[配套k12学习]2018年秋七年级数学上册第2章代数式2.2列代数式教案1新版湘教版
- 格式:doc
- 大小:261.00 KB
- 文档页数:3
2.2列代数式(第1课时)教课目的在详细的情形中能列出代数式,进一步熟习代数式的书写要求。
要点难点要点:列代数式;难点:理解描绘数目关系的语句,正确地列出代数式。
教课过程一激情引趣,导入新课1下边是我在从前学生作业中采集到的代数式,他们的书写规范吗?为何?(1) ab3;(2) s÷t;(3) 23xy;(4)(a+b)(a+b);(5) 2+b平方米。
52比一比,看谁做得快而准。
(1)小明买铅笔 5 支,买练习本 4 本,此中铅笔x 元一支,练习本y 元一本,那么他对付给商铺____________元。
(2)某校梯形教室第一排有8 个座位,第二排有位,那么第n 排有 ____________个座位。
10 个座位,此后每排比它前一排多 2 个座(做完后沟通议论,你是怎么知道的?)(3)小斌从边长为10 cm的正方形纸片的4 个角均剪去一个边长为x cm 的小正方形,做成一个无盖的纸盒,你能算出纸盒的表面积吗?x10二合作沟通,研究新知1思虑问题:什么是代数式?察看上边列出的式子:5x 4 y ,8+2(n-1),100 4x2, 前方碰到的: 1139a,3.31t,此后我们将要碰到的:5,2xy2,11, 还有: 0,-1, m,-a 这些式子有什么共同点v0.23x 4 y r R2呢?依据下边的提示回答。
( 1 )在有些式子中,数与数、数与字母、字母与字母之间是用什么符号连结的?_____________(2)这些式子中含有等号或许不等号吗?______________(3)有没有不含有运算符号的式子?____________;你能说出什么是代数式吗?用_______ 把 ______________ 连结而成的式子,叫做代数式。
独自的一个数或许一个字母也叫_________.2 沟通经验:如何列代数式?你有什么经验?例 1 用代数式表示:(1)一个数 x 与 6 的和;( 2)比 -5 小 a 的数;(3) a 与 b 和的平方;(4) a 与 b 的平方和;( 5) a 与 b 的平方差;(6) a 与 b 差的平方;(7)某校买书 25 本,每本 a 元,该校对付书费多少元?(8)有一个容量是 60 升的铁桶,贮满油,拿出(x 1) 升后,桶内还有油多少升?说一说: 25a 还能够表示什么?例 2 3 月 12 日某校团委组织260 名学生(此中女生有 b 人)去青少年世纪林植树,每个男生植树 x 棵,每个女生植树y 棵,你能用代数式表示他们共植树多少棵吗?变式:( 1)3 月 12 日某校团委组织260 名学生(此中女生有 b 人)去青少年世纪林植树, 3个男生植树 5 棵, 5 个女生植树 3棵,你能用代数式表示他们共植树多少棵吗?(2)3 月 12 日某校团委组织260名学生(此中女生有 b 人)去青少年世纪林植树,每个男生植树 x 棵,每个女生比男生少植树 1 棵,你能用代数式表示他们共植树多少棵吗?四应用迁徙稳固提升1 研究规律例 3 下边每个图都是由s 个圆构成的,形如三角形图案,每条边上(包含极点)共有n 个,按此规律推测,用含有n 的式子表示为s=_________。
第二章《代数式》导学案(1)2.1用字母表示数教学目标:1.在现实的情景中理解用字母表示数的意义。
能用字母和代数式表示以前学过的运算律和计算公式。
2.通过独立思考,小组合作,.全力以赴挑战困难,享受学习的快乐。
重点:体会字母表示数和代数式表示规律的含义。
难点:探索一般规律并用代数式表示规律预习案:一、旧知识回顾1.简述乘法的交换律与分配律。
二、预习探究1.你能把课本P55第1题给出的表格填写完整吗?你能总结出什么规律?课本P56动脑筯:你会表示t小时飞行了多少万千米?2.数字和数字相乘时,我们用什么符号?字母和字母相乘、字母和数字相乘时,我们用什么符号?在书写11与a的乘积时,我们要怎样书写?可以写成a11吗?3.字母可以表示整数吗?字母可以表示分数吗?字母可以表示任意的有理数吗?4、课本P56的例1,例2你有何发现?三、预习自测1.若圆的半径用r来表示,那么圆的面积可以表示为,圆的周长可以表示为。
2.某城市市区人口为a万人,市区绿地面积为b万平方米,则平均每人拥有绿地平方米3. 某城市市内公用电话的付费标准是:通话一方从接通开始计费,时间不超过3分钟付费0.4元,超过3分钟后每1分钟加付0.2元。
则通话时间为0到3、4、5、6分钟各需付费、、、元。
如果通话时间用字母n(n>3)表示,那么通话n分钟应付费元。
探究案:一、质疑探究——质疑解疑、合作探究。
(一)基础知识探究探究点一:用字母表示数的特点问题1:1,2,3是三个连续的整数,同样地,-2,-1,0也是三个连续的整数,如果用字母n表示任意一个整数,那么与它相邻的两个整数怎样表示呢?问题2:观察下面一组等式:(+2)+(-2)=0,(+12)+(-12)=0,(+3.8)+(-3.8)=0,你能用简明的语言说明这些等式所揭示的数学规律吗?如果用字母a表示数,上面的规律可写成。
探究点二:用字母表示运算规律及公式问题1:设a,b,c表示任意三个有理数,则乘法结合律可表示为。
列代数式【教学目标】知识与技能1.了解代数式的概念.2.能分析简单问题的数量关系,并用代数式表示,会正确书写代数式.过程与方法1.在探索现实世界数量关系的过程中,建立符号意识.2.初步体会数学中抽象概括的思维方法.情感、态度与价值观1.激发学生从事探索性活动的积极性.2.培养学生自主学习的习惯.【教学重难点】重点:1.根据实际问题列出代数式.2.解释代数式的意义.难点:根据实际问题列出代数式并解释代数式的意义.【教学过程】一、创设情境,引入新课如图为一阶梯的纵截面,一只老鼠沿长方形的两边A-B-D的路线逃跑,一只猫同时沿阶梯(折线)A-C-D的路线去追,结果在距离C点0.6m的D处,猫捉住老鼠,已知老鼠的速度是猫的4/5,你能求出阶梯A-C的长度吗?要想解决这个问题,让我们先来学习本节课的内容——代数式.师:请同学们自主探究,完成下面的问题:1.今日大米x元/千克,食用油y元/千克,妈妈买10千克大米、2千克食用油共需元.2.一隧道长s米,一列火车长180米,如果该火车穿过隧道所花的时间为t分,则列车的速度可表示为米/分.3.将三个边长为acm的正方体拼成一个长方体,则这个长方体的体积为 cm3.4.某瓜子的价格为3千克16元,买n千克需要元.学生解答.教师点评、分析:像这样把数和字母用运算符号连接而成的式子,我们称为代数式.注:1.单独一个数或一个字母也是代数式.2.运算符号是指加、减、乘、除、乘方、开方.代数式书写格式的规定,请同学们阅读课本.二、讲授新课1.指出下列各式中哪些是代数式,哪些不是代数式.(1)x-1;(2)-2x=1;(3)π;(4)5<7;(5)m.2.在式子xy+a,-3,abc,3÷a,a·5,(a+b)2中符合代数式书写要求的有个.学生思考,举手回答.师:通过以上练习,同学们进一步了解了代数式的概念,那么它与等式、不等式的区别是什么?书写时要注意哪些要求?学生讨论交流,教师指导、评价.三、例题讲解【例1】用代数式表示:(1)x的3倍与3的差;(2)x的2倍与y的和;(3)a与b的和的平方;(4)2a的立方根.教师讲解:(1)先理解题目中表示运算关系的词,理清关系;(2)分清运算顺序.补充书写规范:(1)带分数与字母相乘时,应把带分数化为假分数;(2)实际问题中含有单位时,如果运算结果是加或减时,用括号把代数式整个括起来,再写单位.【例2】一辆汽车以80km/h的速度行驶,从A城到B城需t(h).如果该车的行驶速度增加v(km/h),那么从A城到B城需多少时间?四、随堂小结用代数式表示:1.比a的倒数多8的数是 .2.x的倒数与m除n的商的和 .3.与a+b的和是30的数是 .4.m、n两个数平方和的3倍是 .教师指导、评价.列代数式的一般方法有:(1)依据公式(关系)列代数式;(2)依据实际问题列代数式;(3)依据式子或图形探索规律列代数式.五、巩固练习1.甲、乙两数差的平方与甲、乙两数平方的和的积.2.a与b的和除以a与b的差.3.x千克含盐为10%的盐水中含水千克.4.图形阴影部分的面积为 .5.观察下列等式:39×41=402-1,48×52=502-22,56×64=602-42,65×75=702-52,83×97=902-72,……请你把发现的规律用字母表示出来:m·n= .生:()2-()2.师:你能用语言表述3a+5b的意义吗?学生思考,举手回答.教师示范,从两方面考虑:①根据运算顺序的要求去表述,如可以说“a的3倍与b的5倍的和”;②结合具体的实例去表述,如一本笔记本的价格为a元,一支铅笔的价格为b 元,3a+5b表示3本笔记本与5支铅笔的价格.六、变式训练用语言表述下列代数式的意义:1.2(a+b)2.ab学生思考,举手回答,教师指导、点评.七、课堂小结师:通过本节课的学习,你获得了哪些新的知识?你认为自己有哪些方面的进步?学生发言,教师予以点评.。
第2章 代数式 2.1 用字母表示数1.会用字母表示一些简单问题中的数量关系.学会规范书写字母表示的数量关系,培养学生的符号意识.(重点)2.经历把问题情境中的数量用含字母的式子表示的过程,体会用字母表示数的作用和意义. 3.在用字母表示数量关系的过程中感受从具体到一般的归纳思想.阅读教材P 55~56,完成下列问题. 自学反馈用字母表示下列各数: (1)a 的4倍可表示为4a;__ (2)x 的一半与y 的和为12x +y;__(3)底为a ,高为h 的三角形面积为12ah;__(4)甲身高a cm ,乙比甲矮b cm ,那么乙的身高为(a -b)cm .活动1 小组讨论 例1 填空:(1)比a 的0.6倍大c 的数是0.6a +c ; (2)a 与b 的2倍的积为2ab .例2 小莉以5 km / h 的速度走了20 km 的路程,那么她走了多长时间?如用字母v 表示速度,用字母s 表示路程,那么她走的时间又如何表示呢?解:小莉走20 km 所花的时间为20÷5=4(h ).若用字母v 表示速度,用字母s 表示路程, 则时间 t =s ÷ v =s v.1.数字与字母或字母与字母相乘时,通常把乘号简写作“·”或省略不写,如a ×b 写成a·b 或ab ,5×m 写成5m ;2.除法写成分数形式,如1÷n 写成1n;3.字母与数字相乘时,数字需写在字母的前面,如果是带分数,还应化成假分数,如x ×2y 写成2xy ,312×a写成72a.活动2 跟踪训练1.今天中午气温为18 ℃,晚上下降了a ℃,则晚上气温为(18-a)__℃. 2.衬衫原价每件x 元,若按6折出售,则现在的售价为每件0.6x 元.3.七年级一班全班同学合影,第1排站b 个人,以后每排都比前一排多2人,那么第3排站(b +4)人,第n 排站[b +2(n -1)]人.4.一个两位数,十位数为m ,个位数为2,则这个两位数为10m +2. 5.如图,下面图形的周长是2a +2b .活动3课堂小结如何用字母表示数?用字母表示数时需要注意些什么?2.2 列代数式1.进一步理解用字母表示数的意义,理解代数式的概念. 2.能用代数式表示简单实际问题的数量关系.(重点)3.通过具体例子感受同一个代数式可以表示不同的实际意义. 4.能解释一些简单代数式的实际背景或几何意义.(重点)阅读教材P 59~60,完成下列问题.(一)知识探究把数与表示数的字母用运算符号连接而成的式子叫做代数式.单独一个字母或者一个数也是代数式. (二)自学反馈1.下列各式中,是代数式的有①②④⑥,不是的有③⑤. ①a 2-b 2;②x 2+3x +4;③x -1>0;④0;⑤a +b =b +a ;⑥1x .用等号或不等式号连接的式子不是代数式.2.用代数式填空:(1)a 与2b 的差:a -2b;__(2)x ,y 的平方和减去它们的积:__x 2+y 2-xy;__ (3)x ,y 和的平方加上它们的积:__(x +y)2+xy;__活动1 小组讨论例1 用代数式表示: (1)a 的7倍与2b 的差;(2)x, y 两数的平方和减去两数积的2倍; (3)a 的倒数与b 的和. 解:(1) 7a -2b. (2) x 2+ y 2-2xy . (3)1a+b. 例2 列代数式:(1)已知铅笔每支x 元,练习本每本y 元.小明买铅笔5支,练习本6本,需多少元?(2)小兰的家距学校5 km ,她步行的速度是v km /h . 而骑自行车比步行快10 km /h . 她骑自行车的速度是多少?她骑自行车从家到学校需多长时间?解:(1)需(5x + 6y)元.(2)小兰骑自行车的速度是(v +10) km /h ,从家到学校需5v +10. 活动2 跟踪训练1.今年五一假期,张老师一家四口开着一辆轿车去长春市净月潭森林公园度假.若门票每人a 元,进入园区的轿车每辆收费20元,则张老师一家开车进入净月潭森林公园园区所需费用是__(4a +20)元.2.举例说明下列各代数式的意义:(1)4a 2可以解释为如果一个正方形的边长为a ,则4个这样的正方形的面积为4a 2;(2)x(1-5%)可以解释为如果某件商品的原价为x 元,按照降价5%进行降价促销,那么降价后这件商品的售价为x(1-5%)元.3.一种树苗的高度用h 表示,树苗生长的年数用a 表示,测得有关的数据如下(树苗原高100 cm ):年数a 高度h1 100+52 100+103 100+154 100+20……写出用年数a表示高度h为100+5a.活动3课堂小结本课时主要学习了哪些知识与方法?有何收获和感悟?还有哪些疑惑?2.3 代数式的值1.了解代数式的值的意义,会求代数式的值.(重点)2.感受代数式的求值过程可以理解为一个变换过程,能根据问题的需要,找到合适的公式,代入具体的值进行计算.(重点)3.在求代数式的值的过程中,体会代数式的值随着字母取值的变化而变化.阅读教材P 63~64,完成下列问题.(一)知识探究1.如果把代数式里的字母用数代入,那么计算后得出的结果叫做代数式的值.2.代数式里的字母可以取各种不同的数值,但所取的数值必须使代数式和它表示的实际数量有意义. (二)自学反馈1.当x =-1时,代数式3x -2的值为(D ) A .-1 B .1 C .5 D .-52.某本书的单价是x 元,邮费是书价的10%,购买y 册,则应付书款多少元?当x =8,y =5时,应付书款多少元.解:应付款的代数式为(1+10%)xy ;把x =8,y =5代入,得8×5×(1+10%)=40×1.1=44.故应付款为44元.活动1 小组讨论例1 (1)当 x =-3时,求 x 2 -3x +5 的值; (2)当a =0.5,b =-2时,求a 2-b 3ab的值.解:(1) 当x =-3 时, x 2-3x +5=(-3)2-3×(-3)+ 5=23 . (2) 当a =0.5, b =-2时,a 2-b 3ab =0.52-(-2)30.5×(-2)=0.25+8-1=-8.25.例2 我们在计算不规则图形的面积时,有时采用“方格法”来计算.计算方法如下:假定每个小方格的边长为1个单位长,S 为图形的面积,L 是边界上的格点数,N 是内部格点数,则有S =L2+N -1. 请根据此方法计算图中四边形ABCD 的面积.解:由图可知,边界上的格点数L =8,内部格点数N =12,所以四边形ABCD 的面积为S =L 2 +N -1=82+12-1=15.活动2 跟踪训练1.当x =-2时,代数式(x +2)2-x(x +1)的值等于(B )A .2B .-2C .4D .-42.如图是一个数值转换机,若输入的x 为-11,则输出的结果是(C )A.18B.-14C.39D.213.当x=3时,代数式px3+qx+1的值为2 018,则当x=-3时,代数式px3+qx+1的值为(C)A.2 016 B.-2 018C.-2 016 D.2 0174.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高.如果用a表示脚印长度,b表示身高.关系类似于:b=7a-3.(1)某人脚印长度为24 cm,则他的身高约为多少?(2)在某次案件中,抓获了两个可疑人员,一个身高为1.87 m,另一个身高为1.65 m,现场测量的脚印长度为27 cm,请你帮助侦察一下,哪个可疑人员的可能性更大?解:(1)当a=24时,b=7×24-3=165(cm),则他的身高约为165 cm.(2)当a=27时,b=7×27-3=186(cm),因为1.87 m更接近186 cm,所以身高为1.87 m可疑人员的可能性更大.活动3课堂小结本课时主要学习了哪些知识与方法?有何收获和感悟?还有哪些疑惑?2.4 整式1.了解单项式、多项式和整式的概念.2.通过具体的例子理解单项式的次数和系数、多项式的次数、项、常数项等概念. 3.能说出单项式的次数和系数,多项式的次数和常数项.(重点)阅读教材P 66~68,完成下列问题.(一)知识探究1.由数与字母的__积组成的代数式叫做单项式.单独一个字母__或者一个数也是单项式.单项式中,与字母相乘的数叫做这个单项式的系数,所有字母的指数的和叫做这个单项式的次数.2.由几个单项式的和组成的代数式叫做多项式.组成多项式的每个单项式叫做多项式的__项,其中不含字母的项叫做常数项,次数最高的项的次数,叫做这个多项式的次数.3.单项式和多项式统称为整式.(二)自学反馈1.在式子1,a 2,a -b ,y ,15x ,1x 中,是单项式的有1,a 2,y ,15x .2.(1)-a 的系数是-1,次数是1;(2)单项式-3x 2的系数是-3,次数是2; (3)2ab 3c 3的系数是23,次数是5.3.多项式3x 2y -4xy -1由单项式3x 2y ,-4xy ,-1组成的,它是三次三项式,其中二次项是-4xy ,常数项是-1.4.多项式-m 2n 2+m 3-2n -3是4次4项式,最高次项的系数为-1,常数项是-3.(1)当一个单项式的系数是1或-1时,通常省略不写系数,如a 2bc ,-abc 等;(2)单项式的系数带分数时,通常写成假分数,如134x 2y ,写成74x 2y.活动1 小组讨论例 说出下列多项式的次数和常数项: (1)2x -3;(2)-x 3+7x -4;(3)3x -5xy + y 2-4x + 6y -9 . 解:(1)2x -3的次数是1,常数项是-3. (2)-x 3+7x -4的次数是3,常数项是-4.(3) 3x 2-5xy +y 2-4x +6y -9的次数是2,常数项是-9. 活动2 跟踪训练1.下列各式中不是单项式的是(D ) A .a 3 B .-15 C .0D .3a2.已知一个单项式的系数是2,次数是3,则这个单项式可以是(D ) A .-2xy 2 B .3x 2 C .2xy 3 D .2x 33.在多项式2x 2-xy 3+18中,次数最高的项是(D ) A .2 B .18C .2x 2D .-xy 3 4.下列说法正确的是(C ) A .2x -3的项是2x ,3 B .x -1和1x -1都是整式C .x 2+2xy +y 2与x +y5都是多项式 D .3x 2y -2xy +1是二次三项式5.下列代数式中哪些是单项式?哪些是多项式?对于单项式,指出其系数和次数;对于多项式,指出其次数和项数.xy 3, -34xy 2z, a, x -y, 1x,3.14, -m, -m 2+2m -1. 解:xy 3, -34xy 2z, a, 3.14, -m 是单项式;x -y ,-m 2+2m -1是多项式;xy 3的系数是13,次数是2;-34xy 2z 的系数是-34,次数是4;a 的系数是1,次数是1;3.14是常数项;-m 的系数是-1,次数是1;x -y 是一次二项式;-m 2+2m -1是二次三项式.活动3 课堂小结 1.单项式的概念.2.单项式系数及次数的概念. 3.多项式的概念.4.多项式的项、常数项、次数的概念. 5.整式的概念.2.5 整式的加法和减法 第1课时 合并同类项1.理解同类项的概念,能识别同类项.(重点)2.会合并同类项,知道合并同类项的依据是三个运算律(即加法交换律、结合律及乘法对加法的分配律).(重点)阅读教材P 70~72,完成下列问题.(一)知识探究1.所含字母相同,并且相同__字母的__指数也分别相同的项,叫做同类项. 2.把多项式中的同类项合并成一项,叫做合并同类项.3.合并同类项时,把同类项的__系数相加,字母和字母的指数不变.4.两个多项式分别经过合并同类项后,如果它们的对应系数都相等,那么称这两个多项式相等. (二)自学反馈1.在下列单项式中,与2xy 是同类项的是(C ) A .2x 2y 2 B .3y C .xy D .4x同类项:(1)所含字母相同;(2)相同字母的指数也相同. 2.计算2m 2n -3nm 2的结果为(C ) A .-1 B .-5m 2n C .-m 2n D .不能合并活动1 小组讨论 例1 合并同类项: (1)-4x 4-5x 4+x 4; (2)3x 2y +34x 2y -x 2y.解:(1)-4x 4- 5x 4 + x 4=(-4-5+1)x 4=-8x 4. (2)3x 2y +34x 2y -x 2y =(3+34-1)x 2y =114x 2y.第(2)小题中-x 2y 的系数是-1,合并同类项时不要忽略各项的系数.例2 合并同类项:(1)-3x 2-14x -5x 2+4x 2 ; (2)xy 3+x 3y -2xy 3+5x 3y +9 .解:(1)-3x 2-14x -5x 2+4x 2=(-3-5+4)x 2-14x =-4x 2-14x.(2)xy 3+x 3y -2xy 3+5x 3y +9=(1-2)xy 3+(1+5)x 3y +9=-xy 3+6x 3y +9. 活动2 跟踪训练1.下列各组中的两个单项式能合并的是(D ) A .4和4x B .3x 2y 3和-y 2x 3 C .2ab 2和100ab 2cD .m 和m22.下列运算中,正确的是(C ) A .3a +2b =5ab B .2a 3+3a 2=5a 5 C .3a 2b -3ba 2=0 D .5a 2-4a 2=13.已知3x 5y 2和-2x 3m y n 是同类项,则6m -3n 的值为4. 4.合并同类项:(1)3a-5a+6a;(2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n;(4)-3a2+2a-1+a2-5a+7.(5)4x2-8x+5-3x2+6x-2;(6)5ax-4a2x2-8ax2+3ax-ax2-4a2x2.解:(1)原式=4a.(2)原式=-2x2-4x-7.(3)原式=9m2n-10mn2.(4)原式=-2a2-3a+6.(5)原式=x2-2x+3.(6)原式=-8a2x2-9ax2+8ax.活动3课堂小结本课时主要学习了哪些知识与方法?有何收获和感悟?还有哪些疑惑?第2课时 去括号法则理解去括号法则,会进行简单的去括号运算.(重点)阅读教材P 72~74,完成下列问题.(一)知识探究括号前是“+”号,运用加法结合律把括号去掉,原括号里各项的符号都不变;括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.(二)自学反馈1.在-( )=-x 2+3x -2的括号里应填的代数式是(C )A .x 2-3x -2B .x 2+3x -2C .x 2-3x +2D .x 2+3x +22.先去括号,再合并同类项:(x -1)-(2x +1).解:原式=x -1-2x -1=-x -2.活动1 小组讨论例 计算:(1)(5x -1)+(x -1);(2) (2x +1)- (4-2x).解:(1)(5x -1)+(x -1)=5x -1+x -1=6x -2.(2)(2x +1)- (4-2x)=2x +1-4+2x =4x -3.活动2 跟踪训练1.下列各题去括号错误的是(C )A .x -(3y -12)=x -3y +12B .m +(-n +a -b)=m -n +a -bC .-(-4x -6y +3)=4x -6y +3D .(a +12b)-(-13c +27)=a +12b +13c -272.计算:(1)(-x +3x 2-2)-(-1+2x -3x 2);(2)2a -(3a +4b)+(2a +b).解:(1)原式=-x +3x 2-2+1-2x +3x 2=6x 2-3x -1.(2)原式=2a -3a -4b +2a +b =a -3b.活动3 课堂小结去括号法则.第3课时 整式加减的应用1.熟练地进行整式的加减运算,并从中体验整体思想.(重点)2.运用整式的加减法则解决有关代数式的化简求值问题和实际应用问题,提高数学应用能力.(难点)阅读教材P 74~75,完成下列问题.自学反馈1.若A =x 2-2xy +y 2,B =x 2+2xy +y 2,则A -B =(D )A .2x 2+2y 2B .2x 2-2y 2C .4xyD .-4xy2.化简求值:(5a +2a 2-3-4a 3)-(-a +3a 3-a 2),其中a =-2.解:原式=-7a 3+3a 2+6a -3.当a =-2时,原式=53.活动1 小组讨论例1 求多项式3x 2+ 5x 与多项式-6x 2+2x -3的和与差.解:根据题意,得3x 2+5x +(-6x 2+2x -3)=3x 2+5x -6x 2+2x -3=-3x 2+7x -3.3x 2+5x -(-6x 2+2x -3)=3x 2+5x +6x 2-2x +3=9x 2+3x +3 .例2 先化简,再求值.5xy -(4x 2 + 2xy)-2(2.5xy +10),其中x =1,y =-2.解:5xy -(4x 2+2xy)-2(2.5xy +10)=5xy -4x 2-2xy -(5xy +20)=5xy -4x 2-2xy -5xy -20=-4x 2-2xy -20. 当 x =1 ,y =-2 时,-4x 2-2xy -20=-4×12-2×1×(-2)-20=-20.例3 如图,正方形的边长为x ,用整式表示图中阴影部分的面积,并计算当x =4 m 时阴影部分的面积(取3.14).解:阴影部分的面积为x 2-π(x 2)2=x 2-π4x 2=(1-π4)x 2. 当x =4 m 时,阴影部分的面积为(1-π4)x 2=(1-3.144)×42=3.44(m 2). 活动2 跟踪训练1.化简-2a +(2a -1)的结果是(D )A .-4a -1B .4a -1C .1D .-12.减去3x 等于5x 2-3x -5的整式为(B )A .5x 2-6x -5B .5x 2-5C .5x 2+5D .-5x 2-6x -53.已知-x +2y =5,那么5(x -2y)2-3(x -2y)-60的值为(A )A .80B .10C .210D .404.代数式x 2-x 与代数式A 的和为-x 2-x +1,则代数式A =-2x 2+1.5.先化简,再求值:2(3b 2-a 3b)-3(2b 2-a 2b -a 3b)-4a 2b ,其中a =-12,b =8.解:原式=a3b-a2b.当a=-12,b=8时,原式=-3.活动3课堂小结本课时主要学习了哪些知识与方法?有何收获和感悟?还有哪些疑惑?。
2.4 整式1.理解单项式、多项式及整式的概念,会判断单项式及整式.2.掌握单项式的系数与次数、多项式的次数与项的概念,明确它们之间的关系,并能灵活运用.一、情境导入方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),现在方方和圆圆想算出窗帘的装饰物的面积分别是多少?窗户能射进阳光的面积分别是多少(窗框面积不计)?要解决这些问题,我们来学习下面的内容,就会知道答案.二、合作探究探究点一:单项式、多项式与整式的识别指出下列各式中哪些是单项式?哪些是多项式?哪些是整式?x 2+y 2,-x ,a +b3,10,6xy +1,1x ,17m 2n ,2x 2-x -5,2x 2+x,a 7.解析:根据整式、单项式、多项式的概念和区别来进行判断. 解:2x 2+x ,1x的分母中含有字母,既不是单项式,也不是多项式,更不是整式. 单项式有-x ,10,17m 2n ,a 7;多项式有x 2+y 2,a +b3,6xy +1,2x 2-x -5;整式有x 2+y 2,-x ,a +b3,10,6xy +1,17m 2n ,2x 2-x -5,a 7. 方法总结:(1)分母中含有字母的式子不是整式;(2)单项式和多项式都是整式;(3)单项式不含加、减运算,多项式必含加、减运算.探究点二:单项式与多项式【类型一】 确定单项式的系数和次数分别写出下列单项式的系数和次数.(1)-ab 2; (2)5ab 3c 27; (3)2πxy23.解析:单项式的系数就是单项式中的数字因数;单项式的次数就是单项式中所有字母指数的和,只要将这些字母的指数相加即可.解:(1)单项式的系数是-1,次数是3;(2)单项式的系数是57,次数是6;(3)单项式的系数是2π3,次数是3.方法总结:(1)当单项式的系数是1或-1时,“1”通常省略不写;单项式的系数是带分数时,通常写成假分数.单项式的系数包括前面的符号.(2)我们把常数项的次数看作0.确定单项式的次数时,单项式中单独一个字母的指数1不能忽略,如-3x 3y ,它的指数是4而不是3.(3)π是圆周率,是一个确定的数,不是字母.【类型二】 确定多项式的项和次数写出下列各多项式的项数和次数,并指出是几次几项式.(1)23x 2-3x +5;(2)a +b +c -d ; (3)-a 2+a 2b +2a 2b 2.解析:根据多项式的项数是多项式中单项式的个数,多项式的次数是多项式中次数最高的单项式的次数,可得答案.解:(1)23x 2-3x +5的项数为3,次数为2,是二次三项式;(2)a +b +c -d 的项数为4,次数为1,是一次四项式;(3)-a 2+a 2b +2a 2b 2的项数为3,次数为4,是四次三项式. 方法总结:(1)多项式的项包括它的符号;(2)多项式的次数是多项式里次数最高项的次数,而不是各项次数的和;(3)几次项是指多项式中次数是几的项.探究点三:与多项式有关的探究性问题已知-5x m +104x m -4x m y 2是关于x 、y 的六次多项式,求m 的值,并写出该多项式.解析:根据多项式中次数最高的项的次数叫做多项式的次数可得m +2=6,解得m =4,进而可得此多项式.解:由题意得m +2=6, 解得m =4,此多项式是-5x 4+104x 4-4x 4y 2. 方法总结:此题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.若关于x 的多项式-5x 3-mx 2+(n -1)x -1不含二次项和一次项,求m 、n 的值.解析:多项式不含二次项和一次项,则二次项和一次项系数为0.解:因为关于x 的多项式-5x 3-mx 2+(n -1)x -1不含二次项和一次项, 所以m =0,n -1=0,则m =0,n =1.方法总结:多项式不含哪一项,则哪一项的系数为0. 探究点四:多项式的应用如图,某居民小区有一块宽为2a 米,长为b 米的长方形空地,为了美化环境,准备在此空地的四个顶点处各修建一个半径为a 米的扇形花台,在花台内种花,其余种草.如果建造花台及种花费用每平方米为100元,种草费用每平方米为50元.那么美化这块空地共需多少元?解析:四个角围成一个半径为a米的圆,阴影部分面积是长方形面积减去一个圆面积.解:花台面积和为πa2平方米,草地面积为(2ab-πa2)平方米.所以需资金为[100πa2+50(2ab-πa2)]元.方法总结:用式子表示实际问题中的数量关系时,首先要分清语言叙述中关键词的含义,理清它们之间的数量关系和运算顺序.探究点五:规律探究问题如图所示,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是________.解析:第(1)个图形的周长为3,;第(2)个图形的周长为4=3+1;第(3)个图形的周长为5=3+1×2;第(4)个图形的周长为6=3+1×3.故第(n)个图形的周长为3+1(n-1)=2+n.方法总结:解答此类问题应采用比较归纳的方法和由特殊到一般的方法.通过探究特例,从中发现一些基本规律,然后推广到一般情况.三、板书设计整式⎩⎪⎨⎪⎧单项式⎩⎪⎨⎪⎧系数:单项式中的数字因数次数:所有字母的指数和多项式⎩⎪⎨⎪⎧项数:单项式的个数次数:次数最高的项的次数教学过程中,应通过丰富的现实情景,使学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,发展“用数学”的信心,培养学生认识特殊与一般的辩证关系.。
《列代数式》教案第一篇:《列代数式》教案教学目标1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来。
2.初步培养学生观察、分析和抽象思维的能力。
3.通过运用多媒体手段的教学,激发学生学习数学的兴趣,增强学生自主学习的能力。
教学建议1.教学重点、难点重点:列代数式。
难点:弄清楚语句中各数量的意义及相互关系。
2.本节知识结构:本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。
课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。
3.重点、难点分析:列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。
列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。
如:用代数式表示:比的2倍大2的数。
分析本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。
然后从中找出谁是大数,谁是小数,谁是差。
比的2倍大2的数换个方式叙述为所求的数比的2倍大2。
大和比前边的量,即所求的数为大数,那么比和大之间量,即的2倍则为小数,大后边的量2即为差。
所以本小题是已知小数和差求大数。
因为大数=小数+差,所以所求的数为:2+2.4.列代数式应注意的问题:(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。
如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。
(2)弄清运算顺序和括号的使用。
一般按“先读先写”的原则列代数式。
(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。
(4)在代数式中出现除法时,用分数线表示。
5.教法建议:列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。
2.3 代数式的值1.理解代数式的值是由代数式中字母的取值确定的;2.掌握求代数式的值的方法;(重点)3.利用求代数式的值解决较简单的实际问题;(重点)4.继续探索用代数式表示数量关系的问题,培养良好的学习习惯.一、情境导入 谁说数学学不好,这不,先前数学成绩很差的小胡,经过不断努力,不但成绩直线上升,而且现在还能设计程序计算呢!如图就是小胡设计的一个程序.当输入x 的值为3时,你能求出输出的值吗?二、合作探究探究点一:求代数式的值【类型一】 根据条件直接求代数式的值当a =12,b =3时,求代数式2a 2+6b -3ab 的值. 解析:直接将a =12,b =3代入2a 2+6b -3ab 中即可求得. 解:原式=2×⎝ ⎛⎭⎪⎫122+6×3-3×12×3=12+18-92=14. 方法总结:(1)代入时要“对号入座”,避免代错字母;(2)代入后要恢复省略的乘号;(3)分数的立方、平方运算,要用括号括起来.【类型二】 利用整体思想求代数式的值已知x -2y =3,则代数式6-2x +4y 的值为( )A .0B .-1C .-3D .3解析:此题无法直接求出x 、y 的值,这时,我们就要考虑特殊的求值方法.根据已知x -2y =3及所求6-2x +4y ,只要把6-2x +4y 变形后,再整体代入即可求解.因为x -2y=3,所以6-2x +4y =6-2(x -2y )=6-2×3=0.故选A.方法总结:整体代入法是数学中一种重要的方法,同学们应加以关注.探究点二:代数式求值的应用【类型一】 代数式求值的实际应用如图所示,某水渠的横断面为梯形,如果水渠的上口宽为a m ,水渠的下口宽和深都为b m.(1)请你用代数式表示水渠的横断面面积;(2)计算当a =3、b =1时,水渠的横断面面积.解析:(1)根据梯形面积=12(上底+下底)×高,即可用含有a 、b 的代数式表示水渠横断面面积;(2)把a =3、b =1带入到(1)中求出的代数式中,其结果即为水渠的横断面面积.解:(1)因为梯形面积=12(上底+下底)×高,所以水渠的横断面面积为12(a +b )b m 2; (2)当a =3,b =1时水渠的横断面面积为12(3+1)×1=2(m 2). 方法总结:解答本题时需搞清下列几个问题:(1)题目中给出的是什么图形?(2)这种图形的面积公式是什么?(3)根据公式求图形的面积需要知道哪几个量?(4)这些量是否已知或能求出?搞清楚了这些问题,求解就水到渠成.【类型二】 程序设计中的求值有一数值转换器,原理如图所示.若开始输入的x 的值是5,则发现第1次输出的结果是8,第2次输出的结果是4,…,则第2016次输出的结果是________.解析:按如图所示的程序,当输入x =5时,第1次输出5+3=8;当输入x =8时,第2次输出12×8=4;当输入x =4时,第3次输出12×4=2;当输入x =2时,第4次输出12×2=1;当输入x =1时,第5次输出1+3=4;则第6次输出12×4=2,第7次输出12×2=1,…,不难看出,从第2次开始,其运算结果按4,2,1三个数排列循环出现.因为(2016-1)÷3=671…2,所以第2016次输出的结果为2. 方法总结:这种程序运算的特点是程序有多个分支,要先对输入的数据进行判断,再选择适当的某个分支按照指明的程序进行运算.【类型三】 依照规律求代数式的值(2015·重庆中考)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依此规律,图⑪中黑色正方形的个数是( )A .32B .29C .28D .26解析:观察图形可知,所有图形都去掉最左边一列两个黑色正方形后,其余黑色正方形个数和都是3的倍数,图①中黑色正方形的个数为2=2+3×(1-1);图②中黑色正方形的个数为5=2+3×(2-1);图③中黑色正方形的个数为8=2+3×(3-1);…;图n 中黑色正方形的个数为2+3(n -1).所以图⑪中黑色正方形的个数为2+3×(11-1)=32.故选A.方法总结:一般应经历四个阶级“特例引路”、“对比分析”、“总结规律”、“反思检验”.有些选择题可直接采用验证法,把各个选项代入检验,看哪一个符合规律即可.三、板书设计求代数式的值⎩⎪⎨⎪⎧代入:用具体数值代替代数式里的字母计算:按代数式指明的运算计算出结果教学过程中,应通过活动使学生感知代数式运算在判断和推理上的意义,增强学生学习数学的兴趣,培养学生积极的情感和态度,为进一步学习奠定坚实的基础.。
七年级上册数学教案第二章《代数式》教案用字母表示数教学目标在现实情境中,理解用字母可以表示数,认识用字母表示数和数量关系的意义。
重点难点:重点:体会用字母表示数和用代数式表示数量关系、数学规律的意义难点:探索一般规律并用字母表示教学过程一激情引趣,导入新课游戏:如果你能把你想到的一个数扩大倍后再减去的差的一半告诉我,我就能猜到你想到的是什么数,信吗?试试看。
老老师为什么能猜到你想到的数呢?(感受用字母表示数的优越性,从而引入课题)二合作交流,探究新知用字母表示数,非常方便例中科院院士袁隆平研究的超级杂交水稻,以单季亩产千克创世界纪录,()根据上面数()这个问题中粮食的产量与生产粮食的面积有什么关系?你能用字母表示吗?例年约日时分,我国成功发射了:“神舟三号”飞船,这艘飞船天(约小时)绕地球飞行了万千米,于年月号时分返回地面…,()你能求出:“神舟三号”飞船平均每小时绕地球飞行了多少万千米?()小时、小时飞船分别飞行了多少万千米?()如果飞行小时,那么飞船飞行了多少万千米?用字母表示规律,一目了然。
例如图是小欢用火柴棍围成的个正六边形组成的花边图案:()按如图方式,围个、个分别要、根火柴棍。
()围个正六边形需要火柴棍根。
做完后大家交流讨论用字母表示数量关系,简单明了。
例请用字母表示()加法交换律:,()乘法分配律,() 乘法结合律()三角形底边为,高为,面积为,则,() 梯形的上底为,下底为,高为,面积为,则() 圆的半径为,面积为,周长为,则.用字母表示数在书写的时候有什么要求呢?请你读一读。
()数与字母相乘或者字母与字母相乘,乘号通常写作:“。
”也可以省略不写;如:×写作:() 数字与字母相乘一般数字写在前面,如:×,写作:;()除法形式一般写成分数形式,如:÷写作:;()因数是带分数写成假分数形式,如23×写成:, ()一个式子要带单位时,把式子括起来,单位写在后面,如米米写成 ()相同的因式相乘,写成幂的形式。
2.2 列代数式教学目标:1.进一步理解字母表示数的意义,能结合具体情景给字母赋于实际意义;理解代数式和代数式的值的意义,能解释一些简单代数式的实际背景或几何意义,在具体情景中能求出代数式的值. (重难点)2.通过创设实际背景和引用符号,经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识.教法学法:教学方法:引导—探究—发现法.学习方法:自主探究与合作交流相结合.课前准备:多媒体课件、投影仪、电脑教学过程:一、创设情境,引入新课.欣赏视频,导入新课师:国庆六十周年大阅兵,同学们看了吗?首先请同学们来欣赏一段视频.(26秒.定格在胡锦涛主席乘坐红旗轿车阅兵的一个瞬间.)师:这是新中国成立以来,规模最大、装备最新、机械化程度最高的一次大阅兵.有谁知道胡主席乘坐的是什么品牌的车吗?生:国产红旗大轿车.师:对﹗国产红旗大轿车﹗这是我们民族的骄傲﹗提到造车,有一个人,功不可没,不能不提.同学们知道是谁吗?生:造车鼻祖—奚仲.(官桥镇所在地,是造车鼻祖—奚仲的故里,学生对此了解较多.)师:(多媒体展示一张奚仲造车的图片.)师:那我先来考考同学们:上面的图片中的一辆推车几个轮子?两辆推车几个轮子?x辆推车几个轮子?生:2个,4个,2x 个.师:板书2x.设计意图:通过创设教学情境,激发学生的学习兴趣,使学生在注意力集中前提下顺利过渡到本节知识内容.引导学生体验把实际问题抽象成数学问题的一般方法,同时在解答问题中形成认知冲突.通过这一情境的引入,让学生感受到祖国的强大,增强爱国的热情,民族的自豪感.了解到学习这些知识的重要性,极大地调动了学生学习数学的积极性.同时滲透了把实际问题抽象成数学问题的一般思想方法.师: 上节课,我们学习了字母能表示什么,这节课我们继续学习§3.2代数式.(板书课题)下面请同学们快速完成导学案的第一题. 二、自主探索,合作交流.1.温故而知新填空:⒈ 边长为a cm 的正方形的周长是 cm,面积是 cm 2.2 . 钢笔每支2元,铅笔每支0.5元,m 支钢笔和n 支铅笔共____________元.⒊ 温度由2℃下降t ℃后是 ℃.⒋ 小亮用t 秒走了s 米,他的速度是为 米/秒生:(完成填空,如有疑难可在小组内交流、讨论.)生1:通过实物投影展示答案:4a , a 2 , 2m +0.5n , t -2,t s 生2:第2、3题应该加上括号.师:板书正确答案.师:观察上面的这些式子有什么特点?生:(以小组为单位,进行组内交流、讨论.)生1:含有数、字母、生2:含有运算符号.师:像2x,4a , a 2 , 2m +0.5n , t -2,ts 等式子都是代数式(algebraic e x pression). 单独一个数或一个字母也是代数式.师: 你还能举几个代数式的例子吗?生1:2,m,a ﹢b…生2:m-n,5, 2n…师:真棒.下面再来考考你的眼力,请同学们快速完成导学案 : 自主探索,合作交流的第1题.2.考考你的眼力:师:下列各式中哪些是代数式?哪些不是?(1)m+5 (2)a+b=b+a (3)0(4)x2+3x+4 (5)x+y>1(6)生: (1)、(3)、(4)、(6)是代数式, (2)、(5)不是.师:小结:(1)代数式中不含“=”,“>”,“<”,“≥”,“≤”,“≠”等符号.(2)单独的一个数或字母也是代数式.师:同学们回答的很好,那我们就来巩固一下吧.生:完成巩固练习:用代数式表示(1) f的11倍再加上2可以表示为______________.(2)数a与它的的和可以表示为_________.(3)一个教室有2扇门和4扇窗户,n个这样的教室共有___________扇门和_________扇窗户.(4)小华、小明的速度分别为x米/秒,y米/秒,6分钟后它们一共走了米. 生:(完成填空并回答,如有疑难可在小组内交流、讨论.)生1: 11f+2 ,a+a,2n,4n,6(x+y)生2:(4)小题也可以写成(6x+6y)生3:第(2)小题也可以写成118 a,师: 118a通常写成98a,带分数写成假分数.师:通过前面的练习,同学们想一想,说一说:代数式在书写时应该注意那些问题呢?生: 以小组为单位,进行组内交流、讨论后回答问题.( 同学们在充分交流的过程中,教师可参与其中,听听同学的想法,看看同学们在交流过程中的表现,积极引导不善交流的同学倾吐自己的想法,形成好的合作交流的气氛)生1:数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;数字与数字相乘,乘号不能省略;数字要写在字母前面;生2:在含有字母的除法中,一般不用“÷”号,而写成分数的形式;式子后面有单位时,和差形式的代数式要在单位前把代数式括起来.生3:带分数一定要写成假分数.师:同学们回答的非常好,非常的全面.现在请同学们回过头来看一看,前面你所列的代数式符合要求吗?生:自我检查,同位之间互查.设计意图:让学生从实际问题中抽象出数学问题,学会列代数式,体验数学来源于生活,又为现实生活服务,极大地调动学生学习的主动性、积极性;规定代数式的书写要求,代数式求值的格式并用多媒体展示,目的在于让学生体会数学的规范性,严密性,进一步培养学生的数感和符号感.教学效果:本环节开始就有效地激发了学生的学习兴趣,调动了学生学习的积极性,学生主动学习和合作交流较为充分,学生成功的交流,使学生感受到数学结果的多样性,数学符号的美妙性,同时初步学会了列代数式的方法.师:我们知道了代数式,会列代数式,现在我们就来共同探究一下生活中的数学.请同学们完成导学案的探究一.三、合作探究,拓展新知.内容:讨论教材上的例题.分析需要使用代数式表达信息的原因.通过解决具体问题,让学生感受代数式求值的含义.探究一:学习要求:请认真读题并完成题后的填空:1. (1)某公园的门票价格是:成人票每人10元,儿童票每人5元.一个旅游团有x名成人和y名儿童,用代数式表示这个旅游团应付的门票费.(分析:x名成人的门票费为;y名儿童的门票费为;解:这个旅游团应付的门票费为 .(2)如果这个旅游团有37名成人和15名儿童,那么应付门票费多少元?(分析:这个旅游团有37名成人即字母 =37;儿童15名即 =15;分别把它们代入(1)中的代数式,即可求出应付门票费)解: (学生口述)生: (先独立思考,再小组内交流后回答问题.)生: (通过实物投影展示答案.)生1:(1) x名成人的门票费为10x, y名儿童的门票费为5y,这个旅游团应付的门票费为,(10x+5y)元.生2:(2) 如果这个旅游团有37名成人和15名儿童,那么应付门票费445元.师: 在回答(2)题时,我们要注意解题的格式.(板书解题过程,并加以强调.)师:刚才我们解决了生活中的一个问题,下面我们再来探究一下生物世界的奥秘吧.请同学们快速完成导学案的探究二.探究二:1.请认真读题,参照1题的答题格式,完成下题的解答过程.----相信你能行!在某地,人们发现某种蟋蟀叫的次数与气温之间有如下的近似关系:用蟋蟀1分钟叫的次数除以7,然后加上3,就近似地得到该地当时的气温(℃).(1)用代数式表示该地当时的气温;(2)当蟋蟀1分钟叫的次数分别是80,100和120时,该地当时的气温大约是多少?(结果保留整数)生: 先独立思考,再小组内交流后回答问题.生1: 口答1. 用x 表示蟋蟀1分钟叫的次数,则该地当时的气温为(7x +3) ℃. 生2: 通过实物投影展示(2)小题答案.设计意图:这里首先展示出学生生活中非常熟悉的小动物――蟋蟀的图片,从而提出蟋蟀每分钟叫的次数与当时温度的关系的问题,目的是刺激学生的感官,引发学生的求知欲望.对第(1)中的蟋蟀1分所叫的次数探求或变式,目的在于帮助学生自设字母来表示有关的量,为学生列代数式铺平道路,同时让学生体会数学建模的思想.求x =80、100、120时,该地当时的温度,目的在于让学生进一步学会求代数式的值,加深对蟋蟀1分叫的次数与当时温度的关系的体会.教学效果:在这个环节中教师首先给出一个实际背景,一下子就引起了学生的注意力,接着通过师生循序渐进的分析,学生很自然地领悟了数学建模的方法,掌握了列代数式的新的方法――先设字母,再列式子,使课堂气氛显得格外轻松.同时在这里通过变式,增强了思维的灵活性,降低了学习的难度,调动了学生学习的积极性.师:同学们完成的非常棒.通过刚才的探究,我们深切体会到了:知识来源于生活,又运用于生活.小组讨论:代数式10x+5y还可以表示什么?想一想, 比一比!看谁说的既多又准!(要求学生在独立思考的基础之上,做小组交流,随后全班交流.)①如果用x(元)1支铅笔的价格,用y(元)1个练习本的价格,那么10x+5y可以表示的总钱数② 如果,那么生:(先完成①小题,然后仿照上题完成②小题.)生1:老师有 x张10元,有y 张5元的钱,则(10x+5y)元就表示老师有多少钱.生2:一辆车以x千米/小时的速度行驶了10小时,然后又以y千米/小时的速度行驶了5小时,则 (10x+5y)千米表示这辆车所走的路程.生3:某种数学资料每本要10元,英语资料每本要5元,小明买了x本数学资料,y本英语资料,则( 10x+5y)元表示共用了多少钱.师:同学们真棒,举出这么多代数式10x+5y所表示的实际背景.设计意图:用多媒体将问题展示后,让学生充分地观察、思考,进而产生联想,针对“10x +5y”所表示的意义让学生各自发表自己观点,并在小组进行交流,通过交流,学生意识到了“10x+5y”可以表示很多不同的问题,接着让各小组长上台进行展示和师生对答案进行综合评价,最后教师又用多媒体展示部分准确答案,目的是帮助学生进一步体会符号表示的意义,同时也是为了拓宽学生的思维,发展学生联想、类比、归纳等能力.四、拓展延伸讨论回答下列问题:1.写出一个你最喜欢的一个两位数.2.一个两位数的个位数字是a,十位数字是2,请用代数式表示这个两位数;3.一个两位数的个位数字是a,十位数字是b,请用代数式表示这个两位数如何用代数式表示一个三位数?生:( 以小组为单位,进行组内交流、讨论后回答问题.)生1: 通过实物投影展示答案1.我喜欢362.这个两位数是20+a3.这个两位数是10b+a4.设这个三位数的个位数字是a,十位数字是b,百位数字是c,这个三位数是100c+10b+a.生2: 通过实物投影展示答案1.我喜欢96 ,第2,3题答案和上面的同学相同,第4题.设这个三位数的个位数字是x,十位数字是y,百位数字是z,这个三位数是100z+10y+x.师: 总结:两位数表示:10十位数字+个位数字三位数表示: 100百位数字+10十位数字+个位数字设计意图:为了检测学生的灵活应变能力,创新思维的能力,以满足不同层次的学生在数学发展方面的需要.选择题目的出发点在于帮助学生学会列代数式,进一步明确代数式的实际背景或几何意义,发展学生的符号感;让学生进一步把握本章的重点,明确学习的方向. 教学效果:学生分层次独立完成,再由教师念答案学生自我评分,按不同的要求统计优秀成绩(基础差的同学做对第1,2,3题就是优秀),让每个学生都有了成就感,增强了学生学习数学的信心,真正做到了面向全体学生.五、小结回顾:师:请同学们谈一谈,通过本节课的学习,你有哪些收获?(生1、生2、生3自发站起来谈学习收获,教师作出点评、补充.)设计意图:鼓励学生结合本节课的学习谈自己的收获,学生交流,互相补充,完成本节知识的梳理.六、作业:1. P108 读一读“代数” 的由来2. P109 第1题板书设计:教学反思:本节课采用导学案的方式,主要讲解代数式的基本知识,并在具体情景中讲解列代数式的方法和简单的求值.通过这些内容,让学生逐渐熟悉代数式的表示方法,并培养符号逻辑思维能力.以具体的事例引入代数式的概念,既形象又浅显易懂.通过两个探究题,使学生感受到数学与日常生活的密切联系.通过学生自己大胆的尝试,让学生在学习中得到乐趣,指导学生在变化中探索规律,培养团结合作精神.通过学生对知识和技能的总结,理清本节的知识结构,使知识系统化,提升分析问题、解决问题的能力,提升与人交往的能力.无论是教学环节设计,还是课外作业的安排上,我都重视知识的产生过程,关注人的发展,意到个体间的差异,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的人在数学上都得到不同的发展.当然本节课在教学过程中也有遗憾的地方,在今后的教学中,我将努力克服自己在教学中的不足之处,争取在今后的教学工作中做到更好.。
2.2 列代数式
1.在具体情境中进一步理解用字母表示数的意义,了解代数式的概念,知道单独的一个数或字母也是代数式;
2.会根据实际问题列出代数式,进一步规范代数式的书写格式;(难点)
3.能理解一些简单代数式的实际背景,培养符号感;
4.通过具体情境,培养把实际问题抽象为数学问题的能力.(重点、难点)
一、情境导入
青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t 小时呢?
1.思考:(1)若正方形的边长为a ,则正方形的面积是________,体积是________.
(2)设n 表示一个数,则它的相反数是________;
(3)铅笔的单价是x 元,钢笔的单价是铅笔单价的2.5倍,则钢笔的单价是________元.
(4)一辆汽车的速度是v 千米/时,行驶t 小时所走过的路程为________千米.
2.观察所列代数式包含哪些运算,有何共同的运算特征.
二、合作探究
探究点一:代数式的识别
有下列式子:x 2,m -n >1,p +q ,1
2
ab ,S =πR 2,2016,代数式有( ) A .3个 B .4个 C .5个 D .6个
解析:代数式是用运算符号把数和字母连接而成的式子,m -n >1是用不等号“>”连接
而成的式子、S =πR 2是用等号“=”连接而成的式子,它们都不是代数式.而x 2,p +q ,12
ab ,2016都是代数式.故选B.
方法总结:明确代数式的意义是正确识别代数式的前提.式子中有关系符号(如等号或不等号)的都不是代数式.
探究点二:列代数式
用代数式表示:(1)x 与2的平方和;(2)x 与2的和的平方;(3)x 的平方与2的
和;(4)x 与2的平方的和.
解析:这四个小题,都有关键词“平方”和“和”,但这两个词在四个小题中的语序不一样.(1)中是先平方再求和,即x 2-22;(2)中是先求和再平方,即(x +2)2;(3)中是先x
的平方再求和,即x 2+2;(4)中是先2的平方再求和,即x +22.
解:(1)x 2-4;(2)(x +2)2;(3)x 2+2;(4)x +4.
方法总结:用代数式表示数量关系时,一般要将句子分层,逐层分析,一步步列出代数式.
探究点三:代数式的意义
下列代数式可以表示什么?
(1)2a -b ;(2)2(a -b ).
解析:解释代数式的意义,可以从两个方面入手,一是从字母表示数的角度考虑;二是可以联系生活实际来举例说明.不管采用哪种方式,一定要注意运算形式和运算顺序.
解:(1)2a 与b 的差;或a 的2倍与b 的差;或用a 表示一本作业本的价格,用b 表示一支铅笔的价格,则2a -b 表示买两本作业本比买一支铅笔多的钱数;(2)2与a -b 的积;或a 与b 的差的2倍.
方法总结:描述一个代数式的意义,可以从字母本身出发来描述字母之间的数量关系,也可以联系生活实际或几何背景赋予其中字母一定的实际意义加以描述.
探究点四:代数式的应用
【类型一】 根据实际问题列代数式
用代数式表示下列各式.
(1)王明同学买2本练习册花了n 元,那么买m 本练习册要花多少元?
(2)正方体的棱长为a ,那么它的表面积是多少?体积呢?
解析:(1)根据买2本练习册花了n 元,得出买1本练习册花n 2
元,再根据买了m 本练习册,即可列出算式.(2)根据正方体的棱长为a 和表面积公式、体积公式列出式子.
解:(1)因为买2本练习册花了n 元,所以买1本练习册花n
2
元,所以买m 本练习册要花12
mn 元; (2)因为正方体的棱长为a ,所以它的表面积是6a 2;它的体积是a 3.
方法总结:此题考查了列代数式,用到的知识点包括正方体的表面积公式和体积公式,根据题意列出式子是解本题的关键.
【类型二】 用字母表示几何图形中的数量关系 用字母表示图中阴影部分的面积:
解析:(1)图中阴影部分是正方形中挖去一个圆后剩下的部分,且正方形的边长是a ,圆的直径也是a ,圆的半径是a 2
;(2)图中阴影部分是长方形中挖去4个小正方形后剩下的部分,且长方形的长为a ,宽为b ,小正方形的边长为x .
解:(1)S =a 2-π·(a 2
)2;(2)S =ab -4x 2
. 方法总结:将不规则图形的面积转化为规则图形(如长方形、圆、三角形等)的面积的和或差是解决求阴影部分面积问题的关键.
探究点五:探求规律性问题
观察下列图形:
它们是按一定规律排列的.
(1)依照此规律,第20个图形共有几个五角星?
(2)摆成第n 个图案需要几个五角星?
(3)摆成第2016个图案需要几个五角星? 解析:通过观察已知图形可得:每个图形都比其前一个图形多3个五角星,根据此规律即可解答.
解:(1)根据题意得,因为第1个图中,五角星有3个(3×1);第2个图中,有五角星6个(3×2);第3个图中,有五角星9个(3×3);第4个图中,有五角星12个(3×4);所以第n 个图中有五角星3n 个.所以第20个图中五角星有3×20=60(个);
(2)由(1)中摆成第n 个图案需要3n 个五角星;
(3)摆成第2016个图案需要五角星2016×3=6048(个).
方法总结:此题首先要结合图形具体数出几个值.注意由特殊到一般的分析方法.此题的规律为摆成第n 个图案需要3n 个五角星.
三、板书设计
代数式⎩⎪⎨⎪⎧概念→用运算符号把数和表示数的字母连接而成的式子叫代数式
代数式的意义及列代数式→用字母和数表示实际问题中的数量关系
教学过程中,应拓展学生的思维,培养他们观察、分析及抽象思维能力、语言能力、创造能力和类比联想能力.。