是无理数;② a 可以用数轴上的一个点来表示;③ 3<a<4;④ a是18的算术平方根.其中,所有正确说法的序号是A.①④B.②③C.①②④D.①③④【答案】C【解析】根据勾股定理,边长为3的正方形的对角线长为a=①正确.根据实数与数轴上的一点一一对应的关系,a可以用数轴上的一个点来表示,故说法②正确.∵216<a18<25=,∴4<a=,故说法③错误.∵2a18=,∴根据算术平方根的定义,a是18的算术平方根,故说法④正确.综上所述,正确说法的序号是①②④.故选C.17.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()。
七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.9的平方根为()A. 3B.C.D.2.把不等式组的解集表示在数轴上正确的是()A. B.C. D.3.若式子在实数范围内有意义,则x的取值范围是()A. B. C. D.4.若a>b,则下列不等式的变形错误的是()A. B. C. D.5.把方程2x-y=5改写成含x的式子表示y的形式为()A. B. C. D.6.期中考试以后,为了了解我区初一年级的数学成绩,从全区5070名同学中抽出500名同学的数学成绩来估计全区的数学成绩,下列说法中,正确的是()A. 本次抽样的总体是500B. 本次抽样的样本容量是500名同学的数学成绩C. 本次抽样的样本是500D. 本次抽样的个体是每名同学的数学成绩7.如图,AB∥CD,直线EF交AB、CD分别于E、F点,EG⊥EF于E,若∠CFE=146°,则∠CGE=()A. B. C. D.8.若是关于x、y的二元一次方程2x+ay=10的一组解,则a=()A. 1B. 2C. 3D.9.若(a+2)x|a|-1-(b-1)y=7是关于x、y的二元一次方程,则a、b的值分别是()A. ,B. ,C. ,D. ,10.若关于x的一元一次不等式组有解,则a的取值范围为()A. B. C. D.二、填空题(本大题共10小题,共34.0分)11.=______,|3.14-π|=______,=______.12.用不等式表示:“x的3倍与4的差不小于5”为______.13.不等式≥+1的解集为______.14.在平面直角坐标系中,A(2,1),B(-2,1),则直线AB与y轴的位置关系是______.15.某校初一年级共有300人,在某次数学竞赛中某道选择题A、B、C、D四个答案用扇形图表示出来,其中D答案的扇形圆心角为36°,则选择D答案的共有______人.16.在平面直角坐标系中,已知A(1,2),点B在x轴上,使△AOB的面积等于6,则B点的坐标是______.17.定义一种新运算:T(a,b)=2a+3b,若不等式组中的x恰好有5个整数解,则m的取值范围是______.18.已知m是的整数部分,n是的小数部分,求m-n=______.19.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2a,4a,6a,8a,…(a>0),顶点依次用A1,A2,A3,A4,…表示,则顶点A2017的坐标是______.20.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E-∠F=33°,则∠E=______.三、计算题(本大题共1小题,共10.0分)21.(1)解方程组;(2)解不等式组:四、解答题(本大题共7小题,共76.0分)22.在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了______名学生;(2)被调查的学生中,最喜爱丁类图书的有______人,最喜爱甲类图书的人数占本次被调查人数的______%;(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.23.如图,已知直线MN分别交ED、FC于点A与B,且∠MAE+∠ABC=180°,(1)求证:ED∥FC;(2)若AB∥CD,∠ABC=64°,求∠D的度数.24.打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.(1)买一件A商品和一件B商品各要多少元?(2)若两种商品按相同的折扣打折,打折后,买500件A商品和500件B商品,比不打折至少节约1000元钱,问折扣应满足什么条件?25.如图,在平面直角坐标系中,A(-1,4)、B(-3,1).(1)连接AO、BO,求三角形AOB的面积S△AOB;(2)直线AB交x轴于C点,求C点的坐标;(3)平移线段AB,使点A、B的对应点A′、B′都落在坐标轴上,直接写出A′点的坐标:______.26.今年6月份,我市某果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨;(1)该果农安排甲、乙两种货车时有几种方案?请你帮助设计出来;(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,则该果农应选择哪种方案使运费最少,最少运费是多少元?27.已知关于x、y的方程组(1)的解x、y比(2)相应的解x、y正好都小1,而(3)的解满足x+y=27,(1)求a、b的值;(2)求ab-3m的平方根.28.如图1:在平面直角坐标系中,A(0,a),B(0,b),C(m,b),且-+=0,S△ABC=3.(1)直接填空:a=______,b=______,m=______;(2)如图2,设AC交x轴于D,ED⊥AC交y轴于E,∠ADO、∠AED的角平分线交于F点,求∠DFE的度数;(3)如图3,点E为AC延长线上一点,EH⊥AO于H,EG平分∠AEH直线OK⊥EG 于G交AE于K,KT平分∠EKO交x轴于T点,则在E点AC的延长线上运动时,求的值.答案和解析1.【答案】C【解析】解:9的平方根有:=±3.故选:C.根据平方根的定义求解即可,注意一个正数的平方根有两个.此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.2.【答案】D【解析】解:,解①得,x≥-1,解②得,x<1,把解集表示在数轴上,不等式组的解集为-1≤x<1.故选:D.先解不等式组,再把解集表示在数轴上.本题考查了一元一次不等式组的解法以及在数轴上表示不等式的解集,是基础知识比较简单.3.【答案】B【解析】解:由题意,得x-1≥0,解得,x≥1.故选:B.二次根式有意义:被开方数是非负数.考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.【答案】C【解析】解:A、不等式的两边都减8,故A正确;B、不等式的两边都加5,故B正确;C、不等式的两边都乘以-3,不等号的方向改变,故C错误;D、不等式的两边都除以(m2+1),不等号的方向不变,故D正确;故选:C.根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变.5.【答案】C【解析】解:∵2x-y=5,∴-y=-2x+5,则y=2x-5,故选:C.将x看做常数,解方程求得y即可.本题主要考查解二元一次方程,解题的关键是将x看做常数,且掌握解方程的基本步骤.6.【答案】D【解析】解:A、本次抽样的总体是全区5070名同学的数学成绩,此选项错误;B、本次抽样的样本容量是500,此选项错误;C、本次抽样的样本是500名同学的数学成绩,此选项错误;D、本次抽样的个体是每名同学的数学成绩,此选项正确;故选:D.根据总体、个体、样本、样本容量的定义解答:总体:所要考查对象的全体;个体:每一个考查对象;样本:从总体中抽取的部分考查对象;样本容量:样本所含个体的数目(不含单位).此题考查了总体、个体、样本、样本容量,要熟记各概念方可正确进行解答.7.【答案】C【解析】解:∵EG⊥EF,∴∠FEG=90°,∵∠CFE=146°,∴∠CGE=56°.故选:C.由EG⊥EF得出∠FEG=90°,再根据三角形外角的性质即可求解.考查了垂线,三角形外角的性质,关键是熟练掌握各自的定义和性质.8.【答案】B【解析】解:将代入2x+ay=10∴4+3a=10∴a=2故选:B.根据题意将x=2与y=3代入方程中即可求出a的值.本题考查二元一次方程的解,解题的关键正确理解二元一次方程的解,本题属于基础题型.9.【答案】D【解析】解:根据题意,得|a|-1=1,b2=1,且a+2≠0,b-1≠0,解得,a=2,b=-1.故选:D.根据二元一次方程的定义列出关于a、b的二元一次方程,通过解方程组来求a,b的值.主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.10.【答案】A【解析】解:解不等式x+a>0,得:x>-a,解不等式x-2a+3≤0,得:x≤2a-3,∵不等式组有解,∴-a<2a-3,解得:a>1,故选:A.首先解不等式,利用a表示出两个不等式的解集,根据不等式组有解即可得到关于a的不等式,从而求解.本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.11.【答案】2;π-3.14;【解析】解:原式=|-2|=2,原式=π-3.14,原式=,故答案为:2;π-3.14;原式利用二次根式性质,立方根定义,以及绝对值的代数意义计算即可求出值.此题考查了实数的性质,算术平方根,以及立方根,熟练掌握各自的性质是解本题的关键.12.【答案】3x-4≥5【解析】解:根据题意,得:3x-4≥5,故答案为:3x-4≥5根据x的3倍与4的差不小于5,意思是最后算的差应大于或等于5.此题主要考查了由实际问题问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.13.【答案】x≤【解析】解:去分母,得2(x+1)≥3(2x-5)+12,去括号,得2x+2≥6x-15+12,移项合并同类项,得-4x≥-5,系数化为1,得x≤.故答案为x≤.根据解一元一次不等式的步骤,先去分母,再去括号,然后移项,合并同类项,最后化系数为1即可求解.本题考查了解一元一次不等式,掌握解法的基本步骤是解题的关键.注意:不等式的两边乘以同一个负数时,不等号的方向要改变.14.【答案】垂直【解析】解:∵点A与点B的纵坐标相等,∴直线AB⊥y轴,故答案为:垂直.观察点A与点B的坐标,得到它们的纵坐标相同,则可判断直线AB与x轴平行,与y轴垂直.本题考查了坐标与图形性质:利用点的坐标计算相应的线段长和判断线段与坐标轴的位置关系.15.【答案】20【解析】解:∵选择D答案的人数占被调查人数的比例为=,∴选择D答案的人数为200×=20人,故答案为:20.先根据D答案的扇形圆心角为36°求得D答案人数占总人数的比例,再用总人数乘以所得比例可得答案.本题主要考查扇形统计图,解题的关键是明确扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.16.【答案】(-6,0)或(0,6)【解析】解:如图所示:∵A(1,2),点B在x轴上,△AOB的面积等于6,∴B(-6,0)或B'(0,6),故答案为:(-6,0)或(0,6),根据三角形的面积公式解答即可.此题考查三角形的面积,关键是根据三角形面积公式解答.17.【答案】2≤m<3【解析】解:根据题意得:,解得:-3≤x≤m,∵不等式组中的x恰好有5个整数解,∴2≤m<3,故答案为:2≤m<3.先进行变形得出不等式组,求出不等式组的解集,根据题意得出答案即可.本题考查了有理数的混合运算和解一元一次不等式组、不等式组的整数解等知识点,能得出关于m的不等式是解此题的关键.18.【答案】5-【解析】【分析】本题考查了估算无理数的大小:估算无理数大小要用逼近法.用有理数逼近无理数,求无理数的近似值.利用无理数的估算得到m=2,n=-3,然后计算它们的差即可.【解答】解:∵2<<3,∴m=2,∵3<<4,∴n=-3,∴m-n=2-(-3)=5-.故答案为5-.19.【答案】(-505a,-505a)【解析】解:由已知,各顶点每四次一循环,则A2017在第505个正方形的顶点上,且在第三象限;根据正方形边长,A1、A5、A9等各顶点坐标到两个坐标轴距离分别为a、2a、3a等等,到第505个正方形时,A2017到坐标轴的距离为505a.故答案为:(-505a,-505a)分别讨论正方形边长变化规律和点在四个象限的变化规律.本题为平面直角坐标系下的规律探索题,解题过程中除了注意探究图形变化规律,也要注意象限符号的变化.20.【答案】82°【解析】解:如图,过F作FH∥AB,∵AB∥CD,∴FH∥AB∥CD,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,∴∠ECF=180°-β,∠BFC=∠BFH-∠CFH=α-β,∴四边形BFCE中,∠E+∠BFC=360°-α-(180°-β)=180°-(α-β)=180°-∠BFC,即∠E+2∠BFC=180°,①又∵∠E-∠BFC=33°,∴∠BFC=∠E-33°,②∴由①②可得,∠E+2(∠E-33°)=180°,解得∠E=82°,故答案为:82°.过F作FH∥AB,依据平行线的性质,可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,根据四边形内角和以及∠E-∠F=33°,即可得到∠E的度数.本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.21.【答案】解:(1),×2+ ,得:11x=33,解得:x=3,将x=3代入 ,得:12+y=15,解得:y=3,所以方程组的解为;(2)解不等式x+5>1+2x,得:x<4,解不等式3x+2≤4x,得:x≥2,则不等式组的解集为2≤x<4.【解析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再根据“大小小大中间找”求出其公共解集.本题考查的是解二元一次方程组和一元一次不等式组,熟知加减消元法解二元一次方程组和“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【答案】200 15 40【解析】解:(1)共调查的学生数:40÷20%=200(人);故答案为:50;(2)最喜爱丁类图书的学生数:200-80-65-40=15(人);最喜爱甲类图书的人数所占百分比:80÷200×100%=40%;故答案为:15,40;(3)设男生人数为x人,则女生人数为1.5x人,由题意得:x+1.5x=1500×20%,解得:x=120,当x=120时,1.5x=180.答:该校最喜爱丙类图书的女生和男生分别有180人,120人.(1)根据百分比=频数÷总数可得共调查的学生数;(2)最喜爱丁类图书的学生数=总数减去喜欢甲、乙、丙三类图书的人数即可;再根据百分比=频数÷总数计算可得最喜爱甲类图书的人数所占百分比;(3)设男生人数为x人,则女生人数为1.5x人,由题意得方程x+1.5x=1500×20%,解出x的值可得答案.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.【答案】解:(1)∵∠MAE=∠DAB,∠MAE+∠ABC=180°,∴∠DAB+∠ABC=180°,∴ED∥FC;(2)∵AB∥CD,∠ABC=64°,∴∠C=180°-64°=116°,又∵AD∥BC,∴∠D=180°-∠C=64°.【解析】(1)依据∠DAB+∠ABC=180°,即可得到ED∥FC;(2)依据AB∥CD,∠ABC=64°,即可得到∠C=180°-64°=116°,再根据AD∥BC,即可得到∠D=180°-∠C=64°.本题考查了平行线的性质和判定的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.24.【答案】解:(1)设买一件A商品需要x元,买一件B商品需要y元,根据题意得:,解得:.答:买一件A商品需要16元,买一件B商品需要4元.(2)设两种商品都打a折销售,根据题意得:500×(16+4)-500×(16+4)a≥1000,解得:a≤0.9.答:至少打九折.【解析】(1)设买一件A商品需要x元,买一件B商品需要y元,根据“买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设两种商品都打a折销售,根据原价购买500件A商品和500件B商品的总价-打折后购买500件A商品和500件B商品的总价=节省的钱数,即可得出关于a的一元一次不等式,解之即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式.25.【答案】(0,3)【解析】解:(1)S△AOB=;(2)设AB的解析式为:y=kx+b,把(-1,4),(-3,1)代入可得;,解得:,所以直线AB的解析式为:y=1.5x+5.5,把y=0代入解析式,可得:x=-,所以点C的坐标为(-,0);(3)如图所示,A'的坐标为(0,3),故答案为:(0,3),(1)利用三角形的面积公式解答即可;(2)根据待定系数法确定函数关系式后,把y=0代入解析式解答即可;(3)根据平移的性质解答即可.此题考查作图与图形变化,关键是根据三角形的面积计算.26.【答案】解:(1)设安排甲种货车x辆,则安排乙种货车(10-x)辆,依题意得解这个不等式组得∴5≤x≤7∵x是整数∴x可取5、6、7,即安排甲、乙两种货车有三种方案:甲种货车5辆,乙种货车5辆;甲种货车6辆,乙种货车4辆;③甲种货车7辆,乙种货车3辆.(2)方法一:由于甲种货车的运费高于乙种货车的运费,两种货车共10辆,所以当甲种货车的数量越少时,总运费就越少,故该果农应选择 运费最少,最少运费是16500元;方法二:方案 需要运费:2000×5+1300×5=16500(元)方案 需要运费:2000×6+1300×4=17200(元)方案③需要运费:2000×7+1300×3=17900(元)∴该果农应选择 运费最少,最少运费是16500元.【解析】(1)根据两种货车可装的荔枝应大于等于30吨和可装的香蕉应大于等于13吨,列出不等式组进行求解;(2)方法一:在所用的两种车的辆数一定时,所需货车的单价费用越低,所需的总费用越少;方法二:将每种方案的总费用算出,进行比较.本题主要考查不等式在现实生活中的应用,运用数学模型进行解题,使问题变得简单.注意本题的不等关系为:两种货车可装的荔枝应大于等于30吨和可装的香蕉应大于等于13吨.要会灵活运用函数的思想求得运费的最值问题.27.【答案】解:(1)设的解为∴ 的解为∴解得:∴ 是的解,是的解,∴解得:(2)由于,两式相加,3x+3y=9m+36∴x+y=3m+12∴27=3m+12∴m=5∴ab-3m=24-15=9∴9的平方根为±3【解析】(1)设的解为根据题意可以列出关于p与q的方程组,从而可求出答案.(2)由方程组可知3x+3y=9m+36,从而可求出m的值,进而可求出ab-3m的值.本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于中等题型.28.【答案】2;-1;-2【解析】解:(1)∵-+=0,∴,∴a=2,b=-1,由题意BC⊥AB,∵S△ABC=3,∴×(-m)×3=3,∴m=-2,故答案为2,-1,-2.(2)如图2中,DE⊥AC于D,∴∠ADE=∠DOE=90°,∴∠ADO+∠ODE=90°,∠ODE+∠DEO=90°,∴∠ADO=∠DEO,∵∠FDO=∠ADO,∠FEO=∠DEO,∴∠DFO+∠ODE+∠DEF=∠ODE+(∠DEF+∠FEO)=∠ODE+∠DEO=90°,∴∠FDE+∠DEF=90°,∴∠EFD=90°.(3)如图3中,设∠AEG=∠GEH=α,∠TKD=∠TKO=β.∵KG⊥EG,∴α+2β=90°,∵EH⊥y轴,∴OD∥EH,∴∠ADO=∠AEH=2α,∴∠KTO=2α+β,∴2∠KTO-90°=4α+2β-90°=3α=3∠GEH,∴=3.(1)根据二次根式有意义的条件求出a、b的值,再利用三角形的面积公式求出m的值即可;(2)想办法证明∠FDE+∠DEF=90°,即可解决问题;(3)如图3中,设∠AEG=∠GEH=α,∠TKD=∠TKO=β.想办法证明2∠KTO-90°=4α+2β-90°=3α=3∠GEH,即可解决问题;本题考查三角形综合题、角平分线的定义、三角形的内角和定理、三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.。
七年级(下)期末数学试卷题号一二三四总分得分一、选择题(本大题共10 小题,共 30.0 分)1. 计算结果为()A. B. C. 3 D. 92. 以下检查中,适适用全面检查方式的是()A.检查我校某班学生喜爱上数学课的状况B.认识央视“春晚”节目的收视率C.调査某类烟花鞭炮燃放的安全状况D.认识武汉市中小学生的眼睛视力状况3.如图,不等式组的解集在数轴上表示正确的选项是()A. B.C. D.4. 如图,点E在AC的延伸线上,以下条件不可以判断AC BD)∥ 的是(A. B.C. D.5.以下说法正确的选项是()A.是的平方根C.的平方根是 2B.D.3 是的算术平方根8的立方根是6. 《九章算术》中的方程问题:“五只雀、六只燕,共重 1 斤(等于16 两),雀重燕轻.交换此中一只,恰巧同样重,问:每只雀、燕的重量各为多少?”设每只雀、燕的重量各为x 两, y 两,列方程组为()A. B. C.D.7.如图,某乡镇第一季度“家电下乡”产品的购置状况绘制成的两幅不完好的统计图依据统计图供给的信息获取第一季度购置的“家电下乡”产品中热水器的台数为()A. 125B. 100C. 75D. 508.在平面直角坐标系 xOy 中,已知点 A( t,0), B( t+2 ,0), M( 3,4).以点 M为圆心, 1 为半径画圆.点P 是圆上的动点,则△ABP的面积S的范围是()A. B. C. D.9. 若对于 x 的不等式组有解,且对于x 的方程 kx=2( x-2) -( 3x+2)有非负整数解,则切合条件的所有整数k 的和为()A. B. C. D.10.如图,点 M 在线段 BC 上,点 E 和 N 在线段 AC 上,EM∥AB,BE 和 MN 分别均分∠ABC 和∠EMC .以下结论中不正确的选项是()A. B.C. △△D.二、填空题(本大题共 6 小题,共 18.0 分)11. 平面直角坐标系中,点 A 在第二象限,到x 轴的距离是2,到 y 轴的距离是4,则点 A 的坐标为 ______.12.某音像制品企业将某一天的销售数据绘制成以下两幅尚不完好的统计图,若该企业民歌,流行歌曲,故事片,其余等音像制品的销售中,每张制品销售的收益分别为3 元, 5 元, 8 元,4 元,则这天的销售中,该企业双赢利了 ______元.13.如图,把一个长方形纸条ABCD 沿 AF 折叠,点 B 落在点 E 处.已知∠ADB =24°, AE∥BD,则∠FAE 的度数是14.已知不等式组的解集为-2<x<4,则a+b=______.15.对于平面直角坐标系 xOy 中的点 P( a,b),若点 P′的坐标为(a+kb,ka+b)(此中k 为常数,且 k≠0),则称点 P′为点 P 的“ k 属派生点”,比如: P( 1,4)的“ 2 属派生点”为 P′( 1+2×4,2×1+4 ),即 P′( 9, 6).若点 P 在 x 轴的正半轴上,点P 的“ k 属派生点”为P′点.且线段PP'的长度为线段OP 长度的 3 倍,则 k 的值 ______ .16.已知购置60 件 A 商品和 30 件 B 商品共需1080 元,购置50 件 A 商品和 20 件 B 商品共需 880 元.若某商铺需购置 B 商品的件数比购置 A 商品的件数的 2 倍少 4 件,且商铺购置的A、 B 两种商品的总花费不超出296 元,则购置 A 商品的件数最多为______件.三、计算题(本大题共 2 小题,共18.0 分)17.解二元一次方程组18.某市准备将一批帐篷和食品送往扶贫区.已知帐篷和食品共 320 件,且帐篷比食品多 80件.(1)直接写出帐篷有 ______件,食品有 ______件;(2)现计划租用 A、B 两种货车共 8 辆,一次性将这批物质所有送到扶贫区,已知两种车可装帐篷和食品的件数以及每辆货车所需付运费状况如表,问:共有几种租车的方案?最少运费是多少?帐篷(件)食品(件)每辆需付运费(元)A 种货车40 10 780B 种货车20 20 700四、解答题(本大题共 6 小题,共54.0 分)19.小明随机检查了若干市民租用公共自行车的骑车时间t (单位:分),将获取的数据分红四组,绘制了如图统计图,请依据图中信息,解答以下问题:(1)此次被检查的总人数是多少?(2)试求表示 A 组的扇形圆心角的度数,并补全条形统计图.(3)假如骑自行车的均匀速度为 12km/h,请估量,在租用公共自行车的市民中,骑车行程不超出 6km 的人数所占的百分比.20.解不等式组并将不等式组的解集在数轴上表示出来.>21.如图,已知: B, C,E 三点在同向来线上, A, F, E三点在同向来线上,∠1=∠2=∠E,∠3= ∠4.(1)求证: AB∥CD ;(2) CD 是∠ACE 的角均分线,则∠2 和∠4 知足的数目关系是 ______.22.在平面直角坐标系中, O 为坐标原点,点 A 的坐标( a,3),点 B 坐标为( b,6),若 a,b 的方程组知足(1)当 m=-3 时,点 A 的坐标为 ______;点 B 的坐标为 ______.( 3)若 AC⊥x 轴,垂足为 C,BD ⊥x 轴,垂足为 D ,则四边形ACDB 的面积为 ______.23.如图,已知:点 A、 C、 B 不在同一条直线, AD∥BE(1)求证:∠B+∠C﹣∠A= 180°:(2)如图②, AQ、BQ 分别为∠DAC 、∠EBC 的均分线所在直线,尝试究∠C 与∠AQB的数目关系;(3)如图③,在( 2)的前提下,且有 AC∥QB,直线 AQ、BC 交于点 P,QP⊥PB,直接写出∠DAC :∠ACB:∠CBE= _________.24.平面直角坐标系中,点 A,B,C 的坐标分别为 A( a, 3),B( b,6), C( c,1)且 a,b, c 知足(1)请用含 m 的式子分别表示 a, b,c;(2)如图 1,已知线段 AB 与 y 轴订交,若 S△AOC= S△ABC,务实数 m 值;( 3)当实数 m 变化时,若线段 AB 与 y 轴订交,线段 OB 与线段 AC 交于点 P,且PA>PC,务实数 m 的取值范围.答案和分析1.【答案】D【分析】解:=9,应选:D.依据算术平方根的定义计算可得.本题主要考察算术平方根,解题的重点是掌握算术平方根的定义.2.【答案】A【分析】解:A 、检查我校某班学生喜欢上数学课的状况,合适全面检查,故 A 选项正确;B、认识央视“春晚”节目的收视率,合适抽样检查,故B 选项错误;C、调査某类烟花鞭炮燃放的安全状况,合适抽样检查,故 C 选项错误;D、认识武汉市中小学生的眼睛视力状况,适于抽样检查,故D 选项错误.应选:A.依据普查获取的检查结果比较正确,但所费人力、物力和时间许多,而抽样检查获取的检查结果比较近似解答.本题考察了抽样检查和全面检查的差别,选择普查仍是抽样检查要依据所要考察的对象的特色灵巧采用,一般来说,对于拥有损坏性的检查、没法进行普查、普查的意义或价值不大,应选择抽样检查,对于精准度要求高的检查,事关重要的检查常常采用普查.3.【答案】A【分析】解:∵解不等式①得:x ≥1,在数轴上表示为:,应选:A.先求出每个不等式的解集,再求出不等式组的解集即可.本题考察了在数轴上表示不等式组的解集和解一元一次不等式组,能依据不等式的解集找出不等式组的解集是解此题的重点4.【答案】C【分析】解:依据∠3=∠4,可得 AC∥BD ,故A 选项能判断;依据∠D=∠DCE,可得 AC ∥BD ,故B 选项能判断;依据∠1=∠2,可得 AB ∥CD,而不可以判断 AC∥BD ,故C 选项切合题意;依据∠D+∠ACD=180°,可得 AC ∥BD,故 D 选项能判断;应选:C.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.本题主要考察了平行线的判断,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.5.【答案】B【分析】解:A 、负数没有平方根,故 A 错误;2B、3 是(-3)的算术平方根,故 B 正确;2的平方根是±2,故 C 错误;C、(-2)D、8 的立方根是 2,故D 错误.应选:B.本题主要考察的是平方根、立方根的定义和性质,娴熟掌握平方根、立方根的定义和性质是解题的重点.6.【答案】C【分析】解:由题意可得,,应选:C.依据题意能够列出相应的二元一次方程组,从而能够解答本题.本题考察由实质问题抽象出二元一次方程组,解答本题的重点是明确题意,列出相应的方程.7.【答案】B【分析】解:∵产品的总台数为 175÷35%=500(台)∴洗衣机所占的百分比为×100%=30%,则热水器所占的百分比为 1-(5%+35%+10%+30%)=20%.∴热水器的台数为 500 ×20%=100(台),应选:B.依据条形统计图可知电视机是 175 台,依据扇形图可知电视占总产品的 35%,即可求得产品的总数;再求出洗衣机和热水器所占百分比,既而可得答案.本题考察的是条形统计图和扇形统计图的综合运用.读懂统计图,从不一样的统计图中获取必需的信息是解决问题的重点.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反应部分占整体的百分比大小.8.【答案】C【分析】解:如图,由 A (t,0),B(t+2,0)知AB=2 ,当点 P 位于点 P1(3,3)时,△ABP 的面积最小,为×2×3=3,当点 P 位于点 P2(3,5)时,△ABP 的面积最大,为×2×5=5,则 3≤s≤5,应选:C.依据题意画出图形,联合图形知当点 P 位于点 P1(3,3)时△ABP 的面积最小、点 P 位于点 P2(3,5)时△ABP 的面积最大,计算可得.本题主要考察坐标与图形的面积,依据题意画出图形是解题的重点.9.【答案】B【分析】解:,解①得:x≥1+4k,解②得:x≤6+5k,∴不等式组的解集为:1+4k ≤ x ≤ 6+5k,1+4k≤ 6+5k,k≥-5,解对于 x 的方程 kx=2(x-2)-(3x+2)得,x=- ,当 k=-4 时,x=2,当 k=-3 时,x=3,当 k=-2 时,x=6,∴-4-3-2=-9;应选:B.先依据不等式组有解得 k 的取值,利用方程有非负整数解,将 k 的取值代入,找出切合条件的k 值,并相加.本题考察认识一元一次不等式组、方程的解,有难度,娴熟掌握不等式组的解法是解题的重点.10.【答案】D【分析】解:∵EM ∥AB ,BE 和 MN 分别均分∠ABC 和∠EMC,∴∠MEB= ∠ABE ,∠ABC= ∠EMC ,∠ABE= ∠MBE ,∠EMN= ∠NMC ,∴∠MEB= ∠MBE (故A 正确),∠EBM= ∠NMC ,∴MN ∥BE(故B 正确),∴MN 和 BE 之间的距离到处相等,∴S△BEM =S△BEN(故C 正确),∵∠MNB= ∠EBN,而∠EBN 和∠MBN 的关系不知,∴∠MBN 和∠MNB 的关系没法确立,故 D 错误,应选:D.依据题意能够推导出题目中的各个小题的结论能否成立,从而能够解答本题.本题考察三角形的面积、平行线的性质,解答本题的重点是明确题意,利用平行线的性质和数形联合的思想解答.11.【答案】(-4,2)【分析】解:∵点 A 在第二象限,到 x 轴的距离是 2,到 y 轴的距离是 4,∴点 A 的坐标为:(-4,2).故答案为:(-4,2).直接利用点的坐标特色从而剖析得出答案.本题主要考察了点的坐标,正确掌握点的坐标特色是解题重点.12.【答案】2130【分析】解:90×3+100×5+130×8+80×4=2130(元),故答案为:2130.依据题意和条形统计图中的数据能够解答本题.本题考察条形统计图、扇形统计图,解答本题的重点是明确题意,利用数形联合的思想解答.13.【答案】57°【分析】解:∵长方形纸片 ABCD 沿 AF 折叠,使 B 点落在 E处,∴∠EAF=∠BAF ,∵AE∥BD ,∴∠EAF=∠AOB ,∵∠BAD=90°,∠ADB=24°∴∠ABD=66°由折叠得:∠BAF= ∠EAF∴∠BAF= ∠AOB==57 °∴∠FAE=57°故答案为:57°.依据折叠的性质获取∠EAF=∠BAF ,由AE ∥BD ,则要有∠EAF=∠AOB ,从而得到∠FAE=.本题考察了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等.也考察了直线平行的性质.14.【答案】-7【分析】解:解不等式 10-x< -(a-2),得x:>a+8,解不等式 3b-2x>1,得:x<,∵不等式组的解集为 -2<x<4,∴,解得:a=-10、b=3,则 a+b=-10+3=-7,故答案为:-7.分别求出每一个不等式的解集,依据确立不等式组的解集列出对于a、b 的方程组,解之可得 a、b 的值,再代入计算可得.本题考察的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的重点.15.【答案】±3【分析】解:设 P(m,0)(m> 0),由题意:P′(m,mk),∵PP′ =3OP,∴|mk|=3m,∵m> 0,∴|k|=3,∴k= ±3.故答案为±3设 P(m,0)(m> 0),由题意:P′(m,mk),依据PP′=3OP,建立方程即可解决问题;本题考察坐标与图形的性质、“k属派生点”的定义,解题的重点是灵巧运用所学知识解决问题,属于中考常考题型.16.【答案】13【分析】解:设 A 商品的单价为 x 元 /件,B 商品的单价为 y 元 /件,依据题意得:,解得:.设该商铺购置 m 件 A 商品,则购置(2m-4)件B 商品,依据题意得:16m+4(2m-4)≤296,解得:m≤13.答:该商铺最多可购置 13 件 A 商品.故答案为:13.设 A 商品的单价为 x 元/件,B 商品的单价为 y 元 /件,依据“购置 60 件 A 商品和30 件 B 商品共需 1080 元,购置 50 件 A 商品和 20 件 B 商品共需 880 元”,即可得出对于 x、y 的二元一次方程组,解之即可求出 A 、B 商品的单价,设该商铺购置 m 件 A 商品,则购置(2m-4)件B 商品,依据总价=单价×数目联合总花费不超出 296 元,即可得出对于 m 的一元一次不等式,解之取此中的最大值即可得出结论.本题考察了二元一次方程组的应用以及一元一次不等式的应用,依据各数目间的关系,正确列出一元一次不等式是解题的重点.17.【答案】解:,②×3-② ×2,得: 7y=14,解得: y=2,将 y=2 代入,得: 2x+10=8 ,解得: x=-1 ,因此方程组的解为.【分析】利用加减消元法求解可得.本题考察认识二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【答案】200120【分析】解:(1)设食品 x 件,则帐篷(x+80)件,由题意,得x+ (x+80)=320,解得:x=120.则帐篷有 120+80=200 件.故答案为 200,120;(2)设租用 A 种货车 a 辆,则 B 种货车(8-a)辆,由题意,得,解得:2≤a≤4.∵a 为整数,∴a=2,3,4.∴B 种货车为:6,5,4.∴租车方案有 3 种:方案一:A 车 2 辆,B 车 6 辆;方案二:A 车 3 辆,B 车 5 辆;方案三:A 车 4 辆,B 车 4 辆;3种方案的运费分别为:①2×780+6 ×700=5760(元);② 3×780+5 ×700=5840(元);③ 4×780+4 ×700=5920(元).则方案①运费最少,最少运费是 5760 元.(1)设食品 x 件,则帐篷(x+80)件,依据帐篷和食品共 320 件成立方程求出其解即可;(2)设租用 A 种货车 a 辆,则 B 种货车(8-a)辆,依据帐篷和食品的数目成立不等式组求出运输方案,再分别计算出每种方案的运费,而后比较得出结果.本题考察了列一元一次方程解实质问题的运用和一元一次不等式组的运用,解答时依据条件供给的数目关系成立方程和不等式组是解答本题的重点.19.【答案】解:(1)检查的总人数是:19÷38%=50 (人);( 2) A 组所占圆心角的度数是:360× =108 °,C 组的人数是:50-15-19-4=12 .;( 3)行程是6km 时所用的时间是:6÷12=0.5 (小时) =30 (分钟),则骑车行程不超出6km 的人数所占的百分比是:×100%=92% .【分析】(1)依据B 类人数是 19,所占的百分比是 38%,据此即可求得检查的总人数;(2)利用360°乘以对应的百分比即可求解;(3)求得行程是 6km 时所用的时间,依据百分比的意义可求得行程不超过6km 的人数所占的百分比.本题考察的是条形统计图和扇形统计图的综合运用,读懂统计图,从不一样的统计图中获取必需的信息是解决问题的重点.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反应部分占整体的百分比大小.20.【答案】解:,>②解不等式,得x≤4,解不等式,得x>,因此原不等式组的加减为< x≤4.把不等式的解集在数轴上表示为:【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,而后把不等式的解集表示在数轴上即可.本题考察认识一元一次不等式组,利用不等式的性质正确求出不等式组中每一个不等式的解集是解题的重点.也考察了不等式组解集在数轴上的表示方法.21.【答案】∠2=【分析】证明:(1)∵∠2=∠E(已知)∴AD ∥BC(内错角相等,两直线平行)∴∠3=∠DAC (两直线平行,内错角相等)∵∠3=∠4(已知)∴∠4=∠DAC (等量关系)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF即∠BAF= ∠DAC∴∠4=∠BAC (等量代换)∴AB ∥CD(同位角相等,两直线平行)(2)∵AD∥BC,∴∠DCE=∠D,∵CD 是∠ACE 的角均分线,∴∠ACD= ∠DCE,∵∠4=180 °-∠2-∠D,∵∠3=∠4=180 °-∠ACD- ∠DCE,∴∠2=∠ACD= ∠DCE=.故答案为:∠2=.(1)依据平行线的判断可得 AD ∥BC,依据平行线的性质和等量关系可得∠4=∠BAC ,再依据平行线的判断可得 AB ∥CD.(2)依据平行线的性质和三角形内角和解答即可.本题考察了平行线的判断:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.22.【答案】(-4,3)(-2,6)9【分析】解:(1)将原方程组整理可得,解得:,当 m=-3 时,a=-4、b=-2,∴点 A 坐标为(-4,3)、点B 坐标为(-2,6),故答案为:(-4,3)、-(2,6);(2)将代入不等式组,得:解得:2≤m≤5;(3)由(1)知A (m-1,3)、B(m+1,6),∴CD=m+1- (m-1)=2,AC=3、BD=6,则四边形 ACDB 的面积为×CD× (AC+BD)=×2×9=9,故答案为:9.(1)将m 看做常数解方程组得,再把m=-3代入即可得;(2)将代入不等式组可获取对于m的不等式组,解之可得;(3)由A (m-1,3)、B(m+1,6)知CD=m+1- (m-1)=2,AC=3、BD=6,再依据梯形的面积公式计算可得.本题主要考察三角形的面积,解题的重点是掌握解二元一次方程组、一元一次不等式组的能力及坐标与图形的性质.23.【答案】(1)证明:在图中,过点 C 作 CF ∥AD ,则 CF ∥BE.∵CF ∥AD ∥BE,∴∠ACF=∠A,∠BCF=180 °-∠B,∴∠ACF+∠BCF +∠B-∠A=∠A+180 °-∠B+∠B- ∠A=180 °.( 2)解:在图 2 中,过点Q 作 QM ∥AD ,则 QM ∥BE.∵QM ∥AD , QM ∥BE,∴∠AQM=∠NAD ,∠BQM=∠EBQ.∵AQ 均分∠CAD , BQ 均分∠CBE,∴∠NAD= ∠CAD,∠EBQ= ∠CBE,∴∠AQB=∠BQM -∠AQM = (∠CBE-∠CAD ).∵∠C=180 °-(∠CBE-∠CAD) =180 °-2∠AQB,∴2∠AQB+∠C=180 °.(3) 1:2: 2【分析】解:(1)见答案 .(2)见答案 .(3)∵AC ∥QB,∴∠AQB= ∠CAP=∠CAD,∠ACP=∠PBQ=∠CBE,∴∠ACB=180°-∠ACP=180°-∠CBE.∵2∠AQB+ ∠ACB=180°,∴∠CAD=∠CBE.又∵QP⊥PB,∴∠CAP+∠ACP=90°,即∠CAD+ ∠CBE=180°,∴∠CAD=60°,∠CBE=120°,∴∠ACB=180°-(∠CBE- ∠CAD )=120 °,∴∠DAC :∠ACB :∠CBE=60°:120 °:120 °=1:2:2,故答案为:1:2:2.(1)过点 C 作 CF∥AD ,则 CF∥BE,依据平行线的性质可得出∠ACF=∠A 、∠BCF=180°-∠B,据此可得;(2)过点 Q 作 QM ∥AD ,则 QM ∥BE,依据平行线的性质、角均分线的定义可得出∠AQB= (∠CBE-∠CAD ),联合(1)的结论可得出 2∠AQB+∠C=180°;(3)由(2)的结论可得出∠CAD= ∠CBE①,由QP⊥PB 可得出∠CAD+ ∠CBE=180°②,联立①②可求出∠CAD 、∠CBE 的度数,再联合(1)的结论可得出∠ACB 的度数,将其代入∠DAC :∠ACB :∠CBE 中可求出结论.本题主要考察平行线的性质,解题的重点是娴熟掌握平行线的性质、增添辅助线建立平行线.24.【答案】解:(1)由解得:,∴a=m,b=m+4, c=m+6.(2)∵S△AOC = S△ABC,∴( 3+1)×6- ×3×( -m)- ×1×(m+6)= ?[30- ×3×4- ×5×2- ×6×2],解得 m=- .(3)∵A( m,3), B( m+4, 6), C( m+6, 1),∴直线 OB 的分析式为y=x,当点 P 是 AC 中点时, P( m+3, 2),湖北省武汉市七年级(下)期末数学试卷-把点 P( m+3, 2)代入 y=x,获取, 2=?( m+3 ),解得: m=- ,察看图象可知:当PA>PC ,且线段 AB 与 y 轴订交时,,<∴-4≤m< - .【分析】(1)解方程组即可解决问题;(2)利用切割法建立方程即可解决问题;(3)求出点P 是 AC 中点时,点P 坐标,求出直线 OB 的分析式(用 m 表示),再利用待定系数法即可解决问题;本题考察三角形的面积、解三元一次方程组、坐标与图形的性质、一次函数的应用、中点坐标公式等知识,解题的重点是灵巧运用所学知识解决问题,属于中考压轴题.第21 页,共 21页。
七年级下学期期末数学模拟测试题一、选择题(每小题3分,共36分)1、 如图,AB ∥CD ,直线EF 分别交AB ,CD 于E ,F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG =72°,则∠EGF 等于 ( ) A . 36° B . 54° C . 72 ° D . 108° 2、若实数满足(x +y +2)(x +y -1)=0,则x +y 的值为( )A 、 1B 、-2C 、 2或-1D 、-2或13、火柴棒摆成如图所示的象形“口”字,平移火柴棒后,原图形变成的象形文字是( )4.线段CD 是由线段AB 平移得到的,点A (-1,4)的对应点为C (4,7),则点B (-4,-1)•的对应点的坐标为( )(A )(2,9) (B )(5,3) (C )(1,2) (D )(-9,-4)5.在一次“人与自然”知识竞赛中,竞赛题共25道,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于60分得奖,那么得奖至少应选对( )道题.A 、18B 、19C 、20D 、216、已知关于x 、y 的方程组2564x y bx ay +=-⎧⎨-=⎩ 和方程组803516bx ay x y +=-⎧⎨-=⎩有相同的解,那么2007()a b +的值为( )A 、—2007B 、—1C 、1D 、20077.在整理数据5,5,3,■,2,,4时,■处的数据看不清,但从扇形统计图的答案上发现数据5的圆心角是1800,则■处的数据是( )A .2B .3C .4D .58、点A (2,0),B (0,1),点P 在y 轴上,且三角形PAB 的面积为4,则点P的坐标为DCBA( )A (0,5)B (0,-3)C (0,-3)或(0,5)D 无法确定.9、已知点P 位于y 轴右侧,距y 轴3个单位长度,位于x 轴上方,距离x 轴4个单位长度,则点P 坐标是( )A .(-3,4)B .(3,4)C .(-4,3)D .(4,3)10、 锐角三角形的三个内角是∠A 、∠B 、∠C ,如果B A ∠+∠=∠α,C B ∠+∠=∠β,A C ∠+∠=∠γ,那么α∠、β∠、γ∠这三个角中 ( A )A .没有锐角B .有1个锐角C .有2个锐角D .有3个锐角 11.4.观察图和所给表格中的数据后回答:当梯形的个数为n 时,图形周长为( )A.3n B.3n+1 C.3n+2 D.3n+3 12、用三块正多边形的木板铺地,拼在一起并相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数应是( ) A .4B .5C .6D .8二、填空(每小题3分,共24分)1、已知2x-3y=1,则用含y 的代数式来表示x 为 。
七年级(下)期末数学试卷 题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.在平面直角坐标系中,点P (-3,-4)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.16的平方根是( )A. B. 4 C. D. ±4−4163.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为( )A. B. C. D. x >2x ≤42≤x <42<x ≤44.下列各数中,是无理数的是( )A. B. C. D. 167311 3.145.已知是方程2x -ay =3的一组解,那么a 的值为( ){x =1y =−1A. 1B. 3C.D. −3−156.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的一组对边上,如果∠1=25°,那么∠2的度数是( )A. B. C. D. 30∘25∘20∘15∘7.以下问题,不适合用全面调查的是( )A. 旅客上飞机前的安检B. 学校招聘教师,对招聘人员的面试C. 了解一批灯泡的使用寿命D. 了解701班的身高情况8.一个正方体的体积为25,估计这个正方体的边长在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间9.在△ABC 内任意一点P (a ,b )经过平移后对应点P 1(c ,d ),已知 A (3,2)在经过此次平移后对应点A 1的坐标为(5,-1),则a +b -c -d 的值为( )A. B. C. 1D. 5−5−110.若关于x 的不等式mx -n >0的解集是x <,则关于x 的不等式(n -m )x >(m +n )14的解集是( )A. B. C. D. x <−53x >−53x <53x >53二、填空题(本大题共6小题,共18.0分)11.=______.412.如图,直线AB ,CD 相交于点O ,OE ⊥AB 于点O ,∠COB =145°,则∠DOE =______.13.一个容量为60的样本,样本中最大值是172,最小值是150,取组距为3,则该样本可以分为______组.14.一个正数的平方根是2a -2与3-a ,则a 等于______.15.若第二象限的点P (a ,b )到x 轴的距离是4+a ,到y 轴的距离是b -1,则点P 的坐标为______.16.如图,AB ∥CD ,∠ABK 的角平分线BE 的反向延长线和∠DCK 的角平分线CF 的反向延长线交于点H ,∠K ﹣∠H =27°,则∠K = 。
七年级数学下学期期末试卷(一) 注:此套试题答案见已出版的合订本答案
武汉张华 (时间:120分钟 满分:120分)
一、 细心选一选(本题有12个小题, 每小题3分, 满分36分 ,下面每小题给出的四个选项
中, 只有一个是正确的. ) 1、下列说法正确的是( )
A 、同位角相等
B 、在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥c 。
C 、相等的角是对顶角
D 、在同一平面内,如果a ∥b,b ∥c ,则a ∥c 。
2、已知3a <,则下列四个不等式中,不正确...
的是( ). A .232a -<- B .232a +<+ C .223a <⨯ D .26a -<- 3、下列平面图形中不能镶嵌成一个平面图案的是( ).
A .任意三角形
B .任意四边形
C .正五边形
D .正六边形 4、 5月31日世界无烟日的口号是“戒烟一小时,健康亿人行”.小华学习小组为了解本地
区大约有多少成年人吸烟,随机调查了100个成年人,结果其中有15个成年人吸烟.对于这个关于数据收集与描述的问题,下列说法正确的是( ).
A .调查的方式是普查
B .本地区只有85个成年人不吸烟
C .样本是15个吸烟的成年人
D .本地区约有15%的成年人吸烟 5、长为9,6,5,3的四根木条,选其中三根组成三角形,共有( )种选法. A .4 B .3 C .2 D .1
6、点P (2,—4)关于x 轴的对称点的坐标为 ( ) A .(2,4) B .(2,-4) C .(-2,4) D .(-2,-4)
7、如图,周董从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20
方向行走至C 处,
此时需把方向调整到与出发时一致,则方向的调整应是( ).
A .右转80°
B .左转80°
C .右转100°
D .左转100°
8、 若a 、b 都是有理数, 则下列各式中正确的是( ) A. 若a+b=0, 则a>b
B. 若ab=1, 则a>b
C. 若ac>bc, 则b>c
D. 若a 2>0, 则a ≠0
9、若不等式组841
x x x m
+<-⎧⎨
>⎩的解集是3x >,则m 的取值范围是
( ) A .3m = B .3m < C .m ≥3 D .m ≤3
10、已知点P (a ,a-1),则点p 不可能在( )
第7题
A .第一象限 B.第二象限 C.第三象限 D.第四象限
11、为保护生态环境,陕西省某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米。
设改变后耕地面积x 平方千米,林地地面积y 平方千米,根据题意,列出如下四个方程组,其中正确的是( )
A ⎩⎨
⎧⋅==+%25180x y y x B ⎩⎨⎧⋅==+%25180y x y x C ⎩⎨⎧=-=+%25180y x y x D ⎩⎨⎧=-=+%
25180
x y y x
12、如下图,△ABC 中,∠A =∠ACB ,CP 平分∠ACB ,BD 、CD 分别为△ABC 的两外角
的平分线,则下列结论:①CP ⊥CD ;②1
902
D A ∠=︒-
∠;③PD//AC ;④1
()4
P A ACB ∠=
∠+∠,其中正确的是( ) A 、①②③
B 、②③④
C 、①②④
D 、①②③④
第12题图
第17题图
二、耐心填一填(本题有6个小题,每小题3分, 满分18分)
13、等腰三角形一边等于5,另一边等于8,则周长是_________ 14、已知关于x 的不等式组0
321x a x -≥⎧⎨
->-⎩的整数解共有4个,则a 的取值范围是 。
15、如图,ΔABC 中,AB=2.5cm,BC=4cm, 则ΔABC 的
高AD 与CE 的比是 .
16、已知关于x ,y 的方程组3
25x y a x y a
-=+⎧⎨+=⎩的解满足0x y >>,则a 的取值范围为__________.
17、如上图,△ABC 的顶点A 的坐标为(1,3),顶点B 的坐标为(-3,0),若将△ABC 向右平移2个单位,C 点的对应点C ′的坐标为(4,0),则△ABC 的面积为____________.
第18题
E
D'
A
E
B D C
E
A
B
D
C
P
F
18、将五边形纸片ABCDE按如图方式折叠,折痕为AF,点E、D分别落在E’、D’,已知∠AFC=76°,则∠CFD’等于°.
三、用心答一答(本大题有7题, 共66分,解答要求写出文字说明, 证明过程或计算步骤)19(本题9分,第1小题4分,第2小题5分)
(1)解方程组
248
24
x y
x y
-=
⎧
⎨
+=-
⎩
①
②
.(2) 解不等式组
⎩
⎨
⎧
+
≤
-
-
+
>
-
);
1(4
1
)2
(5
),
3
(6
1
x
x
x
x
并将解
集在数轴上表示出来:
20、(本题满分8分)已知方程8
mx ny
+=的一个解是
2
x
y
=
⎧
⎨
=
⎩
;
(1)试求出m的值;
(2)若该方程的另一个解是
1
2
x
y
=
⎧
⎨
=
⎩
,求不等式
6
1
x x
m n
-
->的解集.
21、(本题满分9分)
天河某中学七年级甲、乙两个班中,每班的学生人数都为40名,某次数学考试的成绩统计如下:(每组分数含最小值,不含最大值),根据以下图、表提供的信息,回答问题:
(1)请把三个统计图(表)补充完整;
(2)在扇形统计图中,“90~100
(3)你认为这三种图表各有什么特点?
第21题-1 第21题--2
22、(本题满分9分)
已知点(2121)P a a --, 位于第三象限,点()Q x y ,位于第二象限且是由点P 向上平移一定单位长度得到的.
(1)若点P 的纵坐标为-3,试求出a 的值;
(2)在(1)题的条件下,试求出符合条件的一个点Q 的坐标; (3)若点P 的横、纵坐标都是整数,试求出a 的值以及线段PQ
的取值范围.
23、四边形ABCD 中,∠A =140 ,∠D =80 .(本题满分9分)
(1)如图1,若∠B=∠C ,试求出∠C 的度数; (2)如图2,若∠ABC 的角平分线BE 交DC 于点E ,且BE AD ∥,试求出∠C 的度数; (3)如图3,若∠ABC 和∠BCD 的角平分线交于点E ,试求出∠BEC 的度数.
24、(本题满分10分)
甲、乙、丙三个教师承担本学期期末考试的第17题的网上阅卷任务,若由这三人中的某一人独立完成阅卷任务,则甲需要15小时,乙需要10小时,丙需要8小时.
图2
图1
图3
(1)如果甲乙丙三人同时改卷,那么需要多少时间完成?
(2)如果按照甲、乙、丙、甲、乙、丙,……的次序轮流阅卷,每一轮中每人各阅卷1小时,那么需要多少小时完成?
(3)能否把(2)题所说的甲、乙、丙的次序作适当调整,其余的不变,使得完成这项任务的时间至少提前半小时?(答题要求:如认为不能,需说明理由;如认为能,请至少说出一种轮流的次序,并求出相应能提前多少时间完成阅卷任务)
25、(本题满分12分)把一副学生用三角板(30°、60°、90°和45°、45°、90°)如
图(1)放置在平面直角坐标系中,点A在y轴正半轴上,直角边AC与y轴重合,斜边AD与y轴重合,直角边AE交x轴于F,斜边AB交x轴于G,O是AC中点,AC=8。
(1)求点C、点B坐标。
(2)把图1中的Rt△AED绕A点顺时针旋转α度(0≤α<90°) 得图2,此时△AGH
的面积是10,△AHF的面积是8,分别求F、H、G三点的坐标。
(3)如图3,设∠AHF的平分线和∠AGH的平分线交于点M,∠EFH的平分线和∠FOC 的平分线交于点N,当改变α的大小时,∠N +∠M的值是否会改变,若改变,请说明理由,若不改变,请求出其值.
图3。