中考数学填空题专项训练()
- 格式:doc
- 大小:106.50 KB
- 文档页数:2
一、选择题1.如图,在5×5正方形网格中,一条圆弧经过A、B、C三点,那么这条圆弧所在的圆的圆心为图中的()A.M B.P C.Q D.R2.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣13.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27B.36C.27或36D.184.如图中∠BOD的度数是()A.150°B.125°C.110°D.55°5.将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5B.y=2(x+3)2+5C.y=2(x﹣3)2+5D.y=2(x+3)2﹣56.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-7.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( )A .x(x -1)=2070B .x(x +1)=2070C .2x(x +1)=2070D .(1)2x x -=2070 8.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >49.下列判断中正确的是( )A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦10.已知二次函数y =ax 2+bx+c 中,y 与x 的部分对应值如下: x1.1 1.2 1.3 1.4 1.5 1.6 y ﹣1.59 ﹣1.16 ﹣0.71 ﹣0.24 0.25 0.76则一元二次方程ax 2+bx+c =0的一个解x 满足条件( )A .1.2<x <1.3B .1.3<x <1.4C .1.4<x <1.5D .1.5<x <1.6 11.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( ) A .﹣1、3B .1、﹣3C .﹣1、﹣3D .1、3 12.二次函数y=3(x –2)2–5与y 轴交点坐标为( )A .(0,2)B .(0,–5)C .(0,7)D .(0,3) 13.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( )A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=150 14.下列说法正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“概率为1的事件”是必然事件 15.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次方程220ax ax a c -++=的根为( )A .0,4B .-3,5C .-2,4D .-3,1二、填空题16.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____.17.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.18.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.19.如图,AB 为O 的直径,弦CD AB ⊥于点E ,已知8CD =,3OE =,则O 的半径为______.20.在平面直角坐标系中,已知点P 0的坐标为(2,0),将点P 0绕着原点O 按逆时针方向旋转60°得点P 1,延长OP 1到点P 2,使OP 2=2OP 1,再将点P 2绕着原点O 按逆时针方向旋转60°得点P 3,则点P 3的坐标是_____.21.心理学家发现:学生对概念的接受能力y 与提出概念的时间x (分)之间的关系式为y=﹣0.1x 2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需________ 分钟.22.如图,在边长为2的正方形ABCD 中,以点D 为圆心,AD 长为半径画AC ,再以BC 为直径画半圆,若阴影部分①的面积为S 1,阴影部分②的面积为S 2,则图中S 1﹣S 2的值为_____.(结果保留π)23.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是23602s t t =-,则飞机着陆后滑行的最长时间为 秒. 24.若实数a 、b 满足a+b 2=2,则a 2+5b 2的最小值为_____.25.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.三、解答题26.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?27.如图,已知二次函数y=-x 2+bx+c 的图象经过A (-2,-1),B (0,7)两点.(1)求该抛物线的解析式及对称轴;(2)当x 为何值时,y >0?(3)在x 轴上方作平行于x 轴的直线l ,与抛物线交于C ,D 两点(点C 在对称轴的左侧),过点C ,D 作x 轴的垂线,垂足分别为F ,E .当矩形CDEF 为正方形时,求C 点的坐标.28.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .(Ⅰ)求证:∠A =∠EBC ;(Ⅱ)若已知旋转角为50°,∠ACE =130°,求∠CED 和∠BDE 的度数.29.二次函数2y x bx =+上部分点的横坐标x 与纵坐标y 的对应值如下表: x … 1-12- 0 1 2 3 … y … 3 54 0 1- 0 m …(1)直接写出此二次函数的对称轴 ;(2)求b 的值;(3)直接写出表中的m 值,m = ;(4)在平面直角坐标系xOy 中,画出此二次函数的图象.30.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的宜兴﹣我最喜爱的宜兴小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题(1)请补全条形统计图;(2)若全校有1000名同学,请估计全校同学中最喜爱“笋干”的同学有多少人?(3)在一个不透明的口袋中有4个元全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D,随机地把四个小球分成两组,每组两个球,请用列表或画树状图的方法,求出A,B两球分在同一组的概率.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.B3.B4.C5.A6.C7.A8.B9.C10.C11.A12.C13.B14.D15.B二、填空题16.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长17.1250cm2【解析】【分析】设将铁丝分成xcm和(200﹣x)cm两部分则两个正方形的边长分别是cmcm再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm和(200﹣x)cm两部分列二次18.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大19.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:20.(﹣22)【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4∠xOP2=∠P2OP3=60°作P3H⊥x轴于H利用含30度的直角三角形求出OHP3H从而得到P3点坐标【详解】解:如图∵点21.13【解析】【分析】直接代入求值即可【详解】试题解析:把y=599代入y=﹣01x2+26x+43得599=-01x2+26x+43解得:x1=x2=13分钟即学生对概念的接受能力达到599时需要122.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利23.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值24.4【解析】【分析】由a+b2=2得出b2=2-a代入a2+5b2得出a2+5b2=a2+5(2-a)=a2-5a+10再利用配方法化成a2+5b2=(a-即可求出其最小值【详解】∵a+b2=2∴b225.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍可以求得∠AOB的度数然后根据勾股定理即可求得AB的长详解:连接ADAEOAOB∵⊙O的半径为2△ABC内接于⊙O∠ACB=13三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB,BC的垂直平分线即可得到答案.【详解】解:作AB的垂直平分线,作BC的垂直平分线,如图,它们都经过Q,所以点Q为这条圆弧所在圆的圆心.故选:C.【点睛】本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.2.B解析:B【解析】【详解】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.3.B解析:B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(1)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(2)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.试题解析:分两种情况:(1)当其他两条边中有一个为3时,将x=3代入原方程,得:32-12×3+k=0解得:k=27将k=27代入原方程,得:x2-12x+27=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(2)当3为底时,则其他两边相等,即△=0,此时:144-4k=0解得:k=36将k=36代入原方程,得:x2-12x+36=0解得:x=63,6,6能够组成三角形,符合题意.故k的值为36.故选B.考点:1.等腰三角形的性质;2.一元二次方程的解.4.C解析:C【解析】试题分析:如图,连接OC .∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C .【考点】圆周角定理.5.A解析:A【解析】把22y x =向右平移3个单位长度变为:223()y x =-,再向下平移5个单位长度变为:22(3)5y x =--.故选A .6.C解析:C【解析】【分析】连接OD ,根据勾股定理求出CD ,根据直角三角形的性质求出∠AOD ,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD ,在Rt △OCD 中,OC =12OD =2, ∴∠ODC =30°,CD =2223OD OC +=∴∠COD =60°,∴阴影部分的面积=260418223=2336023π⨯-⨯⨯π- , 故选:C .本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.7.A解析:A【解析】【分析】【详解】解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=2070,故选A.【点睛】本题考查由实际问题抽象出一元二次方程.8.B解析:B【解析】【分析】【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选B.9.C解析:C【解析】【分析】根据等弧概念对A进行判断,根据垂径定理对B、C、D选项进行逐一判断即可.本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误.故选C.10.C解析:C【解析】【分析】仔细看表,可发现y的值-0.24和0.25最接近0,再看对应的x的值即可得.【详解】解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选C.【点睛】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.11.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a,b的值.【详解】解:∵P(-b,2)与点Q(3,2a)关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A.【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.12.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.13.B解析:B【解析】【分析】可设每月营业额平均增长率为x,则二月份的营业额是100(1+x),三月份的营业额是100(1+x)(1+x),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x.根据题意得:100(1+x )2=150,故选:B .【点睛】本题考查数量平均变化率问题.原来的数量为a ,平均每次增长或降低的百分率为x 的话,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a (1±x )(1±x )=a (1±x )2.增长用“+”,下降用“-”. 14.D解析:D【解析】试题解析:A 、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B 错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C 错误; D. “概率为1的事件”是必然事件,正确.故选D. 15.B解析:B【解析】【分析】先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.【详解】∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =∴()2620a c -+=或()2220a c --+=∴整理方程即得:160a c +=∴16c a =-将16c a =-代入220ax ax a c -++=化简即得:22150x x --=解得:13x =-,25x =故选:B .【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.二、填空题16.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x ﹣2)(x ﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长解析:12【解析】【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【详解】解:x 2﹣7x +10=0(x ﹣2)(x ﹣5)=0,解得:x 1=2,x 2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质. 17.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分则两个正方形的边长分别是cmcm 再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分列二次解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.18.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大解析:﹣13≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.19.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:解析:5【解析】【分析】连接OD,根据垂径定理求出DE,根据勾股定理求出OD即可.【详解】解:连接OD,∵CD⊥AB于点E,∴DE=CE= 12CD=12×8=4,∠OED=90°,由勾股定理得:OD= 2222345OE DE+=+=,即⊙O的半径为5.故答案为:5.【点睛】本题考查了垂径定理和勾股定理的应用,能根据垂径定理求出DE的长是解此题的关键.20.(﹣22)【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4∠xOP2=∠P2OP3=60°作P3H⊥x轴于H利用含30度的直角三角形求出OHP3H从而得到P3点坐标【详解】解:如图∵点解析:(﹣2,23).【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4,∠xOP2=∠P2OP3=60°,作P3H⊥x轴于H,利用含30度的直角三角形求出OH、P3H,从而得到P3点坐标.【详解】解:如图,∵点P0的坐标为(2,0),∴OP0=OP1=2,∵将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,∴OP2=2OP1=OP3=4,∠xOP2=∠P2OP3=60°,作P3H⊥x轴于H,OH=12OP3=2,P333∴P3(-2,3故答案为(-2,3【点睛】本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.21.13【解析】【分析】直接代入求值即可【详解】试题解析:把y=599代入y=﹣01x2+26x+43得599=-01x2+26x+43解得:x1=x2=13分钟即学生对概念的接受能力达到599时需要1解析:13【解析】【分析】直接代入求值即可.【详解】试题解析:把y=59.9代入y=﹣0.1x2+2.6x+43得,59.9=-0.1x2+2.6x+43解得:x1=x2=13分钟.即学生对概念的接受能力达到59.9时需要13分钟.故答案为:13.考点:二次函数的应用.22.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利解析:1 2π【解析】【分析】如图,设图中③的面积为S3.构建方程组即可解决问题.【详解】解:如图,设图中③的面积为S3.由题意:2132231··241··12S SS Sππ⎧+=⎪⎪⎨⎪+=⎪⎩,可得S1﹣S2=12π,故答案为12π.【点睛】本题考查扇形的面积、正方形的性质等知识,解题的关键是学会利用参数构建方程组解决问题.23.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值解析:【解析】【分析】把解析式化为顶点式,再根据二次函数的性质得出答案即可。
通用版中考数学填空题专题训练(附答案)一、填空题1.某射手在一次训练中共射出了10发子弹,射击成绩如图所示,则射击成绩的中位数是__环.2.跳高训练时,甲、乙两名同学在相同条件下各跳了10次,统计他们的平均成绩都是1.36米,且方差为,,则成绩较为稳定的是________(填“甲”或“乙”).3.某校航模小组进行航模训练,如图,A,B,C三只小船在平面直角坐标系中的坐标分别为(1,1),(﹣1,3),(﹣2,1),一段时间后,小船A到达A′(4,﹣1)的位置,为了保持队形不变,此时小船B所到达的位置B′的坐标是________.4.某学校足球兴趣小组的五名同学在一次射门训练中,射进球门的次数分别为:6,7,7,8,9.这组数据的众数是___.5.2020年,全市中小学生田径运动会,甲、乙、丙、丁四位运动员在“100米短跑”训练中,每人各跑5次,据统计,平均成绩都是13.8秒,方差分别是=0.11,=0.03,,,则四人的训练成绩最稳定的是________6.为了在体育中考中取得更好的成绩,小明积极训练,体育老师对小明投掷铅球的录像进行技术分析,如图,发现铅球在行进过程中高度y(m)与水平距离x(m)之间的关系为,由此可知小明此次投掷的成绩是___.7.为增强学生体质,感受中国的传统文化,某校将“抖空竹”定为特色体育项目每天大课间进行训练,某同学“抖空竹”的一个瞬间如图①所示,若将图①抽象成图①的数学问题:,,,则的大小是____________度.8.甲、乙、丙、丁四位同学在相同条件下进行“立定跳远”训练,每人各跳10次,统计他们的平均成绩(单位:米)和方差如下表所示:则这四名同学“立定跳远”成绩波动最大的是______.9.2022年冬奥会北京赛区,共举办包括滑冰(含短道速滑、速度滑冰、花样滑冰)、冰球、冰壶在内的3个大项5个分项的所有冰上项目比赛,为了迎接2022年的冬奥会,中小学都积极开展冰上运动.小聪和小明进行500米短道速滑训练,他们的五次成绩如表所示:设两个人的五次成绩的平均数依次为小聪,小明,方差依次为S2小聪,S2小明,你认为两人中技术更好的是,你的理由是____.10.甲、乙、丙三人进行羽毛球比赛赛前训练,每局两人进行比赛,第三个人做裁判,每一局。
中考数学之选填题专项训练(1)一、选择题1. 在实数,,0,中,最小的实数是().A. B. C.0D.2. 如图所示的几何体的俯视图是().A. B. C. D.3. 如图,在中,,,点是边上任意一点,过点作交于点,则的度数是().A. B. C. D.4. 下列计算正确的是().A. B. C. D.5. 为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是()A.92分,96分B.94分,96分C.96分,96分D.96分,100分6. 计算的结果正确的是().A.1B.C.5D.97. 如图,在的正方形网格中,每个小正方形的边长都是1,的顶点都在这些小正方形的顶点上,那么的值为().A. B. C. D.8. 用配方法解一元二次方程,配方正确的是().A. B. C. D.9. 如图,是的直径,弦,垂足为点.连接,.如果,,那么图中阴影部分的面积是().A. B. C. D.10. 如图,有一块半径为1m,圆心角为90∘的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为()A.14m B.34m C.√154m D.√32m11. 人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①①①…的次序铺设地砖,把第个图形用图表示,那么图㊿中的白色小正方形地砖的块数是().…A.150B.200C.355D.50512. 如图,在中,,,将绕点旋转得到,使点的对应点落在上,在上取点,使,那么点到的距离等于().A. B. C. D.二、填空题13.因式分解:________.14.如图,在中,四边形为菱形,点在上,则的度数是________.15.某校开展读书日活动,小亮和小莹分别从校图书馆的“科技”、“文学”、“艺术”三类书籍中随机地抽取一本,抽到同一类书籍的概率是________.16.如图,在直角坐标系中,点,是第一象限角平分线上的两点,点的纵坐标为1,且,在轴上取一点,连接,,,,使得四边形的周长最小,这个最小周长的值为________.中考数学之选填题专项训练(2)一、选择题1. 计算1−3的结果是()A.2B.−2C.4D.−42. 用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A. B. C. D.3. 计算2a2⋅3a4的结果是()A.5a6B.5a8C.6a6D.6a84. 无理数√10在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5. 在一次数学测试中,小明的成绩为72分,超过班级半数同学的成绩,分析得出这个结论所用的统计量是()A.中位数B.众数C.平均数D.方差6. 如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0, −1)对应点的坐标为()A.(0, 0)B.(1, 2)C.(1, 3)D.(3, 1)AB同样长为半径画弧,两弧交于点C,7. 如图,已知线段AB,分别以A,B为圆心,大于12D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CADB.CD平分∠ACBC.AB⊥CDD.AB=CD8. 下列是关于某个四边形的三个结论:①它的对角线相等;①它是一个正方形;①它是一个矩形.下列推理过程正确的是()A.由①推出①,由①推出①B.由①推出①,由①推出①C.由①推出①,由①推出①D.由①推出①,由①推出①9. 如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A. B. C. D.10. 把一张宽为1cm 的长方形纸片ABCD 折叠成如图所示的阴影图案,顶点A ,D 互相重合,中间空白部分是以E 为直角顶点,腰长为2cm 的等腰直角三角形,则纸片的长AD (单位:cm )为( )A.7+3√2B.7+4√2C.8+3√2D.8+4√2 二、填空题11.因式分解:x 2−9=________. 12.计算1x −13x 的结果是________.13.如图,等边三角形纸片ABC 的边长为6,E ,F 是边BC 上的三等分点.分别过点E ,F 沿着平行于BA ,CA 方向各剪一刀,则剪下的△DEF 的周长是________.14.甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s 甲2与s 乙2,则s 甲2________s 乙2.(填“>”、“=”、“<“中的一个)15.如图,在△ABC 中,D 是边BC 上的一点,以AD 为直径的⊙O 交AC 于点E ,连接DE .若⊙O 与BC 相切,∠ADE =55∘,则∠C 的度数为________.16.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为________.(用含a,b的代数式表示)中考数学之选填题专项训练(3)一、选择题1. 实数2,0,−2,√2中,为负数的是()A.2B.0C.−2D.√22. 某自动控制器的芯片,可植入2020000000粒晶体管,这个数字2020000000用科学记数法可表示为()A.0.202×1010B.2.02×109C.20.2×108D.2.02×1083. 将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是()A. B. C. D.4. 如图,点A,B,C,D,E均在⊙O上,∠BAC=15∘,∠CED=30∘,则∠BOD的度数为()A.45∘B.60∘C.75∘D.90∘5. 如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm.则投影三角板的对应边长为()A.20cmB.10cmC.8cmD.3.2cm6. 如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E出口落出的概率是()A.12B.13C.14D.167. 长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.4B.5C.6D.78. 如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形9. 如图,等腰直角三角形ABC 中,∠ABC =90∘,BA =BC ,将BC 绕点B 顺时针旋转θ(0∘<θ<90∘),得到BP ,连结CP ,过点A 作AH ⊥CP 交CP 的延长线于点H ,连结AP ,则∠PAH 的度数( )A.随着θ的增大而增大B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小10. 同型号的甲、乙两辆车加满气体燃料后均可行驶210km ,它们各自单独行驶并返回的最远距离是105km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.若甲、乙两车都能顺利返回A 地,则B 地最远可距离A 地( )A.120kmB.140kmC.160kmD.180km二、填空题11.分解因式:1−x 2=________.12.关于x ,y 的二元一次方程组{x +y =2,A =0 的解为{x =1,y =1, 则多项式A 可以是________(写出一个即可).13.如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为________.14.如图,已知边长为2的等边三角形ABC中,分别以点A,C为圆心,m为半径作弧,两弧交于点D,连结BD.若BD的长为2√3,则m的值为________.15.有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是________元.16.将两条邻边长分别为√2,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的________(填序号).①√2,①1,①√2−1,①√3,①√3.2中考数学之选填题专项训练(4)一、选择题1. 2020年3月9日,我国第54颗北斗导航卫星成功发射,轨道高度约为36000000米.36000000这个数用科学记数法应表示为()A.0.36×108B.36×107C.3.6×108D.3.6×1072. 如图是由四个相同的小正方体组成的立体图形,它的主视图为()A. B. C. D.3. 已知样本数据2,3,5,3,7,下列说法不正确的是()A.平均数是4B.众数是3C.中位数是5D.方差是3.24. 一次函数y=2x−1的图象大致是()A. B. C. D.5. 如图,在直角坐标系中,△OAB的顶点为O(0, 0),A(4, 3),B(3, 0).以点O为位似中心,在第三象限内作与△OAB的位似比为的位似图形△OCD,则点C的坐标为()A.(−1, −1)B.(-,−1)C.(−1,-)D.(−2, −1)6. 不等式3(1−x)>2−4x的解集在数轴上表示正确的是()A. B. C. D.7. 如图,正三角形ABC的边长为3,将△ABC绕它的外心O逆时针旋转60∘得到△A′B′C′,则它们重叠部分的面积是()A.2B.C.D.8. 用加减消元法解二元一次方程组时,下列方法中无法消元的是()A.①×2−①B.①×(−3)−①C.①×(−2)+①D.①-①×39. 如图,在等腰△ABC中,AB=AC=2√5,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,EF的长为半径作弧相交于点H,作射线AH;大于12AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于①分别以点A,B为圆心,大于12点O;①以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A.2√5B.10C.4D.510. 已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n−m=1时,b−a有最小值B.当n−m=1时,b−a有最大值C.当b−a=1时,n−m无最小值D.当b−a=1时,n−m有最大值二、填空题11.分解因式:x2−9=________.12.如图,▱ABCD的对角线AC,BD相交于点O,请添加一个条件:________,使▱ABCD是菱形.13.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是________.14.如图,在半径为的圆形纸片中,剪一个圆心角为90∘的最大扇形(阴影部分),则这个扇形的面积为________;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为________.15.数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程________.。
中考数学总复习《选择、填空题》专项练习题含有答案(测试时间:30分钟;总分:45分)一、选择题(每小题3分,共30分) 1. -14的相反数是( )A. -14B. 14C. -4D. 42. 下列图形中,既是轴对称图形,又是中心对称图形的是( )3. 不等式组的解集在数轴上表示为( )4. 下列几何体是由大小相同的小正方体组成,其中主视图和俯视图相同的是( )5. 如图,四个长和宽分别为x +2和x 的矩形拼接成大正方形.若四个矩形和中间小正方形的面积和为4×35+22,则根据题意能列出的方程是( )A. x 2+2x -35=0B. x 2+2x +35=0C. x 2+2x -4=0D. x 2+2x +4=0 第5题图24030x x -<⎧⎨+≥⎩6. 如图,一次函数y 1=-x +1与反比例函数y 2=-2x 的图象都经过A ,B 两点,则当y 1<y 2时,x 的取值范围是( )A. x <-1B. x <-1或0<x <2C. -1<x <2D. -1<x <0或x >2 第6题图7. 某校的5名同学在“国学经典诵读”比赛中,成绩(分)分别是93,96,91,93,87,关于这组数据,下列说法正确的是( )A. 平均数是92.5B. 中位数是91C. 众数是93D. 方差是08. 在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( )A. y =-xB. y =x +2C. y =2xD. y =x 2-2x9. 如图,在▱ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若AE =20,CE =15,CF =7,AF =24,则BE 的长为( )A. 10B. 254C. 15D. 252第9题图10. 如图,Rt △ABC 中,∠C =90°,AC =6,BC =8,以点A 为圆心,BC 的长为半径作弧交AB 于点D ,再分别以点A ,D 为圆心,AB ,AC 的长为半径作弧交于点E ,连接AE ,DE ,若点F 为AE 的中点,则DF 的长为( )A. 4B. 5C. 6D. 8 第10题图 二、填空题(每小题3分,共15分)11. 对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4=________.12. 方程x 2x -4-12-x=1的解为________.13. 2020年6月21日,第二届全球文旅创作者大会在河南省云台山举行,现从2位文旅大咖,2位文旅创作者中随机抽取2人分享经验,则抽取的2人中,一位是文旅大咖,一位是文旅创作者的概率是________.14. 如图,在扇形OAB 中,∠AOB =90°,C 是OA 的中点,D 是AB ︵的中点,连接CD 、C B.若OA =2,则阴影部分的面积为________.(结果保留π)第14题图15. 如图,已知Rt △ABC 中,∠C =90°,AC =4,AB =a ,点M 在边AB 上,且AM =14a ,点N 是AC上一动点,将△AMN 沿MN 折叠,使点A 的对应点A ′恰好落在BC 上,若△BMA ′是直角三角形,则a 的值为________.第15题图参考答案1. B2. D 【解析】逐项分析如下:3. C 【解析】⎩⎪⎨⎪⎧2x -4<0①x +3≥0②,解不等式①,得x <2,解不等式②,得x ≥-3,∴不等式组的解集为-3≤x <2,表示在数轴上如选项C .4. C 【解析】逐项分析如下:5. A 【解析】依题意,得(x +x +2)2=4×35+22,即x 2+2x -35=0.6. D 【解析】联立⎩⎪⎨⎪⎧y =-x +1y =-2x ,解得⎩⎪⎨⎪⎧x =-1y =2或⎩⎪⎨⎪⎧x =2y =-1.∴A (-1,2),B (2,-1),y 1<y 2即一次函数的图象在反比例函数图象的下方,结合题图可知,当y 1<y 2时,x 的取值范围是-1<x <0或x >2.7. C 【解析】这组数据的平均数=15×(93+96+91+93+87)=92(分),∴A 选项错误;这组数据按从小到大的顺序排列为:87、91、93、93、96,∴这组数据的中位数为93分,∴B 选项错误;∵93出现的次数最多,∴这组数据的众数为93分,∴C 选项正确;∵这组数据有变化,∴方差不为0,∴D 选项错误.8. B 【解析】根据“好点”的定义,好点即为直线y =x 上的点,令各函数中y =x ,x =-x ,解得x =0,即“好点”为(0,0),故A 选项不符合;x =x +2,无解,即该函数图象中不存在“好点”,故B 选项符合;x =2x ,解得x =±2,经检验x =±2是原方程的解,即“好点”为(2,2)和(-2,-2),故C选项不符合;x =x 2-2x ,解得x =0或3,即“好点”为(0,0)和(3,3),故D 选项不符合.9. C 【解析】∵四边形ABCD 是平行四边形,∴∠B =∠D ,∵AE ⊥BC ,AF ⊥CD ,∴∠AEB =∠AFD =90°,∴△AEB ∽△AFD ,∴BE DF =AE AF =2024=56,设BE =5x ,则DF =6x ,AB =CD =7+6x ,在Rt △ABE 中,(7+6x )2=(5x )2+202,即11x 2+84x -351=0,解得x =3或x =-11711(舍去),∴BE =5x =15.10. B 【解析】由作图可知△ADE ≌△BCA .∴∠ADE =∠C =90°,AE =AB .又∵AC =6,BC =8,∠C =90°,∴AB =10=AE .∵点F 为AE 的中点,∴DF =12AE =12AB =5.11. 2 【解析】由题意得12⊕4=12+412-4=422= 2.12. x =6 【解析】去分母得x -(-2)=2x -4,去括号得x +2=2x -4,移项得x -2x =-4-2,合并同类项得-x =-6,解得x =6,检验:当x =6时,2x -4≠0,2-x ≠0,∴原方程的解为x =6.13. 23【解析】2名文旅大咖记为A 1、A 2,2名文旅创作者记为B 1、B 2,列表如下:由表格可知,共有12种等可能的结果,其中抽到一位文旅大咖,一位文旅创作者的情况有8种,∴P (抽取的2人中,一位是文旅大咖,一位是文旅创作者)=812=23. 14.π2+22-1 【解析】如解图,连接OD ,过点D 作DH ⊥OA 于点H ,∵∠AOB =90°,D 是AB ︵的中点,∴∠AOD =∠BOD =45°,∵OD =OA =2,∴DH =22OD =2,∵C 是OA 的中点,∴OC =1,∴S 阴影=S 扇形DOB +S △CDO -S △BCO =45×π×22360+12×2×1-12×1×2=π2+22-1.第14题解图15. 410或12 【解析】由折叠性质可得A ′M =AM =14a ,分两种情况:①如解图①,当∠BMA ′=90°时,△BMA ′是直角三角形,tanB=A ′M BM =AC BC ,即14a 34a =4BC,解得BC =12,由勾股定理得a =BC 2+AC 2=42+122=410;②如解图②,当∠BA ′M =90°时,△BMA ′是直角三角形,sin B =A ′M BM =ACAB ,即14a 34a =4a,解得a =12,∴a 的值为410或12.第15题解图。
一、选择题1.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023 B .2021 C .2020 D .20192.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .43.如图中∠BOD 的度数是( )A .150°B .125°C .110°D .55°4.如图,点O 是△ABC 的内切圆的圆心,若∠A =80°,则∠BOC 为( )A .100°B .130°C .50°D .65°5.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( )A .400(1)640x +=B .2400(1)640x +=C .2400(1)400(1)640x x +++=D .2400400(1)400(1)640x x ++++=6.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x ,则下列方程中,正确的是( )A .()3001x 450+=B .()30012x 450+=C .2300(1x)450+=D .2450(1x)300-= 7.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .15B .25C .35D .458.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >49.“射击运动员射击一次,命中靶心”这个事件是( )A .确定事件B .必然事件C .不可能事件D .不确定事件10.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根 11.若20a ab -=(b ≠0),则a ab +=( ) A .0 B .12C .0或12D .1或 2 12.已知二次函数y =ax 2+bx+c 中,y 与x 的部分对应值如下: x 1.1 1.2 1.3 1.41.5 1.6 y ﹣1.59 ﹣1.16 ﹣0.71 ﹣0.24 0.25 0.76则一元二次方程ax 2+bx+c =0的一个解x 满足条件( )A .1.2<x <1.3B .1.3<x <1.4C .1.4<x <1.5D .1.5<x <1.6 13.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( )A .36°B .54°C .72°D .108° 14.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是( )A .14B .12C .23D .3415.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点P ,若CD =AP =8,则⊙O 的直径为( )A.10B.8C.5D.3二、填空题16.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).17.若把一根长200cm的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.18.如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为.19.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_____.20.如图,在边长为2的正方形ABCD中,以点D为圆心,AD长为半径画AC,再以BC 为直径画半圆,若阴影部分①的面积为S1,阴影部分②的面积为S2,则图中S1﹣S2的值为_____.(结果保留π)21.关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是_______.22.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为________.23.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有_____个. 24.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为_____.25.在平面直角坐标系中,抛物线y =x 2的图象如图所示.已知A 点坐标为(1,1),过点A 作AA 1∥x 轴交抛物线于点A 1,过点A 1作A 1A 2∥OA 交抛物线于点A 2,过点A 2作A 2A 3∥x 轴交抛物线于点A 3,过点A 3作A 3A 4∥OA 交抛物线于点A 4……,依次进行下去,则点A 2019的坐标为_______.三、解答题26.在四张编号为A ,B ,C ,D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张,不放回,再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A ,B ,C ,D 表示);(2)我们知道,满足a 2+b 2=c 2的三个正整数a ,b ,c 成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.27.某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m ,200m ,400m(分别用1A 、2A 、3A 表示);田赛项目:跳远,跳高(分别用1B 、2B 表示). ()1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;()2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.28.如图,平面直角坐标系中,每个小正方形边长是1.(1)画出△ABC关于原点中心对称的得到△A1B1C1;(2)画出△ABC关于C点顺时针旋转90°的△A2B2C2;(3)在(2)的条件下,求出B点旋转后所形成的弧线长.29.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?30.为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.B3.C4.B5.B6.C7.C8.B9.D10.A11.C12.C13.C14.B15.A二、填空题16.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能17.1250cm2【解析】【分析】设将铁丝分成xcm和(200﹣x)cm两部分则两个正方形的边长分别是cmcm再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm和(200﹣x)cm两部分列二次18.【解析】试题分析:根据圆的确定先做出过ABC三点的外接圆从而得出答案如图分别作ABBC的中垂线两直线的交点为O以O为圆心OA为半径作圆则⊙O即为过ABC三点的外接圆由图可知⊙O还经过点DEFGH这519.-3<x<1【解析】试题分析:根据抛物线的对称轴为x=﹣1一个交点为(10)可推出另一交点为(﹣30)结合图象求出y>0时x的范围解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1已知一个交点为(120.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利21.k<2且k≠1【解析】试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根∴k-1≠0且△=(-2)2-4(k-1)>0解得:k<2且k≠1考点:1根的判别式;2一元二次22.20【解析】【分析】一般用增长后的量=增长前的量×(1+增长率)再根据题意列出方程5(1+x)2=72即可解答【详解】设这两年中投入资金的平均年增长率是x由题意得:5(1+x)2=72解得:x1=023.2【解析】试题解析:∵袋中装有6个黑球和n个白球∴袋中一共有球(6+n)个∵从中任摸一个球恰好是黑球的概率为∴解得:n=2故答案为224.(2)【解析】由题意得:即点P的坐标25.(-101010102)【解析】【分析】根据二次函数性质可得出点A1的坐标求得直线A1A2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A .【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键. 2.B解析:B【解析】【分析】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,设OF=x ,则OM=4-x ,MF=2,然后在Rt △MOF 中利用勾股定理求得OF 的长即可.【详解】如图:EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF , ∵四边形ABCD 是矩形,∴∠C=∠D=90°,∴四边形CDMN 是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.3.C解析:C【解析】试题分析:如图,连接OC.∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C.【考点】圆周角定理.4.B解析:B【解析】【分析】根据三角形的内切圆得出∠OBC=12∠ABC,∠OCB=12∠ACB,根据三角形的内角和定理求出∠ABC+∠ACB的度数,进一步求出∠OBC+∠OCB的度数,根据三角形的内角和定理求出即可.【详解】∵点O是△ABC的内切圆的圆心,∴∠OBC=12∠ABC,∠OCB=12∠ACB.∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.故选B.【点睛】本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌握,能求出∠OBC+∠OCB的度数是解答此题的关键.5.B解析:B【解析】【分析】根据平均年增长率即可解题.【详解】解:设这两年的年净利润平均增长率为x ,依题意得:()24001640x +=故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键. 6.C解析:C【解析】【分析】快递量平均每年增长率为x ,根据我国2016年及2018年的快递业务量,即可得出关于x 的一元二次方程,此题得解.【详解】快递量平均每年增长率为x ,依题意,得:2300(1x)450+=,故选C .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 7.C解析:C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3355÷=故选C 8.B解析:B【解析】【分析】【详解】当函数值y >0时,自变量x 的取值范围是:﹣2<x <4.故选B .9.D解析:D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件, 故选D .考点:随机事件.10.A解析:A【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x 2+x ﹣3=0有两个不相等的实数根.【详解】∵a=1,b=1,c=﹣3,∴△=b 2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x 2+x ﹣3=0有两个不相等的实数根,故选A .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.C解析:C【解析】【分析】【详解】解:∵20a ab -= ()0b ≠,∴a(a-b)=0,∴a=0,b=a .当a=0时,原式=0;当b=a 时,原式=12,故选C 12.C解析:C【解析】【分析】仔细看表,可发现y 的值-0.24和0.25最接近0,再看对应的x 的值即可得.【详解】解:由表可以看出,当x 取1.4与1.5之间的某个数时,y=0,即这个数是ax 2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选C.【点睛】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.13.C解析:C【解析】正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是3605=72度,故选C.14.B解析:B【解析】【分析】画树状图展示所有12种等可能的结果数,再两人摸出的小球颜色相同的结果数然后根据概率公式求解.【详解】解:画树状图如下:,一共12种可能,两人摸出的小球颜色相同的有6种情况,所以两人摸出的小球颜色相同的概率是612=12,故选:B.【点睛】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.A解析:A【解析】【分析】连接OC,先根据垂径定理求出PC的长,再根据勾股定理即可得出OC的长.【详解】连接OC,∵CD ⊥AB ,CD=8,∴PC=12CD=12×8=4, 在Rt △OCP 中,设OC=x ,则OA=x ,∵PC=4,OP=AP-OA=8-x ,∴OC 2=PC 2+OP 2,即x 2=42+(8-x )2,解得x=5,∴⊙O 的直径为10.故选A .【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题16.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.17.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分则两个正方形的边长分别是cmcm 再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分列二次解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250,由于18>0,故其最小值为1250cm2,故答案为:1250cm2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.18.【解析】试题分析:根据圆的确定先做出过ABC三点的外接圆从而得出答案如图分别作ABBC的中垂线两直线的交点为O以O为圆心OA为半径作圆则⊙O 即为过ABC三点的外接圆由图可知⊙O还经过点DEFGH这5解析:【解析】试题分析:根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为5.考点:圆的有关性质.19.-3<x<1【解析】试题分析:根据抛物线的对称轴为x=﹣1一个交点为(10)可推出另一交点为(﹣30)结合图象求出y>0时x的范围解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1已知一个交点为(1解析:-3<x<1【解析】试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为﹣3<x<1.考点:二次函数的图象.20.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利解析:1 2π【解析】【分析】如图,设图中③的面积为S3.构建方程组即可解决问题.【详解】解:如图,设图中③的面积为S3.由题意:2132231··241··12S SS Sππ⎧+=⎪⎪⎨⎪+=⎪⎩,可得S1﹣S2=12π,故答案为12π.【点睛】本题考查扇形的面积、正方形的性质等知识,解题的关键是学会利用参数构建方程组解决问题.21.k<2且k≠1【解析】试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根∴k-1≠0且△=(-2)2-4(k-1)>0解得:k<2且k≠1考点:1根的判别式;2一元二次解析:k<2且k≠1【解析】试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k<2且k≠1.考点:1.根的判别式;2.一元二次方程的定义.22.20【解析】【分析】一般用增长后的量=增长前的量×(1+增长率)再根据题意列出方程5(1+x)2=72即可解答【详解】设这两年中投入资金的平均年增长率是x由题意得:5(1+x)2=72解得:x1=0解析:20%.【解析】【分析】一般用增长后的量=增长前的量×(1+增长率),再根据题意列出方程5(1+x )2=7.2,即可解答.【详解】设这两年中投入资金的平均年增长率是x ,由题意得:5(1+x )2=7.2,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意舍去).答:这两年中投入资金的平均年增长率约是20%.故答案是:20%.【点睛】此题考查一元二次方程的应用,解题关键在于列出方程.23.2【解析】试题解析:∵袋中装有6个黑球和n 个白球∴袋中一共有球(6+n )个∵从中任摸一个球恰好是黑球的概率为∴解得:n=2故答案为2 解析:2【解析】试题解析:∵袋中装有6个黑球和n 个白球,∴袋中一共有球(6+n )个, ∵从中任摸一个球,恰好是黑球的概率为34, ∴6364n =+, 解得:n=2.故答案为2. 24.(2)【解析】由题意得:即点P 的坐标解析: ,2).【解析】由题意得:441a a =⇒= 2y x ⇒=222OD x x =⇒=⇒=,即点P 的坐标)2. 25.(-101010102)【解析】【分析】根据二次函数性质可得出点A1的坐标求得直线A1A2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变解析:(-1010,10102)【解析】【分析】根据二次函数性质可得出点A 1的坐标,求得直线A 1A 2为y=x+2,联立方程求得A 2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2019的坐标.【详解】∵A点坐标为(1,1),∴直线OA为y=x,A1(-1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解22y x y x +⎧⎨⎩==得11xy-⎧⎨⎩==或24xy⎧⎨⎩==,∴A2(2,4),∴A3(-2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解26y x y x +⎧⎨⎩==得24xy-⎧⎨⎩==或39xy⎧⎨⎩==,∴A4(3,9),∴A5(-3,9)…,∴A2019(-1010,10102),故答案为(-1010,10102).【点睛】此题考查二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.三、解答题26.(1)图形见解析(2)1 2【解析】【分析】(1)本题属于不放回的情况,画出树状图时要注意;(2)B、C、D三个卡片的上的数字是勾股数,选出选中B、C、D其中两个的即可【详解】(1)画树状图如下:(2)∵共有12种等可能的结果数,抽到的两张卡片上的数都是勾股数的结果数为6种,∴抽到的两张卡片上的数都是勾股数的概率61 122 ==.27.(1)25;(2)35.【解析】【分析】(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【详解】(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:25.故答案为25;(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:123 205=.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.28.(1)图见详解;(2)图见详解;(3)32π.【解析】【分析】(1)利用关于原点对称点的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案;(3)利用弧长公式计算即可得出结果.【详解】解:(1)如图示,△A1B1C1为所求;(2)如图示,△A 2B 2C 2为所求;(3)∵△ABC 关于C 点顺时针旋转90°得到的△A 2B 2C 2,每个小正方形边长是1, 由题图可知,半径3BC ,根据弧长的公式得:2239036320BB . 【点睛】此题主要考查了平移变换、旋转变换,正确得出对应点位置和熟悉弧长公式是解题关键. 29.(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x ;50﹣x .(3)每件商品降价25元时,商场日盈利可达到2000元.【解析】【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x 元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润×销售数量”即可列出关于x 的一元二次方程,解之即可得出x 的值,再根据尽快减少库存即可确定x 的值.【详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元). 答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x 元,则商场日销售量增加2x 件,每件商品,盈利(50-x )元. 故答案为2x ;50-x .(3)根据题意,得:(50-x )×(30+2x )=2000,整理,得:x 2-35x+250=0,解得:x 1=10,x 2=25,∵商城要尽快减少库存,∴x=25.答:每件商品降价25元时,商场日盈利可达到2000元.【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).30.(1)该广场绿化区域的面积为144平方米;(2)广场中间小路的宽为1米.【解析】【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.【点睛】本题考查的知识点是一元二次方程的应用,找准题目中的等量关系式是解此题的关键.。
一、选择题1.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023 B .2021 C .2020 D .20192.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒3.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .4 4.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点5.如图,在△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′的度数为( )A .25°B .30°C .50°D .55°6.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( )A .400(1)640x +=B .2400(1)640x +=C .2400(1)400(1)640x x +++=D .2400400(1)400(1)640x x ++++=8.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x ,则下列方程中,正确的是( )A .()3001x 450+=B .()30012x 450+=C .2300(1x)450+=D .2450(1x)300-= 9.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π-C .32π-D .3π-10.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1211.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A .68°B .58°C .72°D .56°12.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π-B .8433π-C .8233π-D .843π- 13.若a 是方程22x x 30--=的一个解,则26a 3a -的值为( )A .3B .3-C .9D .9-14.下列判断中正确的是( )A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦15.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次方程220ax ax a c -++=的根为( )A .0,4B .-3,5C .-2,4D .-3,1二、填空题16.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).17.已知二次函数y =(x −2)2+3,当x _______________时,y 随x 的增大而减小.18.二次函数22(1)3y x =+-上一动点(,)P x y ,当21x -<≤时,y 的取值范围是_____.19.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.20.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.21.一元二次方程22x 20-=的解是______.22.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是23602s t t =-,则飞机着陆后滑行的最长时间为 秒. 23.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x 2﹣6x ﹣16,AB 为半圆的直径,则这个“果圆”被y 轴截得的线段CD 的长为_____.24.如图,点A 是抛物线24y x x =-对称轴上的一点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO ′,当O ′恰好落在抛物线上时,点A 的坐标为______________.25.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于_____.三、解答题26.如图,斜坡AB 长10米,按图中的直角坐标系可用353y x =-+表示,点A ,B 分别在x 轴和y 轴上,且30OAB ︒∠=.在坡上的A 处有喷灌设备,喷出的水柱呈抛物线形落到B 处,抛物线可用213y x bx c =-++表示.(1)求抛物线的函数关系式(不必写自变量取值范围);(2)求水柱离坡面AB的最大高度;(3)在斜坡上距离A点2米的C处有一颗3.5米高的树,水柱能否越过这棵树?27.在平面直角坐标系中,已知二次函数y=ax2﹣2ax﹣3a(a>0)图象与x轴交于点A,B (点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B的坐标;(2)若M为对称轴与x轴交点,且DM=2AM.①求二次函数解析式;②当t﹣2≤x≤t时,二次函数有最大值5,求t值;③若直线x=4与此抛物线交于点E,将抛物线在C,E之间的部分记为图象记为图象P(含C,E两点),将图象P沿直线x=4翻折,得到图象Q,又过点(10,﹣4)的直线y=kx+b 与图象P,图象Q都相交,且只有两个交点,求b的取值范围.28.“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;类别儿童玩具童车童装抽查件数90请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?29.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.30.某企业为响应国家教育扶贫的号召,决定对某乡镇全体贫困初、高中学生进行资助,初中学生每月资助200元,高中学生每月资助300元.已知该乡受资助的初中学生人数是受资助的高中学生人数的2倍,且该企业在2018年下半年7﹣12月这6个月资助学生共支出10.5万元.(1)问该乡镇分别有多少名初中学生和高中学生获得了资助?(2)2018年7﹣12月期间,受资助的初、高中学生中,分别有30%和40%的学生被评为优秀学生,从而获得了该乡镇政府的公开表扬.同时,提供资助的企业为了激发更多受资助学生的进取心和学习热情,决定对2019年上半年1﹣6月被评为优秀学生的初中学生每人每月增加a%的资助,对被评为优秀学生的高中学生每人每月增加2a%的资助.在此奖励政策的鼓励下,2019年1﹣6月被评为优秀学生的初、高中学生分別比2018年7﹣12月的人数增加了3a%、a%.这样,2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元,求a的值.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.A3.B4.D5.C6.D7.B8.C9.B10.D11.D12.C13.C14.C15.B二、填空题16.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能17.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y随x 的增大而减小在对称轴的右边y随x的增大而增大根据性质可得:当x<2时y随x的增大而减小考点:二次函数的性质18.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时19.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P(摸到白球)==20.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+21.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接22.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值23.20【解析】【分析】抛物线的解析式为y=x2-6x-16可以求出AB=10;在Rt△COM中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D(024.(22)或(2-1)【解析】∵抛物线y=x2-4x对称轴为直线x=-∴设点A坐标为(2m)如图所示作AP⊥y轴于点P作O′Q⊥直线x=2∴∠APO=∠AQO′=90°∴∠QAO′+∠AO′Q=90°25.-1【解析】由题意得ABBC于DBC于EBC交BC于FAB=勾股定理得AE=AD=1DB=-1三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A .【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键. 2.A【解析】【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数.【详解】∵35C ∠=︒∴35BAD C =∠=︒∠∵AB 是圆O 的直径∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠故答案为:A .【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.3.B解析:B【解析】【分析】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,设OF=x ,则OM=4-x ,MF=2,然后在Rt △MOF 中利用勾股定理求得OF 的长即可.【详解】如图:EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,∵四边形ABCD 是矩形,∴∠C=∠D=90°,∴四边形CDMN 是矩形,∴MN=CD=4,设OF=x ,则ON=OF ,∴OM=MN-ON=4-x ,MF=2,在直角三角形OMF 中,OM 2+MF 2=OF 2,即:(4-x )2+22=x 2,解得:x=2.5,故选B .本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.4.D解析:D【解析】【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误.【详解】当1a =-时,()224125=--+=-++y x x x ,∴当2x =-时,函数取得最大值5,故A 正确;当1a =时,()224125y x x x =--=--,∴函数图象开口向上,对称轴为2x =,∴当2x ≥时,y 随x 的增大而增大,故B 正确;当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误;故选D.【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键. 5.C解析:C【解析】试题解析:∵CC′∥AB ,∴∠ACC′=∠CAB=65°,∵△ABC 绕点A 旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C .6.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、不是轴对称图形,是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、既是轴对称图形,又是中心对称图形,故此选项正确.故选D .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.B解析:B【解析】【分析】根据平均年增长率即可解题.【详解】解:设这两年的年净利润平均增长率为x ,依题意得:()24001640x +=故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键. 8.C解析:C【解析】【分析】快递量平均每年增长率为x ,根据我国2016年及2018年的快递业务量,即可得出关于x 的一元二次方程,此题得解.【详解】快递量平均每年增长率为x ,依题意,得:2300(1x)450+=,故选C .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 9.B解析:B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯ =233π 故选B . 10.D解析:D【解析】【分析】连接AO 、BO 、CO ,根据中心角度数=360°÷边数n ,分别计算出∠AOC 、∠BOC 的度数,根据角的和差则有∠AOB =30°,根据边数n =360°÷中心角度数即可求解.【详解】连接AO 、BO 、CO ,∵AC 是⊙O 内接正四边形的一边,∴∠AOC =360°÷4=90°,∵BC 是⊙O 内接正六边形的一边,∴∠BOC =360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.11.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12=(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD2223OD OC+∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C .【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.13.C解析:C【解析】由题意得:2a 2-a-3=0,所以2a 2-a=3,所以6a 2-3a=3(2a 2-a)=3×3=9, 故选C.14.C解析:C【解析】【分析】根据等弧概念对A 进行判断,根据垂径定理对B 、C 、D 选项进行逐一判断即可. 本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B 错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C 正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误. 故选C.15.B解析:B【解析】【分析】先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.【详解】∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =∴()2620a c -+=或()2220a c --+=∴整理方程即得:160a c +=∴16c a =-将16c a =-代入220ax ax a c -++=化简即得:22150x x --=解得:13x =-,25x =故选:B .【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.二、填空题16.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.17.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y 随x 的增大而减小在对称轴的右边y 随x 的增大而增大根据性质可得:当x <2时y 随x 的增大而减小考点:二次函数的性质解析:<2(或x≤2).【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y 随x 的增大而减小,在对称轴的右边,y 随x 的增大而增大.根据性质可得:当x <2时,y 随x 的增大而减小. 考点:二次函数的性质18.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时 解析:35y -≤≤【解析】【分析】先确定抛物线的对称轴和顶点坐标,再根据抛物线的性质以对称轴为界分情况求解即得答案.【详解】解:∵抛物线的解析式是22(1)3y x =+-,∴抛物线的对称轴是直线:1x =-,顶点坐标是(-1,-3),抛物线的开口向上,当x <-1时,y 随x 的增大而减小,当x >-1时,y 随x 的增大而增大,且当2x =-时,1y =-;当x =1时,y =5;∴当21x -<≤-时,31y -≤<-,当11x -<≤ 时,35y -<≤,∴当21x -<≤时,y 的取值范围是:35y -≤≤.故答案为:35y -≤≤.【点睛】本题考查的是二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题关键.19.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P (摸到白球)== 解析:38【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,P (摸到白球)=353+ =38. 20.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x 的值直接计算【详解】∵一元二次方程x2﹣2x ﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+解析:-4【解析】【分析】利用根与系数的关系求出所求即可.此题也可解出x 的值,直接计算.【详解】∵一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),∴x 1+x 2=2,x 1x 2=﹣3,则x 1﹣x 2=﹣√(x 1+x 2)2−4x 1x 2=﹣√4+12=﹣4.故答案为﹣4.【点睛】本题考查了根与系数的关系,弄清根与系数的关系是解答本题的关键.21.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x 1=1,x 2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x 2=1,开方得:x =±1,解得:x 1=1,x 2=﹣1.故答案为x 1=1,x 2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.22.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s 取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值解析:【解析】【分析】把解析式化为顶点式,再根据二次函数的性质得出答案即可。
一、选择题1.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .4 2.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )A .y =﹣2(x +1)2+1B .y =﹣2(x ﹣1)2+1C .y =﹣2(x ﹣1)2﹣1D .y =﹣2(x +1)2﹣1 3.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x 米.则可列方程为( )A .32×20﹣32x ﹣20x =540 B .(32﹣x )(20﹣x )=540 C .32x +20x =540D .(32﹣x )(20﹣x )+x 2=5404.如图中∠BOD 的度数是( )A .150°B .125°C .110°D .55° 5.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>6.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A.6B.8C.10D.127.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.1128.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.43B.63C.23D.89.如图,A、D是⊙O上的两个点,BC是直径,若∠D=34°,则∠OAC等于()A.68°B.58°C.72°D.56°10.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-11.如图,某中学计划靠墙围建一个面积为280m的矩形花圃(墙长为12m),围栏总长度为28m,则与墙垂直的边x为()A .4m 或10mB .4mC .10mD .8m 12.当﹣2≤x≤1时,二次函数y=﹣(x ﹣m )2+m 2+1有最大值4,则实数m 的值为( ) A .74- B .3或3- C .2或3- D .2或3-或74- 13.设,a b 是方程2320170x x +-=的两个实数根,则22a a b +-的值为( ) A .2017 B .2018 C .2019 D .202014.如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F .P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是( )A .4-9πB .4-89π C .8-49π D .8-89π 15.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .-1<x <2B .x >2C .x <-1D .x <-1或x >2二、填空题16.如图,将半径为6的半圆,绕点A 逆时针旋转60°,使点B 落到点B′处,则图中阴影部分的面积是_____.17.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.18.如图,抛物线y =﹣2x 2+2与x 轴交于点A 、B ,其顶点为E .把这条抛物线在x 轴及其上方的部分记为C 1,将C 1向右平移得到C 2,C 2与x 轴交于点B 、D ,C 2的顶点为F ,连结EF .则图中阴影部分图形的面积为______.19.已知如图所示的图形的面积为24,根据图中的条件,可列出方程:_______.20.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于_____cm.21.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1_____y2.(用“>”、“<”、“=”填空)22.四边形ABCD内接于⊙O,∠A=125°,则∠C的度数为_____°.23.两块大小相同,含有30°角的三角板如图水平放置,将△CDE绕点C按逆时针方向旋转,当点E的对应点E′恰好落在AB上时,△CDE旋转的角度是______度.24.在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为_______.25.在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).(1)如图1,若BC=4m,则S=_____m2.(2)如图2,现考虑在(1)中矩形ABCD 小屋的右侧以CD 为边拓展一正△CDE 区域,使之变成落地为五边形ABCED 的小屋,其他条件不变,则在BC 的变化过程中,当S 取得最小值时,边BC 的长为____m .三、解答题26.已知x =n 是关于x 的一元二次方程mx 2﹣4x ﹣5=0的一个根,若mn 2﹣4n+m =6,求m 的值.27.如图,平面直角坐标系中,每个小正方形边长是1.(1)画出△ABC 关于原点中心对称的得到△A 1B 1C 1;(2)画出△ABC 关于C 点顺时针旋转90°的△A 2B 2C 2;(3)在(2)的条件下,求出B 点旋转后所形成的弧线长.28.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE .1()求证:ACD ≌BCE ;2()当AD BF =时,求BEF ∠的度数.29.如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作EF ⊥AC 于点E ,交AB 的延长线于点F .(1)判断直线DE 与⊙O 的位置关系,并说明理由;(2)如果AB=5,BC=6,求DE 的长.30.某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.B3.B4.C5.A6.D7.C8.A9.D10.C11.C12.C13.D14.B15.D二、填空题16.24π【解析】【分析】根据整体思想可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′再利用扇形面积公式计算即可【详解】解:∵S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB而根据旋17.相离【解析】r=2d=3则直线l与⊙O的位置关系是相离18.4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE即可求解【详解】令y =0则:x=±1令x=0则y=2则:OB=1BD=2OB=2S阴影部分图形=S四边形BDFE=BD×OE=2×2=19.(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差据此即可列出方程【详解】根据题意得:(x+1)2-1=24即:(x+1)2=25故答案为(x+1)2=25【点睛】本题考查了一元二20.【解析】【分析】把扇形的弧长和圆锥底面周长作为相等关系列方程求解【详解】设此圆锥的底面半径为r根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr解得:r=1故答案为:1【点睛】本题考查了圆锥21.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x2-4x-1=(x-2)2-5可知其图象开口向上22.【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可【详解】解:∵四边形ABCD内接于⊙O∴∠A+∠C=180°∵∠A=125°∴∠C=55°故答案为:55【点睛】本题考查了圆内接四边形的性23.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线可得△E′CB是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE旋转的度数【详解】解:∵三角板是两块大小24.(-101010102)【解析】【分析】根据二次函数性质可得出点A1的坐标求得直线A1A2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变25.88π;【解析】【分析】(1)小狗活动的区域面积为以B为圆心10m为半径的圆以C为圆心6m为半径的圆和以A为圆心4为半径的圆的面积和据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心10为半三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.2.B解析:B【解析】【详解】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.3.B解析:B【解析】【分析】先将图形利用平移进行转化,可得剩余图形的长等于原来的长减去小路的宽,剩余图形的宽等于原来的宽减去路宽,然后再根据矩形面积公式计算.【详解】利用图形平移可将原图转化为下图,设道路的宽为x ,根据题意得:(32-x )(20-x )=540.故选B.【点睛】本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.4.C解析:C【解析】试题分析:如图,连接OC .∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C .【考点】圆周角定理.5.A解析:A【解析】【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.6.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.7.C解析:C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126=.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.8.A解析:A【解析】【分析】【详解】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=12∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=323,∴3.故选A.【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.9.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12=(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.11.C解析:C【解析】【分析】设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.【详解】设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,根据题意列出方程x(28-2x)=80,解得x1=4,x2=10因为8≤x<14∴与墙垂直的边x为10m故答案为C.【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x 值.12.C解析:C【解析】【分析】根据对称轴的位置,分三种情况讨论求解即可.【详解】二次函数的对称轴为直线x=m ,①m <﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m )2+m 2+1=4,解得m=74-,与m <﹣2矛盾,故m 值不存在; ②当﹣2≤m≤1时,x=m 时,二次函数有最大值,此时,m 2+1=4,解得m=③当m >1时,x=1时二次函数有最大值,此时,﹣(1﹣m )2+m 2+1=4,解得m=2,综上所述,m 的值为2或﹣故选C .13.D解析:D【解析】【分析】首先根据根与系数的关系,求出a+b=-3;然后根据a 是方程2320170x x +-=的实数根,可得2320170a a +-=,据此求出232017a a +=,利用根与系数关系得:+a b =-3,22a a b +- 变形为(2a 3a +)-(+a b ),代入即可得到答案.【详解】解:∵a 、b 是方程2320170x x +-=的两个实数根,∴+a b =-3;又∵2320170a a +-=,∴232017a a +=,∴22a a b +-=(2a 3a +)-(+a b )=2017-(-3)=2020即22a a b +-的值为2020.【点睛】本题考查了根与系数的关系与一元二次方程的解,把22a a b +-化成(2a 3a +)-(+a b )是解题的关键.14.B解析:B【解析】试题解析:连接AD ,∵BC 是切线,点D 是切点,∴AD ⊥BC ,∴∠EAF=2∠EPF=80°,∴S 扇形AEF =280?283609ππ=, S △ABC =12AD•BC=12×2×4=4, ∴S 阴影部分=S △ABC -S 扇形AEF =4-89π. 15.D解析:D【解析】【分析】根据已知图象可以得到图象与x 轴的交点是(-1,0),(2,0),又y >0时,图象在x 轴的上方,由此可以求出x 的取值范围.【详解】依题意得图象与x 轴的交点是(-1,0),(2,0),当y >0时,图象在x 轴的上方,此时x <-1或x >2,∴x 的取值范围是x <-1或x >2,故选D .【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x 轴的交点,然后由图象找出当y >0时,自变量x 的范围,注意数形结合思想的运用.16.24π【解析】【分析】根据整体思想可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′再利用扇形面积公式计算即可【详解】解:∵S阴影=S半圆AB′+S扇形ABB′﹣S半圆A B而根据旋解析:24π【解析】【分析】根据整体思想,可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′,再利用扇形面积公式计算即可.【详解】解:∵S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB而根据旋转的性质可知S半圆AB′=S半圆AB∴S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′而由题意可知AB=12,∠BAB′=60°即:S阴影=2 6012360π⋅⋅=24π故答案为24π.【点睛】本题考查了扇形面积的相关计算,根据整体思想求出表示阴影部分面积的方法,再用公式计算扇形的面积即可.17.相离【解析】r=2d=3则直线l与⊙O的位置关系是相离解析:相离【解析】r=2,d=3,则直线l与⊙O的位置关系是相离18.4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE即可求解【详解】令y=0则:x=±1令x=0则y=2则:OB=1BD=2OB=2S阴影部分图形=S四边形BDFE=BD×OE=2×2=解析:4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE,即可求解.【详解】令y=0,则:x=±1,令x=0,则y=2,则:OB=1,BD=2,OB=2,S阴影部分图形=S四边形BDFE=BD×OE=2×2=4.故:答案为4.【点睛】本题考查的是抛物线性质的综合运用,确定S阴影部分图形=S四边形BDFE是本题的关键.19.(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差据此即可列出方程【详解】根据题意得:(x+1)2-1=24即:(x+1)2=25故答案为(x+1)2=25【点睛】本题考查了一元二解析:(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差,据此即可列出方程.【详解】根据题意得:(x+1)2 -1=24,即:(x+1)2 =25.故答案为(x+1)2 =25.【点睛】本题考查了一元二次方程的应用——图形问题,解题的关键是明确图中不规则图形的面积计算方法.20.【解析】【分析】把扇形的弧长和圆锥底面周长作为相等关系列方程求解【详解】设此圆锥的底面半径为r根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr解得:r=1故答案为:1【点睛】本题考查了圆锥解析:【解析】【分析】把扇形的弧长和圆锥底面周长作为相等关系,列方程求解.【详解】设此圆锥的底面半径为r.根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr1203180π⨯=,解得:r=1.故答案为:1.【点睛】本题考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.21.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x2-4x-1=(x-2)2-5可知其图象开口向上解析:<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【详解】由二次函数y=x2-4x-1=(x-2)2-5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为<.22.【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可【详解】解:∵四边形ABCD内接于⊙O∴∠A+∠C=180°∵∠A=125°∴∠C=55°故答案为:55【点睛】本题考查了圆内接四边形的性解析:【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=55°,故答案为:55.【点睛】本题考查了圆内接四边形的性质,理解圆内接四边形的对角互补的性质是解答本题的关键. 23.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线可得△E′CB是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE旋转的度数【详解】解:∵三角板是两块大小解析:30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线,可得△E′CB是等边三角形,从而得出∠ACE′的度数和CE′的长,从而得出△CDE旋转的度数.【详解】解:∵三角板是两块大小一样且含有30°的角,∴CE′是△ACB的中线,∴CE′=BC=BE′,∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30.【点睛】本题考查了含有30°角的直角三角形的性质,等边三角形的判定和性质,旋转的性质,本题关键是得到CE´是△ABC的中线.24.(-101010102)【解析】【分析】根据二次函数性质可得出点A1的坐标求得直线A1A2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变解析:(-1010,10102)【解析】【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2019的坐标.【详解】∵A点坐标为(1,1),∴直线OA为y=x,A1(-1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解22y x y x +⎧⎨⎩==得11xy-⎧⎨⎩==或24xy⎧⎨⎩==,∴A2(2,4),∴A3(-2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解26y x y x +⎧⎨⎩==得24xy-⎧⎨⎩==或39xy⎧⎨⎩==,∴A4(3,9),∴A5(-3,9)…,∴A2019(-1010,10102),故答案为(-1010,10102).【点睛】此题考查二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.25.88π;【解析】【分析】(1)小狗活动的区域面积为以B为圆心10m为半径的圆以C为圆心6m为半径的圆和以A为圆心4为半径的圆的面积和据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心10为半解析:88π;5 2【解析】【分析】(1)小狗活动的区域面积为以B为圆心、10m为半径的34圆,以C为圆心、6m为半径的14圆和以A为圆心、4为半径的14圆的面积和,据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心、10为半径的34圆,以A为圆心、x为半径的1 4圆、以C为圆心、10-x为半径的30360圆的面积和,列出函数解析式,由二次函数的性质解答即可.【详解】解:(1)如图,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B为圆心、10m为半径的34圆,以C为圆心、6m为半径的14圆和以A为圆心、4m为半径的14圆的面积和,∴S=34×π•102+14•π•62+14•π•42=88π;(2)如图,设BC=x ,则AB=10-x ,∴S=34•π•102+14•π•x 2+30360•π•(10-x)2 =π3(x 2-5x+250) =π3(x-52)2+325π4, 当x=52时,S 取得最小值, ∴BC=52. 故答案为:(1)88π;(2)52. 【点睛】本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积.三、解答题26.1【解析】【分析】把x=n 代入方程求出mn 2-4n 的值,代入已知等式求出m 的值即可.【详解】依题意,得2450mn n --=.∴245mn n -=.∵246mn n m -+=,∴56m +=.∴1m =.【点睛】此题考查了一元二次方程的解,以及一元二次方程的定义,熟练掌握运算法则是解本题的关键.27.(1)图见详解;(2)图见详解;(3)32π. 【解析】【分析】(1)利用关于原点对称点的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案;(3)利用弧长公式计算即可得出结果.【详解】解:(1)如图示,△A 1B 1C 1为所求;(2)如图示,△A 2B 2C 2为所求;(3)∵△ABC 关于C 点顺时针旋转90°得到的△A 2B 2C 2,每个小正方形边长是1, 由题图可知,半径3BC =,根据弧长的公式得:2239036320BB . 【点睛】此题主要考查了平移变换、旋转变换,正确得出对应点位置和熟悉弧长公式是解题关键. 28.()1证明见解析;()2BEF 67.5∠=.【解析】【分析】()1由题意可知:CD CE =,DCE 90∠=,由于ACB 90∠=,从而可得ACD BCE ∠∠=,根据SAS 即可证明ACD ≌BCE ; ()2由ACD ≌()BCE SAS 可知:A CBE 45∠∠==,BE BF =,从而可求出BEF ∠的度数.【详解】()1由题意可知:CD CE =,DCE 90∠=,ACB 90∠=,ACD ACB DCB ∠∠∠∴=-,BCE DCE DCB ∠∠∠=-,ACD BCE ∠∠∴=,在ACD 与BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,ACD ∴≌()BCE SAS ;()2ACB 90∠=,AC BC =,A 45∠∴=,由()1可知:A CBE 45∠∠==,AD BF =,BE BF ∴=,BEF 67.5∠∴=.【点睛】本题考查了旋转的性质、全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.29.(1)相切,理由见解析;(2)DE=125. 【解析】【分析】(1)连接AD ,OD ,根据已知条件证得OD ⊥DE 即可;(2)根据勾股定理计算即可. 【详解】解:(1)相切,理由如下:连接AD ,OD ,∵AB 为⊙O 的直径,∴∠ADB=90°.∴AD ⊥BC .∵AB=AC ,∴CD=BD=12BC .∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠ODE=∠CED=90°.∴OD⊥DE.∴DE与⊙O相切.(2)由(1)知∠ADC=90°,∴在Rt△ADC中,由勾股定理得,==4.∵S ACD=12AD•CD=12AC•DE,∴12×4×3=12×5DE.∴DE=125.【点睛】本题主要考查直线与圆的位置关系,等腰三角形的性质、勾股定理等知识.正确大气层造辅助线是解题的关键.30.(1)20%;(2)每千克应涨价5元.【解析】【分析】(1)设每次下降的百分率为x,根据相等关系列出方程,可求每次下降的百分率;(2)设涨价y元(0<y≤8),根据总盈余=每千克盈余×数量,可列方程,可求解.【详解】解:(1)设每次下降的百分率为x根据题意得:50(1﹣x)2=32解得:x1=0.2,x2=1.8(不合题意舍去)答:每次下降20%(2)设涨价y元(0<y≤8)6000=(10+y)(500﹣20y)解得:y1=5,y2=10(不合题意舍去)答:每千克应涨价5元.【点睛】此题主要考查了一元二次方程应用,关键是根据题意找到蕴含的相等关系,列出方程,解答即可.。
2013 年中考数学填空题专项训练(共三十套)一、试题说明本试题均依照中考要求设计,覆盖中考数学填空题所有题型及考点,难度较中考略难。
每套试题最上方均配备标准答题卡,试题最后装备参照答案。
本试题是众享填空题专项训练的训练载体,是课程《2013 中考数学真题操练(一)分题型训练》第 3 讲、第4 讲、第5 讲的讲义及作业。
二、使用方法1.建议与众享在线课程《2013 中考数学真题操练(一)分题型训练》配套使用。
重在对填空题进行中考适应性训练,熟习中考填空题题型构造,掌握填空题答题的一整套标准动作,保证中考考试中,填空题答案正确、完好、规范,会做的拿满分。
2.三十套题不必定要所有做完,重点是每做一套都按训练要求做,并能仔细总结考点,剖析自己的问题,积极解决。
针对自己不会的题,务必查找资源查漏补缺,特别是超出 3 分钟无思路的题型;对自己会做、却频频犯错的题型务必借助资源找到根来源因,对症解决。
(课本、老师、同学、众享在线课程都是您能够利用的资源)3.当考试同样,限时做题,模拟考试场景,提高实战能力。
建议限时 8 分钟达成所有题目及答题卡的填写,最多10 分钟。
为更好的模拟中考考场情境,建议您打印使用。
中考数学填空题专项训练(一)二、填空题(每题 3 分,共 21 分)9. 写出一个大于21的负整数 ___________.10. 如图,在△ ABC中,∠ C=90°,若 BD∥ AE,∠ DBC=20°,则∠ CAE的度数是___________.yAD B BC O xE A第 10题图第 11题图11. 如图,一次函数y1=ax+b(a≠0)与反比率函数y2k的图象交于A(1,4),B(4,1)两点,若使y1>y2,x则 x 的取值范围是 ___________.12.在猜一商品价钱的游戏中,参加者预先不知道该商品的价钱,主持人要求他从如图的五张卡片中任意拿走三张,使剩下的卡片从左到右连成一个两位数,该数就是他猜的价钱.假如商品的价钱是50元,那么他一次就能料中的概率是 ___________.A DM O N35560CB第 12题图第 13题图13.以下图,正方形 ABCD内接于⊙ O,直径 MN∥ AD,则暗影部分面积占圆面积的 ____________.14.如图,在五边形 ABCDE中,∠ BAE=125°,∠B=∠E=90°,AB=BC,AE=DE,在 BC,DE上分别找一点 M,N,使得△ AMN 周长最小时,∠ AMN+∠ANM 的度数为 __________.A EBNMCD 15.已知□ ABCD 的周长为 28,自极点 A 作 AE⊥DC 于点 E, AF⊥ BC 于点 F.若 AE=3,AF=4,则CE-CF=____________.中考数学填空题专项训练(二)二、填空题(每题 3 分,共 21 分)9.分解因式: x34x212x=___________.10.如图, AE∥ BD, C 是 BD 上的点,且AB=BC,∠ ACD=110°,则∠EAB=__________.E AB C D第 10题图第11题图11.如图,现有圆心角为90°的一个扇形纸片,该扇形的半径是50cm.小红同学为了在圣诞节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为 10cm 的圆锥形纸帽(接缝处不重叠),那么被剪去的扇形纸片的圆心角应当是 __________.12.有三张正面分别标有数字3,4,5 的不透明卡片,它们除数字不一样外其余完好同样,现将它们反面向上,洗匀后从中任取一张,记下数字后将卡片反面向上放回,又洗匀后从中再任取一张,则两次抽取的卡片上数字之差的绝对值大于 1 的概率是 __________.13.两个全等的梯形纸片如图 1 摆放,将梯形纸片 ABCD沿上底 AD 方向向右平移获得图2.已知 AD=4,BC=8,若暗影部分的面积是四边形A′B′CD的面积的1,则图 2 中平移的距离 A′A=___________.3A(A')D(D')A' A D'DB(B')C(C')B'B C'C图1图214.在三角形纸片ABC中,已知∠ ABC=90°,AB=6,BC=10.过点 A 作直线 l 平行于 BC,折叠三角形纸片 ABC,使直角极点 B 落在直线 l 上的 T 处,折痕为 MN.当点 T 在直线 l 上挪动时,折痕的端点 M, N 也随之挪动.若限制端点 M,N 分别在 AB,BC边上挪动,则线段 AT长度的最大值与最小值之和为__________.15.如图,□ABCD的极点A,B的坐标分别是A(1,0),B(0,2),极点C,D在双曲线 y k( x>0)上,边 AD 交 y x轴于点 E,且四边形 BCDE的面积是△ABE 面积的 5 倍,则 k=__________.yDCEA OxB中考数学填空题专项训练(三)二、填空题(每题 3 分,共 21 分)9.把命 “假如直角三角形的两直角 分a ,b ,斜c ,那么 a 2+b 2=c 2”的抗命 改写成 “如 果⋯⋯,那么⋯⋯”的形式: _____________________.10.依据如 所示的 算程序,若 入x 的 64, 出 果 __________.否入非 数 x除以 2 若 果小于 0取算 平方根减去 3出 果11.如 ,在△ ABC 中,∠ A=α.∠ ABC 与∠ ACD 的均分 交于点 A 1,得∠ A 1;∠ A 1BC 与∠ A 1CD 的均分交于点 A 2,得∠ A 2;⋯⋯;∠ 2012 与∠A 2012 A BC CD 的均分 交于点2013,得∠ 2013 . ∠ 2013.AAA =AyA 1A 2P 1P 2BCDOA 1 A 2x第 11第 1312.已知 的高 12,底面 的半径5, 个 的 面睁开 的周.13.如 ,△ P 1OA 1,△ P 2A 1A 2 是等腰直角三角形,点P 1,P 2 在函数 y4( x>0)的 象上,斜 OA 1 ,xA 1A 2 都在 x 上, 点 A 2 的坐 是.14.在 Rt △ACB 中,∠ ACB=90°,AC=6,BC=8,P ,Q 两点分 是BC ,AC 上的 点,将△ PCQ 沿 PQ翻折, C 点的 点 C ′, 接 AC ′, AC ′的最小 是 _________.A15.一次数学 上,老 同学 在一 18 厘米, 16 厘米的矩形板上,剪下一个腰 10 厘米的等腰三角形,且要求等腰三角形的一个 C'点与矩形的一个 点重合,其余两个 点在矩形的 上, 剪下的等腰三 Q角形的面 __________平方厘米.C P B中考数学填空题专项训练(四)二、填空题(每题 3 分,共 21 分).327-418 =___________.210.如图,在平行四边形 ABCD 中, DB=DC ,∠ A=65°,CE ⊥ BD 于点 E ,则∠BCE=_____________.DCDC第10题图第11题图11.如图,菱形 ABCD 的边长为 2cm ,E∠A=60°.弧 BD 是以点 A 为圆心、A BABAB 长为半径的弧,弧 CD 是以点 B为圆心、 BC 长为半径的弧.则暗影部分的面积为 ___________.12.哥哥与弟弟玩一个游戏:三张大小、质地都同样的卡片上分别标有数字 1,2,3,将标有数字的一面朝下,哥哥从中随意抽取一张,记下数字后放回洗匀,而后弟弟从中随意抽取一张,计算抽得的两个数字之和, 假如和为奇数, 则弟弟胜,假如和为偶数, 则哥哥胜.该游戏对两方 __________(填“公正”或“不公正” ).13.如图,在等边三角形 ABC 中,点 O 在 AC 上,且 AO=3,CO=6,点 P 是 AB 上一动点,连结 OP ,将线段 OP 绕点 O 逆时针旋转 60°,获得线段 OD .要使点 D 恰巧落在 BC 上,则 AP 的长是 _______.14.如图,直线y3 x b 与 y 轴交于点 A ,与双曲线yk在第一象限交于 B ,C 两点,且AB ·AC=4,3x则 k=__________.yCABDCOOxA PB15.小明试试着将矩形纸片 ABCD (如图 1,AD>CD )沿过 A 点的直线折叠,使得 B 点落在 AD 边上的点F 处,折痕为 AE (如图 2);再沿过 D 点的直线折叠,使得 C 点落在 DA 边上的点 N 处,E 点落在 AE 边上的点 M 处,折痕为 DG (如图 3).假如第二次折叠后, M 点正幸亏∠ NDG 的均分线上,那么矩形 ABCD 长与宽的比值为 ___________.A D A F D A N DMGBCBECBEC图 1图 2图 3中考数学填空题专项训练(五)二、填空题(每题 3 分,共 21 分)9.请写出一个二元一次方程组 ______________,使它的解是x 2 .y110.如图,在△ ABC中,AD⊥ BC于 D,BE⊥AC 于 E,AD 与 BE订交于点 F,若 BF=AC,则∠ABC=__________.BAF E OEDB DC A F C第 10题图第13题图11.假如圆锥的底面周长是20π,侧面睁开后所得的扇形的圆心角为120°,那么圆锥的母线长是__________.1,2,4,.在不透明的口袋中,有四个形状、大小、质地完好同样的小球,四个小球上分别标有数字1221 ,现从口袋中任取一个小球,并将该小球上的数字作为平面直角坐标系中点P 的横坐标,且点 P3在反比率函数 y 1图象上,则点 P 落在正比率函数 y=x 图象上方的概率是 __________.x13.如图,在等边三角形 ABC中, D 是 BC边上的一点,延伸 AD 至 E,使 AE=AC,∠ BAE的均分线交△ABC的高 BF于点 O,则 tan∠AEO=_________.14.如图,将矩形纸片 ABCD的四个角向内折起,恰巧拼成一个无空隙无重叠的四边形EFGH,若 EH=3厘米, EF=4 厘米,则矩形 ABCD的面积为 _______.AH D y y=x 2CE GAB FC O H x第 14题图第 15题图15.如图,在第一象限内作射线 OC,与 x 轴的夹角为 30°,在射线 OC上取一点 A,过点 A 作 AH⊥x 轴于点 H.在抛物线 y=x2(x>0)上取一点 P,在 y 轴上取一点 Q,使得以 P,O, Q 为极点的三角形与△AOH全等,则切合条件的点 A 的坐标是.中考数学填空题专项训练(六)二、填空题(每题3 分,共 21 分)9. 计算: 25- (- 1)2 =________.10. 如图,梯形 ABCD 中, AD ∥ BC ,DC ⊥BC ,将梯形沿对角线 BD 折叠,点 A 恰巧落在 DC 边上的点 A ′处,若∠ A ′BC=15°,则∠ A ′BD 的度数为 __________.y B'C'ADCA'B ABCRO P M xQ第10题图第 11题图 第13题图11. 如图,△ ABC 是等腰直角三角形,∠ ACB=90°,BC=AC ,把△ ABC 绕点 A 按顺时针方向旋转 45°后获得△AB ′C ,′若 AB=2,则线段 BC 在上述旋转过程中所扫过部分(暗影部分)的面积是 _________(结果保存 π).12. 有 A , B 两个黑布袋, A 布袋中有两个完好同样的小球,分别标有数字1 和 2. B 布袋中有三个完好同样的小球,分别标有数字 -2,-3 和 -4.小明从 A 布袋中随机拿出一个小球,记其标有的数字为 x ,再从 B 布袋中随机拿出一个小球,记其标有的数字为 y ,则知足 x+y=-2 的概率是 .13. 如图,直线 y=kx-2( k>0)与双曲线 yk在第一象限内的交点为 R ,与 x 轴、 y 轴的交点分别为 P ,xQ .过 R 作 RM ⊥x 轴,垂足为 M ,若△ OPQ 与△ PRM 的面积相等,则 k 的值为 ________.14. 已知菱形 ABCD 的边长是 8,点 E 在直线 AD 上,若 DE=3,连结 BE ,与对角线 AC 订交于点 M ,则MCAM的值是 _________.15. 在矩形 ABCD 中, AB=3,AD=4,将其沿对角线 BD 折叠,极点 C 的对应地点为 G (如图 1),BG 交 AD 于 E ;再折叠,使点 D 落在点 A 处,折痕 MN 交 AD 于 F ,交 DG 于 M ,交 BD 于 N ,睁开后得图2,则折痕 MN 的长为 ___________.GGMAEDAEFDNBCB图1图2中考数学填空题专项训练(七)二、填空题(每题3 分,共 21 分)9. 方程 x 22x 的解为 ___________.10.如图,在菱形 ABCD 中,点 E ,F 分别是 BD ,CD 的中点,若 EF=6cm ,则 AB=____________cm .ADE1346F25BC甲乙第10题图第11题图11.王红和刘芳两人在玩转盘游戏,如图,把转盘甲、乙分别分红3 等份,并在每一份内标上数字,游戏规则是:转动两个转盘,停止后指针所指的两个数字之和为 7 时,王红胜;数字之和为 8 时,刘芳胜.那么这二人中获胜可能性较大的是 ___________.12.如图,在平面直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与 x 轴平行,点 P(3a ,a)是反比率函数 yk( k>0)的图象与正方形的一个交点.若图中暗影部分的面积等于9,则该反x比率函数的分析式为 _________.13.以下图,正方形ABCD 中, E 是 AD 边上一点,以 E 为圆心、 ED 为半径的半圆与以 B 为圆心、 BA为半径的圆弧外切,则sin ∠EBA 的值为 _________.14.如图,正方形 ABCD 与正三角形 AEF 的极点 A 重合,将△ AEF 绕极点 A 旋转,在旋转过程中,当 BE=DF时,∠ BAE 的大小能够是 _______________.D CyB AEEPOxFABC DyCBDEOAx第 14题图第15题图15.如图,在平面直角坐标系中,矩形 ABCO 的边 OA 在 x 轴上,边 OC 在 y 轴上,点B 的坐标为 (1,2),将矩形沿对角线 AC 翻折,点 B 落在点 D 的地点,且 AD 交 y 轴于点 E .那么点 D 的坐标为__________________.中考数学填空题专项训练(八)二、填空题(每题3 分,共 21 分)9. 9 -2tan45 =°.C10.以下图,四边形 ABCD 中,AE ,AF 分别是 BC ,CD 的垂直均分线,∠EAF=80°,∠CBD=30°,则∠ ABC 的度数为 ______________. FE11.数学老师部署 10 道选择题作业, 批阅后获得以下统计表. 依据表中数据可 D知,这 45 名同学答对题数构成的样本的中位数是 ________题.B7 8 9 A答对题数10 人数41816712.二次函数 y(x2)29的图象与 x 轴围成的关闭地区内(包含界限),横、纵坐标都是整数的点有4___________个.(提示:必需时可利用下边的备用图画出图象来剖析)yOx图1图2第 12题图第 13题图13.如图 1,在正方形铁皮上剪下一个扇形和一个半径为1cm 的圆形,使之恰巧围成图 2 所示的一个圆锥,则圆锥的高为 ______________.14.如图,点 A 1,A 2,A 3,A 4 在射线 OA 上,点 B 1,B 2, B 3 在射线 OB 上,且 A 1B 1 ∥A 2B 2∥A 3B 3, A 2B 1∥A 3B 2∥ A 4B 3.若 △ A 2B 1B 2, △A 3B 2B 3 的面积分别为 1,4,则图中三个暗影三角形面积之和为_______________.B AB'DB 3B 2 4 EPB 1 1O A 1A 2 A 3A 4 ABC第 14题图第15题图15.如图,在矩形纸片 ABCD 中,AB=3,BC=5,将纸片折叠,使点 B 落在边 AD 上的点 B' 处,折痕为 CE .在折痕 CE 上存在一点 P 到边 AD 的距离与到点 B 的距离相等,则此相等距离为 ______________.中考数学填空题专项训练(九)二、填空题(每题 3 分,共 21 分)9. 在数轴上与表示 3 的点的距离近来的整数点所表示的数是 ________.10. 以下图,已知 O 是四边形 ABCD 内一点,OB=OC=OD ,∠BCD=∠BAD=75°,则∠ ADO+∠ ABO=________.CyDOABABO Cx第 10题图 第 13题图11. 已知在 △ABC 中, AB=6,AC=8,∠ A=90°,把 Rt △ABC 绕直线 AC 旋转一周获得一个圆锥,其表面积为 S 1,把 Rt △ABC 绕直线 AB 旋转一周获得另一个圆锥,其表面积为S 2,则 S 1:S 2 等于 ________.12. 有四张正面分别标有数字 -3,0,1,5 的不透明卡片,它们除数字不一样外其余所有同样.现将它们背面向上,洗匀后从中任取一张, 将该卡片上的数字记为 a ,则使对于 x 的分式方程1ax 2 1 有x 2 2 x正整数解的概率为 _______.y 4 x y k y 4 x 9y k 13. 如图, 直线 3 与双曲线 x ( x>0)交于点 A .将直线 3 向右平移 2 个单位后, 与双曲线x ( x>0)AO2交于点 B ,与 x 轴交于点 C ,若 BC,则 k=_____.14. 如图,在等腰 Rt △ ABC 中,∠ A=90°,AC=9,点 O 在 AC 上,且 AO=2,点 P 是 AB 上一动点,连结OP ,将线段 OP 绕点 O 逆时针旋转 90°,获得线段 OD ,要使点 D 恰巧落在 BC 上, AP 的长度为__________.CADDPO A PBBM C第14题图第 15题图15.以下图,在梯形ABCD 中, AD ∥BC ,∠ ABC=90 °, AD=AB=6,BC=14,点M 是线段BC 上必定点,且MC=8.动点P 从C 点出发沿C →D → A → B 的路线运动,运动到点B 停止.在点P 的运动过程中,使 △ PMC 为等腰三角形的点P有 __________个.中考数学填空题专项训练(十)二、填空(每小 3 分,共 21 分)9.算:123 27 =___________.310.如,若将四根木条成的矩形木框成平行四形ABCD的形状,并使其面矩形面的一半,个平行四形的最小内角等于_________.A'30°DAA D C30°EB C C'B A第 10第 11CB11.如,将△ ABC点 B 逆旋到△A′ BC,′使 A,B,C′在同向来上,若∠ BCA=90°,∠BAC=30°,AB=4cm,段 AC的面是 _________.12.甲、乙两人玩猜数字游,先由甲心中任想一个数字,a,再由乙猜甲才所想数字,把乙所猜数字 b,且 a,b 分取 0,1,2,3,若 a,b 足 | a-b| ≤ 1,称甲、乙两人“心有灵犀”.随意找两人玩个游,得出“心有灵犀”的概率___________.13.如,已知 AB=12,AB⊥ BC于点 B,AB⊥AD 于点 A,AD=5,BC=10.若点 E 是 CD的中点, AE的是 ___________.14.如,正方形 OABC的面是 4,点 B 在反比率函数 y k(k>0, x<0)的象上.若点 R 是反比x例函数象上异于点 B 的随意一点,点 R 分作 x 、 y 的垂,垂足分 M ,N,从矩形OMRN 的面中减去其与正方形OABC重合部分的面,节余部分的面S,当 S=m(m常数,且 0<m<4),点 R 的坐是.yyA M CO xB CRN OB x第 14第 1515.已知:如,△OBC是直角三角形, OB 与 x 正半重合,∠OBC=90°,且 OB=1,BC= 3 ,将△OBC 原点 O 逆旋60°,再将其各大本来的 m 倍,使 OB1,获得△11,将△11原点 O 逆旋60°,再将其各大本来的 m 倍,使 OB2=OC OB C OB C1,获得△2 2,⋯⋯,这样下去,获得△ OB2013 2013,点=OC OB C2013 的坐是.C C_________中考数学填空题专项训练(十一)二、填空题(每题 3 分,共 21 分)9.计算: 2sin30 -°16 =___________.10.如图, AD 是△ABC的中线,∠ ADC=60°,BC=6,把△ABC沿直线 AD 折叠,点 C 落在点 C′处,连结BC′,那么 BC′的长为 ________.yAB A BC′A OD E60°C C OxB D C第10题图第12题图第14题图11.甲、乙两名同学同时从学校出发,去 15 千米处的景区游乐,甲比乙每小时多行 1 千米,结果比乙早到半小时,甲、乙两名同学每小时各行多少千米若设乙每小时行x 千米,则依据题意列出的方程是_____________________.12. 如图,有向来径为 4 的圆形铁皮,要从中剪出一个圆心角为60°的最大扇形ABC.那么剪下的扇形ABC(暗影部分)的面积为 ___________.13.在 4 张卡片上分别写有 1~4 的整数,随机抽取一张后不放回,再随机抽取一张,那么抽取的两张卡片上的数字之和等于 4 的概率是 ________.14. 如图,点 A 在双曲线y k的第二象限的分支上,AB⊥y轴于点B,点C在x轴负半轴上,且OC=2AB,x点 E 在线段 AC上,且 AE=3EC,点 D 为 OB 的中点,若△ADE的面积为 3,则 k 的值为 ________.15.如图,矩形纸片 ABCD中, AB=8cm,AD=6cm,按以下步骤进行裁剪和拼图:A ED第一步:如图 1,在线段 AD 上随意取一点 E,沿 EB,EC剪下一个三角形纸片 EBC(余下部分不再使用);G 第二步:如图 2,沿三角形 EBC的中位线 GH 将纸片剪成两部分,并在线段 GH 上B C B随意取一点 M,在线段 BC上随意取一点 N,沿 MN 将梯形纸片 GBCH剪成两部分;第三步:如图 3,将 MN 左边纸片绕 G 点按顺时针方向旋转 180°,使线段 GB 与 GE重合,将 MN 右侧纸片绕 H 点按逆时针方向旋转 180°,使线段 HC与 HE 重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最大值与最小值之和为____________.E M N9.数轴上A,B两点对应的实数分别是 2 和 2,若点 A 对于点 B 的对称点为点 C,则点 C 所对应的实数为 __________.10.如图,是我们生活中常常接触的小刀,刀柄的外形是一个直角梯形(下底挖去一个小半圆),刀片上、下是平行的,转动刀片刻会形成∠ 1 和∠ 2,则∠1+∠2=__________.y C1B2AO 1x第10题图第13题图11.将半径为 10,弧长为 12π的扇形围成圆锥(接缝忽视不计),那么圆锥母线与圆锥高的夹角的余弦值是 __________.12.已知 M(a,b)是平面直角坐标系中的点,此中 a 是从 1,2,3 三个数中任取的一个数, b 是从 1,2,3,4 四个数中任取的一个数.定义“点 M(a,b)在直线 x+y=n 上”为事件 Q n( 2≤ n≤ 7,n 为整数),则当Q n的概率最大时, n 的所有可能的值为 __________.13.以下图, Rt△ABC在第一象限,∠ BAC=90°,AB=AC=2,点 A 在直线 y=x 上,且点 A 的横坐标为 1,AB∥ x 轴, AC∥y 轴.若双曲线 yk (k≠0)与△ABC有交点,则k的取值范围是__________.x14.如图,将边长为 12cm 的正方形 ABCD折叠,使得 A 点落在边 CD上的 E 点,而后压平得折痕 FG,若GF 的长为 13cm,则线段 CE的长为 _____________.FA D yAE C FB GO DE B x C第14题图第 15题图15.如图,点 A 的坐标为 (1,1),点 C 是线段 OA 上的一个动点(不与 O, A 两点重合),过点 C 作 CD⊥ x轴,垂足为 D,以 CD为边在右边作正方形 CDEF.连结 AF 并延伸交 x 轴的正半轴于点 B,连结 OF,若以 B,E, F 为极点的三角形与△ OFE相像,则点 B 的坐标是 __________.9. 分解因式: 3m 2-6mn+3n 2=____________.10. 如图,计划把河 AB 中的水引到水池 C 中,能够先作 CD ⊥AB ,垂足为 D ,而后沿 CD 开渠,则能使所开的沟渠最短,这类方案的设计依照是 ________.ac ADBdABCbe第 10题图第11题图11. 已知电路 AB 是由以下图的开关控制,闭合 a ,b ,c ,d ,e 五个开关中的随意两个,则使电路形成通路的概率是 _______.12. 已知圆锥的底面积和它的侧面积之比为1,则侧面睁开后所得扇形的圆心角的度数是____________.413. 如图, A ,B 是一次函数 yx 1图象上的两点,直线 AB 与 x 轴交于点 P ,且PA1,已知过 A 点PB2的反比率函数为 y2,则过 B 点的反比率函数为 ____________.yx14. 如图,将矩形纸片 ABCD 搁置在平面直角坐标系中,已知 A(-9,1),B(-1,1),BC(-1,7),将矩形纸片沿 AC 折叠,点 B 落在点 E 处, AE 交 CD 于点 F ,则点 F的坐标为 __________.AP xyOCEDCEFFAB xGOADB第 14题图 第 15题图15. 如图,等边三角形 ABC 中, D ,E 分别为 AB ,BC 边上的动点,且总使 AD=BE ,AE 与 CD 交于点 F ,AG ⊥ CD 于点 G ,则 FG的值是 ______________.AF中考数学填空题专项训练(十四)二、填空(每小 3 分,共 21 分)9.方程3x2 y10 的解是___________.x 2 y 610.如,在△ABC中, AB=AC,CD 均分∠ ACB,交 AB 于点 D, AE∥DC,交 BC 的延于点 E.若∠E=36°,∠ B=_______度.yAB CPDDB C EO A x第 10第 1311.有 4 反面同样的扑克牌,正面数字分 2,3,4,5.若将 4 扑克牌反面向上洗匀后,从中随意抽取一,放回后洗匀,再从中随意抽取一,抽取的两扑克牌正面数字之和是 3 的倍数的概率______.12.参加晚会,小敏用心角 120°,半径 20cm 的扇形片成一形的帽子,若小敏的 60cm,她戴帽子大小适合 _______.(填“适合”或“不适合”)13. 如,双曲y1=1 (x>0),x y2=4 (x>0),点xP 双曲y2=4x上的一点,且PA⊥x 于点A,PB⊥y于点 B,PA,PB 分交双曲y1=1于 D,C 两点,△ PCD的面 ______.x14.如,正方形 ABCD 的 4,M ,N 分是 BC,CD 上的两个点,且始保持 AM⊥ MN.当BM=______,四形 ABCN的面最大.A D13N33374315 23917BM C 51119第 14第 1515.一个自然数的立方能够分裂成若干个奇数的和,比如:23,33和 43分能够按如所示的方式“分裂”出 2 个、3 个和4 个奇数的和,即 23=3+5,33=7+9+11,43=13+15+17+19,⋯,若 63也依照此律行“分裂”,“分裂”出的奇数中,最大的那个奇数是 ______.中考数学填空题专项训练(十五)二、填空题(每题 3 分,共 21 分)9.写出一个在实数范围内能用平方差公式分解因式的多项式:_____________.10.如图,在△ABC中,AB=AC,将△ABC绕点 C 顺时针旋转 180°获得△ FEC,连结 AE,BF.当∠ ACB为_________度时,四边形 ABFE为矩形.BAB180°A E ECF DBFC OA第10题图第11题图第 12题图11. 以下图, A,B 是边长为 1 的小正方形构成的5×5网格上的两个格点,在格点中随意搁置点 C,恰好能使△ABC的面积为 1 的概率是 _________.12.如图, Rt△ABC中,∠ ACB=90°,∠ B=30°,AB=12cm,以 AC 为直径的半圆 O 交 AB 于点 D,点 E 是AB 的中点, CE交半圆 O 于点 F,则图中暗影部分的面积为 ________.13.如图,以等腰 Rt△ ABC的斜边 AB 为边作等边△ABD, C, D 在 AB 的同侧,连结ADC,以 DC为边作等边△DCE,B,E 在 CD的同侧.若 AB=2 ,则BE=_______.14.如图,△ABC的外角∠ ACD的均分线 CP与内角∠ ABC的均分线 BP 交于点 P,若C ∠BPC=40°,则∠ CAP=_________.ByDEy=xA PPO xB C D第14题图第 15题图15.如图, P 是抛物线 y2x28x 8 对称轴上的一个动点,直线x=t 平行于 y 轴,分别与直线 y=x,抛物线交于 A,B 两点.若△ ABP是以点 A 或点 B 为直角极点的等腰直角三角形,则知足条件的t 值为______________________.中考数学填空题专项训练(十六)二、填空题(每题 3 分,共 21 分) 9. 当 x=_______时,分式| x |3无心义.x 310.两位同学在描绘同一反比率函数的图象时,甲同学说: “从这个反比率函数图象上随意一点向 x 轴,y 轴作垂线,与两坐标轴所围成的矩形的面积为6”,乙同学说: “这个反比率函数图象与直线 y=-x有两个交点 ”.则这两位同学所描绘的反比率函数的表达式为 _____________.11.如图, AB ∥CD ,以点 A 为圆心,小于 AC 长为半径作圆弧,分别交 AB ,AC 于 E ,F 两点,再分别以E ,F 为圆心,大于 1EF 长为半径作圆弧,两条圆弧交于点 P ,作射线 AP ,交 CD 于点 M .若∠ ACD=114°,2则∠ MAB 的度数为 __________.DC MDPCFFPAEBA E B第 11题图第13题图12.小刚、小强、小盈利用假期到某个社区参加义务劳动,为决定到哪个社区,他们商定用 “剪刀、石头、布 ”的方式确立,则在同一回合中,三人都出剪刀的概率是 _______.13.如图,在 △ ABC 中,∠ ACB=90°,以 AC 为一边在 △ ABC 外侧作等边 △ACD ,过点 D 作 DE ⊥AC ,垂足为 F , DE 与 AB 订交于点 E ,连结 CE ,AB=15cm ,BC=9cm ,P 是射线 DE 上的一点.连结 PC ,PB ,则△ PBC 周长的最小值为 _______.14.如图,在矩形 ABCD 中,AB=6,BC=8,E 是 BC 边上的必定点, P 是 CD 边上的一动点(不与点 C ,D 重合),M , N 分别是 AE ,PE 的中点.在点 P 运动的过程中, MN 的长度不停变化,设 MN=d ,则 d 的变化范围是 _______.yy= 2x+ 3ADMPMNB ECNO x第 14题图第15题图 15.如图,点 M 是直线 y=2x+3 上的动点,过点 M 作 MN ⊥x 轴于点 N ,y 轴上能否存在点P ,使 △ MNP为等腰直角三角形小明发现:当动点 M 运动到 (-1, 1)时, y 轴上存在点 P(0,1),此时有 MN=MP , △MNP 为等腰直角三角形.请你写出 y 轴上其余切合条件的点 P 的坐标 __________________.中考数学填空题专项训练(十七)二、填空题(每题 3 分,共 21 分).函数y1的自变量 x 的取值范围是 __________.9x 2x210.如图, AB∥ CD,EF与 AB,CD分别订交于点 E,点 F,∠BEF的均分线 EG交 CD 于点 G,若∠ 1=50°,则∠ 2=__________度.A yA E BO DB CA12B C D O xC F GD E第 10题图第 11题图第13题图11.如图, AB 是⊙ O 的直径,点 E 为 BC 的中点, AB=4,∠ BED=120°,则图中暗影部分的面积之和为___________.12.在一个不透明的盒子里装有 5 个分别写有数字 -2,-1, 0, 1, 2 的小球,它们除数字不一样外其余全部同样.现从盒子里随机拿出一个小球,将该小球上的数字作为点P 的横坐标,将该数的平方作为点 P 的纵坐标,则点P 落在抛物线y=-x2+2x+5 与 x 轴所围成的地区内(不含界限)的概率是___________.13.已知:如图,直线 y 3x 6与双曲线 yk(x<0)订交于 A,B 两点,与 x 轴、 y 轴分别订交于 D,4xC 两点,若 AB=5,则 k=__________.14.如图,△ ABC中, AB=8 厘米, AC=16 厘米,点 P 从 A 出发,以每秒 2 厘米的速度向 B 运动,点 Q 从 C 同时出发,以每秒 3 厘米的速度向 A 运动,此中一个动点运动到端点时,另一个动点也随之停止运动,那么,当以 A,P,Q 为极点的三角形与△ ABC相像时,运动时间为 _________秒.APQB C15.已知:如图, AB=10,点 C,D 在线段 AB 上,且 AC=DB=2,P 是线段 CDF G上的动点,分别以 AP,PB为边在线段 AB 的同侧作等边三角形 AEP和等E边三角形 PFB,连结 EF,设 EF的中点为点 G.当点 P 从点 C 运动到点 D时,点 G 挪动的路径长是 ___________.A C P DB 中考数学填空题专项训练(十八)二、填空题(每题 3 分,共 21 分)9.计算:3 27 6cos60 =____________.10.如图,直线 a∥ b,直线 l 分别与 a,b 交于 E,F 两点, FP均分∠ EFD,交 a 于 P 点,若∠ 1=70°,则∠2=___________.la E 1P211060bF甲乙80D50丙100第 10题图第12题图11.已知圆锥的底面直径和母线长都是 10cm,则圆锥的侧面积为 _________.12.“五一”黄金周时期,梁先生驾驶汽车从甲地经过乙地到丙地游乐.甲地到乙地有到丙地有3 条公路,每一条公路的长度以下图(单位:km).梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是 ________.13. 如图,正方形ABCD的极点 C,D 均在双曲线y 10的第一象限分支上,极点A,B分别在xx 轴、 y 轴上,则此正方形的边长为_______.14.着手操作:在一张长 12cm、宽 5cm 的矩形纸片内折出一个菱形.小颖同学按照取两组对边中点的方法折出菱形 EFGH(图 1),小明同学沿矩形的对角线 AC 折出∠ CAE=∠CAD,∠ ACF=∠ ACB,进而折出菱形 AECF(图 2).则小颖和小明同学的折法中, ________折出的菱形面积较大(填“小颖”或“小明” ).A H D A F DE GB FC B E C图 1图 22条公路,乙地yCBDO A x15.已知:如图, O 为坐标原点,四边形 OABC为矩形, A(10,0), C(0, 4),点 D 是 OA 的中点,点 P在BC上运动,当△ODP是腰长为 5 的等腰三角形时, P 点的坐标为 _______.yPCO D中考数学填空题专项训练(十九)二、填空题(每题 3 分,共 21 分)9.已知方程x y=16,写出两对知足此方程的x 与 y 的值 ______________.10.如图, DE∥ BC,CD是∠ ACB的均分线,∠ ACB=50°,则∠ EDC=____度. yC E BAD E M DBO Ax C第 10题图第13题图11.在平时生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:对于多项式 x4-y4,因式分解的结果是 (x-y)(x+y)(x2+y2),若取 x=9,y=9,则各个因式的值是: (x-y)=0,(x+y)=18,(x2+y2)=162,于是就能够把“ 018162作”为一个六位数的密码.对于多项式 4x3-xy2,取x=10, y=10 时,用上述方法产生的密码可能是 _______.(写出一个即可)12.某校举行以“保护环境,从我做起”为主题的演讲竞赛.经初赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是________.13.如图,反比率函数 y k ()的图象经过矩形对角线的交点M,分别与,订交于点,x>0OABC AB BC D xE.若四边形 ODBE的面积为 6,则 k 的值为 ________.14.如图,把矩形 ABCD对折,折痕为 MN(图 1),睁开后再折叠,使点到 Rt△ AB′E(图 2),延伸 EB′交 AD 于 F,则∠E FA=________.CB C E CFB'M N N AM E OA D A F D图1图2B 落在折痕MN 上的 B′处,得B第 14题图第15题图15.以下图, AB 是⊙ O 的直径,弦 BC=2cm,F 是弦 BC的中点,∠ ABC=60°.若动点 E 以 2cm/s 的速度从 A 点出发,沿着 A→ B→A 的方向运动,设运动时间为t( s)(0≤ t<3),连结 EF,当 t 为 ________s 时,△BEF是直角三角形.。
数学中考选择填空精选训练题一.选择题(共31小题,满分93分,每小题3分)1.(3分)如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为()A.B.C.D.2.(3分)已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值3.(3分)把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A.7+3B.7+4C.8+3D.8+44.(3分)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长5.(3分)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ =15,则CR的长为()A.14B.15C.8D.66.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连接EG,BD相交于点O,BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.7.(3分)如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.则下列结论中错误的是()A.DC=DT B.AD=DT C.BD=BO D.2OC=5AC 8.(3分)如图,将长、宽分别为12cm,3cm的长方形纸片分别沿AB,AC折叠,点M,N 恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为()A.(36)cm2B.(36)cm2C.24cm2D.36cm29.(3分)在“探索函数y=ax2+bx+c的系数a,b,c与图象的关系”活动中,老师给出了直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3).同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数表达式各不相同,其中a的值最大为()A.B.C.D.10.(3分)已知线段AB,按如下步骤作图:①作射线AC,使AC⊥AB;②作∠BAC的平分线AD;③以点A为圆心,AB长为半径作弧,交AD于点E;④过点E作EP⊥AB于点P,则AP:AB=()A.1:B.1:2C.1:D.1:11.(3分)如图是一个由5张纸片拼成的平行四边形ABCD,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张矩形纸片EFGH的面积为S3,FH与GE相交于点O.当△AEO,△BFO,△CGO,△DHO的面积相等时,下列结论一定成立的是()A.S1=S2B.S1=S3C.AB=AD D.EH=GH 12.(3分)如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC面积为S2,则的值是()A.B.3πC.5πD.13.(3分)如图,点A,B在反比例函数y=(k>0,x>0)的图象上,AC⊥x轴于点C,BD⊥x轴于点D,BE⊥y轴于点E,连结AE.若OE=1,OC=OD,AC=AE,则k 的值为()A.2B.C.D.214.(3分)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G,连结CG,延长BE交CG于点H.若AE=2BE,则的值为()A.B.C.D.15.(3分)如图,Rt△ABC中,∠BAC=90°,cos B=,点D是边BC的中点,以AD 为底边在其右侧作等腰三角形ADE,使∠ADE=∠B,连结CE,则的值为()A.B.C.D.216.(3分)如图,在△ABC中,∠BAC=90°,AB=AC=5,点D在AC上,且AD=2,点E是AB上的动点,连结DE,点F,G分别是BC和DE的中点,连结AG,FG,当AG=FG时,线段DE长为()A.B.C.D.417.(3分)已知点P(a,b)在直线y=﹣3x﹣4上,且2a﹣5b≤0,则下列不等式一定成立的是()A.≤B.≥C.≥D.≤18.(3分)如图,在Rt△ABC纸片中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC上,连结DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上,若FD平分∠EFB,则AD的长为()A.B.C.D.19.(3分)如图,已知在矩形ABCD中,AB=1,BC=,点P是AD边上的一个动点,连接BP,点C关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P 从点A运动到点D,则线段CC1扫过的区域的面积是()A.πB.π+C.D.2π20.(3分)已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1(x1,y1),P2(x2,y2)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,有下列结论:①当x1>x2+2时,S1>S2;②当x1<2﹣x2时,S1<S2;③当|x1﹣2|>|x2﹣2|>1时,S1>S2;④当|x1﹣2|>|x2+2|>1时,S1<S2.其中正确结论的个数是()A.1B.2C.3D.421.(3分)已知二次函数y=a(x﹣1)2﹣a(a≠0),当﹣1≤x≤4时,y的最小值为﹣4,则a的值为()A.或4B.或﹣C.﹣或4D.﹣或4 22.(3分)已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为()A.1B.C.2D.23.(3分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN =2.若点P是这个网格图形中的格点,连结PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是()A.4B.6C.2D.324.(3分)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在M1(﹣,0),M2(﹣,﹣1),M3(1,4),M4(2,)四个点中,直线PB经过的点是()A.M1B.M2C.M3D.M425.(3分)如图,已知△ABC内接于半径为1的⊙O,∠BAC=θ(θ是锐角),则△ABC 的面积的最大值为()A.cosθ(1+cosθ)B.cosθ(1+sinθ)C.sinθ(1+sinθ)D.sinθ(1+cosθ)26.(3分)如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为()A.2B.3C.2D.427.(3分)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积B.四边形EFGH的面积C.△BEF的面积D.△AEH的面积28.(3分)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF 与正方形JKLM的面积之比为5,CE=+,则CH的长为()A.B.C.2D.29.(3分)一配电房示意图如图所示,它是一个轴对称图形.已知BC=6m,∠ABC=α,则房顶A离地面EF的高度为()A.(4+3sinα)m B.(4+3tanα)m C.(4+)m D.(4+)m 30.(3分)如图是一张矩形纸片ABCD,点E为AD中点,点F在BC上,把该纸片沿EF 折叠,点A,B的对应点分别为A′,B′,A′E与BC相交于点G,B′A′的延长线过点C.若=,则的值为()A.2B.C.D.31.(3分)如图,在Rt△ABC和Rt△BDE中,∠ABC=∠BDE=90°,点A在边DE的中点上,若AB=BC,DB=DE=2,连结CE,则CE的长为()A.B.C.4D.二.填空题(共29小题,满分87分,每小题3分)32.(3分)如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC 于点M,反比例函数y=(x>0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=8,则k=.33.(3分)如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O 的切线BC,BC=OA,连接OC,AC.当△OAC是直角三角形时,其斜边长为.34.(3分)如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为,的值为.35.(3分)点P,Q,R在反比例函数y=(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为.36.(3分)如图,在河对岸有一矩形场地ABCD,为了估测场地大小,在笔直的河岸l上依次取点E,F,N,使AE⊥l,BF⊥l,点N,A,B在同一直线上.在F点观测A点后,沿FN方向走到M点,观测C点发现∠1=∠2.测得EF=15米,FM=2米,MN=8米,∠ANE=45°,则场地的边AB为米,BC为米.37.(3分)如图,已知边长为2的等边三角形ABC中,分别以点A,C为圆心,m为半径作弧,两弧交于点D,连接BD.若BD的长为2,则m的值为.38.(3分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是.39.(3分)如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连接CD.若△ACD的面积是2,则k的值是.40.(3分)如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=,BE=.41.(3分)将一副三角板如图放置在平面直角坐标系中,顶点A与原点O重合,AB在x 轴正半轴上,且AB=4,点E在AD上,DE=AD,将这副三角板整体向右平移个单位,C,E两点同时落在反比例函数y=的图象上.42.(3分)如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB=5,AE=DG=1,则BF=.43.(3分)在平面直角坐标系中,对于不在坐标轴上的任意一点A(x,y),我们把点B(,)称为点A的“倒数点”.如图,矩形OCDE的顶点C为(3,0),顶点E在y轴上,函数y=(x>0)的图象与DE交于点A.若点B是点A的“倒数点”,且点B在矩形OCDE的一边上,则△OBC的面积为.44.(3分)如图,在矩形ABCD中,点E在边AB上,△BEC与△FEC关于直线EC对称,点B的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点.若BM=BE,MG=1,则BN的长为,sin∠AFE的值为.45.(3分)如图,菱形ABCD的边长为6cm,∠BAD=60°,将该菱形沿AC方向平移2 cm得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为cm.46.(3分)如图,在△ABC中,AB=AC,∠B=70°,以点C为圆心,CA长为半径作弧,交直线BC于点P,连结AP,则∠BAP的度数是.47.(3分)如图,在平面直角坐标系中,正方形ABCD的顶点A在x轴正半轴上,顶点B,C在第一象限,顶点D的坐标(,2).反比例函数y=(常数k>0,x>0)的图象恰好经过正方形ABCD的两个顶点,则k的值是.48.(3分)已知△ABC与△ABD在同一平面内,点C,D不重合,∠ABC=∠ABD=30°,AB=4,AC=AD=2,则CD长为.49.(3分)如图,在△ABC中,∠BAC=30°,∠ACB=45°,AB=2,点P从点A出发沿AB方向运动,到达点B时停止运动,连结CP,点A关于直线CP的对称点为A′,连结A′C,A′P.在运动过程中,点A′到直线AB距离的最大值是;点P到达点B时,线段A′P扫过的面积为.50.(3分)已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线y=ax2+bx+2(a≠0)对称轴上的一个动点.小明经探究发现:当的值确定时,抛物线的对称轴上能使△AOM为直角三角形的点M的个数也随之确定,若抛物线y=ax2+bx+2(a≠0)的对称轴上存在3个不同的点M,使△AOM为直角三角形,则的值是.51.(3分)如图,在△ABC中,边AB在x轴上,边AC交y轴于点E.反比例函数y=(x >0)的图象恰好经过点C,与边BC交于点D.若AE=CE,CD=2BD,S△ABC=6,则k=.52.(3分)如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC 上的点M处,折痕分别与边AB,AD交于点E,F.当点M与点B重合时,EF的长为;当点M的位置变化时,DF长的最大值为.53.(3分)如图,在扇形AOB中,点C,D在上,将沿弦CD折叠后恰好与OA,OB相切于点E,F.已知∠AOB=120°,OA=6,则的度数为,折痕CD的长为.54.(3分)如图,已知在平面直角坐标系xOy中,点A在x轴的负半轴上,点B在y轴的负半轴上,tan∠ABO=3,以AB为边向上作正方形ABCD.若图象经过点C的反比例函数的解析式是y=,则图象经过点D的反比例函数的解析式是.55.(3分)如图是以点O为圆心,AB为直径的圆形纸片,点C在⊙O上,将该圆形纸片沿直线CO对折,点B落在⊙O上的点D处(不与点A重合),连接CB,CD,AD.设CD与直径AB交于点E.若AD=ED,则∠B=度;的值等于.56.(3分)如图,在△ABC中,AC=2,BC=4,点O在BC上,以OB为半径的圆与AC 相切于点A.D是BC边上的动点,当△ACD为直角三角形时,AD的长为.57.(3分)如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数y=(x>0)的图象上,BE⊥x轴于点E.若DC的延长线交x 轴于点F,当矩形OABC的面积为9时,的值为,点F的坐标为.58.(3分)如图,在菱形ABCD中,AB=1,∠BAD=60°.在其内部作形状、大小都相同的菱形AENH和菱形CGMF,使点E,F,G,H分别在边AB,BC,CD,DA上,点M,N在对角线AC上.若AE=3BE,则MN的长为.59.(3分)如图,在平面直角坐标系xOy中,点A(0,4),B(3,4),将△ABO向右平移到△CDE位置,A的对应点是C,O的对应点是E,函数y=(k≠0)的图象经过点C 和DE的中点F,则k的值是.60.(3分)如图,AB=10,点C是射线BQ上的动点,连结AC,作CD⊥AC,CD=AC,动点E在AB延长线上,tan∠QBE=3,连结CE,DE,当CE=DE,CE⊥DE时,BE的长是.。
一、选择题1.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有x 名学生,那么所列方程为( )A .()1119802x x +=B .()1119802x x -= C .()11980x x += D .()11980x x -=2.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .3.如图,ABC ∆是O 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32°B .31°C .29°D .61° 4.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023B .2021C .2020D .2019 5.把抛物线y =2(x ﹣3)2+k 向下平移1个单位长度后经过点(2,3),则k 的值是( )A .2B .1C .0D .﹣1 6.已知二次函数y =ax 2+bx +c (a >0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x 1,x 2(0<x 1<x 2<4)时,对应的函数值是y 1,y 2,且y 1=y 2,设该函数图象的对称轴是x =m ,则m 的取值范围是( )A .0<m <1B .1<m ≤2C .2<m <4D .0<m <47.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x 米.则可列方程为( )A .32×20﹣32x ﹣20x =540B .(32﹣x )(20﹣x )=540C .32x +20x =540D .(32﹣x )(20﹣x )+x 2=540 8.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程x 2﹣12x+k=0的两个根,则k 的值是( )A .27B .36C .27或36D .189.如图,点O 是△ABC 的内切圆的圆心,若∠A =80°,则∠BOC 为( )A .100°B .130°C .50°D .65° 10.将抛物线y=2x 2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( )A .y=2(x ﹣3)2﹣5B .y=2(x+3)2+5C .y=2(x ﹣3)2+5D .y=2(x+3)2﹣511.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x ,则下列方程中,正确的是( )A .()3001x 450+=B .()30012x 450+=C .2300(1x)450+=D .2450(1x)300-=12.如图,⊙O 是△ABC 的外接圆,∠B=60°,⊙O 的半径为4,则AC 的长等于( )A .43B .63C .23D .813.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .15B .25C .35D .4514.下列判断中正确的是( )A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦15.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根二、填空题16.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为_______.17.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.18.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).19.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____.20.如图,已知射线BP BA ⊥,点O 从B 点出发,以每秒1个单位长度沿射线BA 向右运动;同时射线BP 绕点B 顺时针旋转一周,当射线BP 停止运动时,点O 随之停止运动.以O 为圆心,1个单位长度为半径画圆,若运动两秒后,射线BP 与O 恰好有且只有一个公共点,则射线BP 旋转的速度为每秒______度.21.一个扇形的圆心角为135°,弧长为3πcm ,则此扇形的面积是_____cm 2.22.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.23.一元二次方程22x 20-=的解是______.24.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是s =60t ﹣1.5t 2,飞机着陆后滑行_____米才能停下来.25.已知扇形的面积为12πcm 2,半径为12cm ,则该扇形的圆心角是_______.三、解答题26.如图,AB 是O 的直径,AC 是上半圆的弦,过点C 作O 的切线DE 交AB 的延长线于点E ,过点A 作切线DE 的垂线,垂足为D ,且与O 交于点F ,设DAC ∠,CEA ∠的度数分别是a β、.()1用含a 的代数式表示β,并直接写出a 的取值范围;()2连接OF 与AC 交于点'O ,当点'O 是AC 的中点时,求a β、的值.27.将图中的A 型、B 型、C 型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A 型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).28.在一个不透明的袋子中,装有除颜色外其余均相同的红、蓝两种球,已知其中红球有3个,且从中任意摸出一个是红球的概率为0.75.(1)根据题意,袋中有 个蓝球.(2)若第一次随机摸出一球,不放回,再随机摸出第二个球.请用画树状图或列表法求“摸到两球中至少一个球为蓝球(记为事件A )”的概率P (A ).29.如图,已知AB为⊙O的直径,点C、D在⊙O上,CD=BD,E、F是线段AC、AB 的延长线上的点,并且EF与⊙O相切于点D.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.30.今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.A3.A4.A5.A6.C7.B8.B9.B10.A11.C12.A13.C14.C15.C二、填空题16.【解析】【分析】设⊙O半径为r根据勾股定理列方程求出半径r由勾股定理依次求BE和EC的长【详解】连接BE设⊙O半径为r则OA=OD=rOC=r-2∵OD⊥AB∴∠ACO=90°AC=BC=AB=4在17.y=05(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1m)B(4n)∴m=(1﹣2)2+1=1n=(4﹣2)2+1=3∴A(11)B(43)过A作AC∥x轴交B′B的延长线于点18.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能19.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长20.30或60【解析】【分析】射线与恰好有且只有一个公共点就是射线与相切分两种情况画出图形利用圆的切线的性质和30°角的直角三角形的性质求出旋转角然后根据旋转速度=旋转的度数÷时间即得答案【详解】解:如21.【解析】分析:先求出扇形对应的圆的半径再根据扇形的面积公式求出面积即可详解:设扇形的半径为Rcm∵扇形的圆心角为135°弧长为3πcm∴=3π解得:R=4所以此扇形的面积为=6π(cm2)故答案为622.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+23.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接24.600【解析】【分析】将函数解析式配方成顶点式求出s的最大值即可得【详解】∵s =60t﹣15t2=﹣t2+60t=﹣(t﹣20)2+600∴当t=20时s取得最大值600即飞机着陆后滑行600米才能25.30°【解析】设圆心角为n°由题意得:=12π解得:n=30故答案为30°三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】根据题意得:每人要赠送(x-1)张贺卡,有x个人,然后根据题意可列出方程:(x-1)x=1980.【详解】解:根据题意得:每人要赠送(x-1)张贺卡,有x个人,∴全班共送:(x-1)x=1980,故选:D.此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x 个人是解决问题的关键.2.A解析:A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A 、是中心对称图形,故本选项正确;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、不是中心对称图形,故本选项错误;故选:A .点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.3.A解析:A【解析】【分析】根据题意连接OC ,COP ∆为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可计算的COP ∠的度,再根据直角三角形可得P ∠的度数.【详解】根据题意连接OC.因为119A ∠=︒所以可得BC 所对的大圆心角为2119238BOC ︒︒∠=⨯=因为BD 为直径,所以可得23818058COD ︒︒︒∠=-=由于COP ∆为直角三角形所以可得905832P ︒︒︒∠=-=故选A.【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.4.A解析:A【解析】根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A .【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键. 5.A解析:A【解析】【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论.【详解】解:设抛物线y=2(x-3)2+k 向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1,∴k=2,故选A .【点睛】本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.6.C解析:C【解析】【分析】根据二次函数图象上点的坐标特征即可求得.【详解】解:当a>0时,抛物线开口向上,则点(0,1)的对称点为(x0,1),∴x0>4,∴对称轴为x=m中2<m<4,故选C.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,画出草图更直观.7.B解析:B【解析】【分析】先将图形利用平移进行转化,可得剩余图形的长等于原来的长减去小路的宽,剩余图形的宽等于原来的宽减去路宽,然后再根据矩形面积公式计算.【详解】利用图形平移可将原图转化为下图,设道路的宽为x,根据题意得:(32-x)(20-x)=540.故选B.【点睛】本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.8.B解析:B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(1)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(2)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.试题解析:分两种情况:(1)当其他两条边中有一个为3时,将x=3代入原方程,得:32-12×3+k=0解得:k=27将k=27代入原方程,得:x 2-12x+27=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(2)当3为底时,则其他两边相等,即△=0,此时:144-4k=0解得:k=36将k=36代入原方程,得:x 2-12x+36=0解得:x=63,6,6能够组成三角形,符合题意.故k 的值为36.故选B .考点:1.等腰三角形的性质;2.一元二次方程的解.9.B解析:B【解析】【分析】根据三角形的内切圆得出∠OBC =12∠ABC ,∠OCB =12∠ACB ,根据三角形的内角和定理求出∠ABC +∠ACB 的度数,进一步求出∠OBC +∠OCB 的度数,根据三角形的内角和定理求出即可.【详解】∵点O 是△ABC 的内切圆的圆心,∴∠OBC =12∠ABC ,∠OCB =12∠ACB . ∵∠A =80°,∴∠ABC +∠ACB =180°﹣∠A =100°,∴∠OBC +∠OCB =12(∠ABC +∠ACB )=50°,∴∠BOC =180°﹣(∠OBC +∠OCB )=180°﹣50°=130°.故选B .【点睛】本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌握,能求出∠OBC +∠OCB 的度数是解答此题的关键.10.A解析:A【解析】把22y x =向右平移3个单位长度变为:223()y x =-,再向下平移5个单位长度变为:22(3)5y x =--.故选A .11.C解析:C【解析】【分析】快递量平均每年增长率为x ,根据我国2016年及2018年的快递业务量,即可得出关于x 的一元二次方程,此题得解.【详解】快递量平均每年增长率为x ,依题意,得:2300(1x)450+=,故选C .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 12.A解析:A【解析】【分析】【详解】解:连接OA ,OC ,过点O 作OD ⊥AC 于点D ,∵∠AOC=2∠B ,且∠AOD=∠COD=12∠AOC , ∴∠COD=∠B=60°; 在Rt △COD 中,OC=4,∠COD=60°,∴33, ∴3.故选A .【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.13.C解析:C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3355÷=故选C 14.C解析:C【解析】【分析】根据等弧概念对A 进行判断,根据垂径定理对B 、C 、D 选项进行逐一判断即可. 本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B 错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C 正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误. 故选C.15.C解析:C【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2b a-=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误;∵对称轴x=2b a-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确;∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误, 故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2b a-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y轴的交点在x轴的上方;当△=b2-4ac>0,抛物线与x轴有两个交点.二、填空题16.【解析】【分析】设⊙O半径为r根据勾股定理列方程求出半径r由勾股定理依次求BE和EC的长【详解】连接BE设⊙O半径为r则OA=OD=rOC=r-2∵OD⊥AB∴∠ACO=90°AC=BC=AB=4在解析:213【解析】【分析】设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.【详解】连接BE,设⊙O半径为r,则OA=OD=r,OC=r-2,∵OD⊥AB,∴∠ACO=90°,AC=BC=12AB=4,在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,r=5,∴AE=2r=10,∵AE为⊙O的直径,∴∠ABE=90°,由勾股定理得:BE=6,在Rt△ECB中,EC222264213BE BC+=+=.故答案是:13【点睛】考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.17.y=05(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1m)B (4n)∴m=(1﹣2)2+1=1n=(4﹣2)2+1=3∴A(11)B(43)过A作AC∥x轴交B′B的延长线于点解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.18.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.19.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长解析:12【解析】【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质. 20.30或60【解析】【分析】射线与恰好有且只有一个公共点就是射线与相切分两种情况画出图形利用圆的切线的性质和30°角的直角三角形的性质求出旋转角然后根据旋转速度=旋转的度数÷时间即得答案【详解】解:如解析:30或60【解析】【分析】射线BP与O恰好有且只有一个公共点就是射线BP与O相切,分两种情况画出图形,利用圆的切线的性质和30°角的直角三角形的性质求出旋转角,然后根据旋转速度=旋转的度数÷时间即得答案.【详解】解:如图1,当射线BP与O在射线BA上方相切时,符合题意,设切点为C,连接OC,则OC⊥BP,于是,在直角△BOC中,∵BO=2,OC=1,∴∠OBC=30°,∴∠1=60°,此时射线BP旋转的速度为每秒60°÷2=30°;如图2,当射线BP与O在射线BA下方相切时,也符合题意,设切点为D,连接OD,则OD⊥BP,于是,在直角△BOD中,∵BO=2,OD=1,∴∠OBD=30°,∴∠MBP=120°,此时射线BP旋转的速度为每秒120°÷2=60°;故答案为:30或60.【点睛】本题考查了圆的切线的性质、30°角的直角三角形的性质和旋转的有关概念,正确理解题意、熟练掌握基本知识是解题的关键.21.【解析】分析:先求出扇形对应的圆的半径再根据扇形的面积公式求出面积即可详解:设扇形的半径为Rcm∵扇形的圆心角为135°弧长为3πcm∴=3π解得:R=4所以此扇形的面积为=6π(cm2)故答案为6解析:6π【解析】分析:先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.详解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴135180Rπ⨯=3π,解得:R=4,所以此扇形的面积为21354180π⨯=6π(cm2),故答案为6π.点睛:本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.22.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+解析:-4【解析】【分析】利用根与系数的关系求出所求即可.此题也可解出x的值,直接计算.【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1、x2(x1<x2),∴x1+x2=2,x1x2=﹣3,则x1﹣x2=﹣√(x1+x2)2−4x1x2=﹣√4+12=﹣4.故答案为﹣4.【点睛】本题考查了根与系数的关系,弄清根与系数的关系是解答本题的关键.23.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x1=1,x2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x2=1,开方得:x=±1,解得:x1=1,x2=﹣1.故答案为x 1=1,x 2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.24.600【解析】【分析】将函数解析式配方成顶点式求出s 的最大值即可得【详解】∵s=60t ﹣15t2=﹣t2+60t =﹣(t ﹣20)2+600∴当t =20时s 取得最大值600即飞机着陆后滑行600米才能解析:600【解析】【分析】将函数解析式配方成顶点式求出s 的最大值即可得.【详解】∵s =60t ﹣1.5t 2, =﹣32t 2+60t , =﹣32(t ﹣20)2+600, ∴当t =20时,s 取得最大值600,即飞机着陆后滑行600米才能停下来,故答案为:600.【点睛】此题考查二次函数解析式的配方法,利用配方法将函数解析式化为顶点式由此得到函数的最值是一种很重要的解题方法.25.30°【解析】设圆心角为n°由题意得:=12π解得:n=30故答案为30° 解析:30°【解析】设圆心角为n°,由题意得:212360n π⨯=12π, 解得:n=30,故答案为30°.三、解答题26.(1)β=90°-2α(0°<α<45°);(2)α=β=30°【解析】【分析】(1)首先证明2DAE α∠= ,在t R ADE △ 中,根据两锐角互余,可知()290045αβα+=︒︒︒<< ;(2)连接OF 交AC 于O′,连接CF ,只要证明四边形AFCO 是菱形,推出AFO 是等边三角形即可解决问题.解:(1)连接OC.∵DE是⊙O的切线,∴OC⊥DE,∵AD⊥DE,∴AD∥OC,∴∠DAC=∠ACO,∵OA=OC,∴∠OCA=∠OAC,∴∠DAE=2α,∵∠D=90°,∴∠DAE+∠E=90°,∴2α+β=90°∴β=90°-2α(0°<α<45°).(2)连接OF交AC于O′,连接CF.∵AO′=CO′,∴AC⊥OF,∴FA=FC,∴∠FAC=∠FCA=∠CAO,∴CF∥OA,∵AF∥OC,∴四边形AFCO是平行四边形,∵OA=OC,∴四边形AFCO是菱形,∴AF=AO=OF,∴△AOF是等边三角形,∴∠FAO=2α=60°,∴α=30°,∵2α+β=90°,∴β=30°,∴α=β=30°.【点睛】本题考查了圆和三角形的问题,掌握圆的切线的性质以及等边三角形的性质和证明是解题27.(1)13;(2)23.【解析】【分析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【详解】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是A型矩形纸片的概率为13;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为42 63 =.【点睛】考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.28.(1)1;(2)1 2【解析】【分析】(1) 根据红球的个数和红球的概率可求出总球的个数,然后相减即可;(2)根据题意画出树状图,然后求出总可能数和符合条件的次数,根据概率公式求解即可.【详解】(1)3÷0.75-3=1. 故填1.(2)将袋中各球分别记为红1、红2、红3、蓝.根据题意,可以画出如下的树状图:由树状图可以看出,所有可能出现的结果共有12种,这些结果出现的可能性相等,其中事件A的结果共有6种,所以 P(A)=61 122=.29.(1)见解析:(2)CE=1.【解析】【分析】(1)连接AD,如图,先证明CD BD=得到∠1=∠2,再根据圆周角定理得到∠ADB=90°,根据切线的性质得到OD⊥EF,然后证明∠1=∠4得到结论;(2)连接BC交OD于F,如图,根据圆周角定理得到∠ACB=90°,再根据垂径定理,由CD BD=得到OD⊥BC,则CF=BF,所以OF=12AC=32,从而得到DF=1,然后证明四边形CEDF为矩形得CE=1.【详解】(1)证明:连接AD,如图,∵CD=BD,∴CD BD=,∴∠1=∠2,∵AB为直径,∴∠ADB=90°,∴∠1+∠ABD=90°,∵EF为切线,∴OD⊥EF,∴∠3+∠4=90°,∵OD=OB,∴∠3=∠OBD,∴∠1=∠4,∴∠A=2∠BDF;(2)解:连接BC交OD于F,如图,∵AB为直径,∴∠ACB=90°,∵CD BD=,∴OD⊥BC,∴CF=BF,∴OF=12AC=32,∴DF=52﹣32=1,∵∠ACB=90°,OD⊥BC,OD⊥EF,∴四边形CEDF为矩形,∴CE=DF=1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和勾股定理.30.(1)(300﹣10x).(2)每本书应涨价5元.【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,所以每天可售出书(300﹣10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.。
中考数学填空题专项训练【题组1】1.已知一次函数y=(k+1)x|k|+8,则k=______.2.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为4:3:3.小王经过考核后所得的分数依次为89、98、81分,那么小王的最后得分是______.3.已知等腰三角形两边a,b,满足|2a﹣3b+5|+(2a+3b﹣13)2=0,则此等腰三角形的周长为.4.蓄电池的电压为定值,使用此电源时,用电器的电流I(A)与电阻R(Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过9A,那么用电器的可变电阻应控制在______.范围内.5.如图,正六边形ABCDEF内接于⊙O,则∠ADF的度数为.6.如图,在平面直角坐标系中,抛物线y=﹣x2﹣4x与x轴交于O,A两点,点B为x轴上一点且AB=3,将AB绕点A逆时针旋转45°得到AC,使得点C恰好落在抛物线上,点P为抛物线上一点,连接AP,PC,PC⊥AC,则△P AC的面积为______.7.如图,在直角坐标系中,点A(2,0),点B(0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C 落在点D处.若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为.8.如图,抛物线与y轴交于点A,与x轴交于B、C,点A关于抛物线对称轴的对称点为点D,点E在y轴上,点F在以点C为圆心,半径为2的圆上,则DE+EF 的最小值是.【题组2】有意义,x的取值范围是.1.若式子x+9x2−812.因式分解b3-25b .3.按图中程序运算,如果输入的数字为7,则输出的数是.4.某一个袋子中有16个球,红球x 个,白球y 个,小明从袋子里摸了8次球,6个是白球,请问红球有多少个 .5.圆锥的底面半径OB 长为4cm ,母线AB 长为12cm ,则这个圆锥侧面展开图的圆心角α为 .6.若关于x 的方程3x -2m=1的解为正整数,求m 的取值范围 .【压轴·题组3】1.如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE=3,点Q 为对角线AC 上的动点,则△BEQ 周长的最小值为______.2.如图,在矩形ABCD 中,1AB =,BC a =,点E 在边BC 上,且3a 5BE =.连接AE ,将ABE ∆沿AE 折叠,若点B 的对应点B '落在矩形ABCD 的边上,则 a 的值为________.3.如图1,在△ABC中,∠C=90°,动点P从点C出发,以1cm/s的速度沿折线CA→AB匀速运动,到达点B时停止运动,点P出发一段时间后动点Q从点B出发,以相同的速度沿BC匀速运动,当点P到达点B时,点Q恰好到达点C,并停止运动,设点P的运动时间为t s,△PQC的面积为S cm2,S关于t的函数图象如图2所示(其中0<t≤3,3≤t≤4时,函数图象均为线段(不含点O),4<t<8时,函数图象为抛物线的一部分)给出下列结论:①AC=3cm;②当S=65时,t=35或6.下列结论正确的是4.如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG交AD于点P,若AP=3,则点P到BD的距离为.5.已知抛物线y=ax2﹣3x+c(a≠0)经过点(﹣2,4),则4a+c﹣1=.6.如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE 的长为7.如图,在平面直角坐标系中,反比例y=(k>0)的图象和△ABC都在第一象限内,AB =AC=,BC∥x轴,且BC=4,点A的坐标为(3,5).若将△ABC向下平移m个单位长度,A,C两点同时落在反比例函数图象上,则m的值为.a,连接AE,将△ABE沿A 8.在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=35E折叠.若点B的对应点B′落在矩形ABCD的边上,则折痕的长为.9.如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为.10.已知二次函数y=﹣x2+x+6及一次函数y=x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数,当直线y=x+m与新图象有3个交点时,m的值是.。
2022年中考数学复习:最值问题选择填空题专项训练一、单选题1.如图,菱形ABCD的边AB=8,∠B=60°,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点为A′.当CA′的长度最小时,CQ的长为()A.5B.7C.8D.6.52.已知线段AB及直线l,在直线l上确定一点P,使PA PB+最小,则下图中哪一种作图方法满足条件().A.B.C.D.3.如图1,在菱形ABCD中,AB=6,∠BAD=120°,点E是BC边上的一动点,点P 是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x 的函数图象,其中H(a,b)是图象上的最低点,则a+b的值为()A.B.3C.D.6 4.如图,等边∠ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是边AC上一点,若AE=2,则EM+CM的最小值为()AB .C .D .5.如图,正方形ABCD 的边长是4,点E 是DC 上一个点,且DE =1,P 点在AC 上移动,则PE +PD 的最小值是( )A .4B .4.5C .5.5D .5 6.如图,在平面直角坐标系中,二次函数y =x 2﹣2x +c 的图象与x 轴交于A 、C 两点,与y 轴交于点B (0,﹣3),若P 是x 轴上一动点,点D (0,1)在y 轴上,连接PD PD +PC 的最小值是( )A.4 B .2+C . D .327.如图,凸四边形ABCD 中,90,90,60,3,A C D AD AB ∠=︒∠=︒∠=︒==M 、N 分别为边,CD AD 上的动点,则BMN △的周长最小值为( )A.B.C.6D.38.如图,在Rt∠ABC中,∠ACB=90°,CB=7,AC=9,以C为圆心、3为半径作∠C,P为∠C上一动点,连接AP、BP,则13AP+BP的最小值为()A.7B.C.4D.9.如图,∠ACB中,CA=CB=4,∠ACB=90°,点P为CA上的动点,连BP,过点A 作AM∠BP于M.当点P从点C运动到点A时,线段BM的中点N运动的路径长为()AB C D.2π10.如图所示,已知A(1,y1),B(2,y2)为反比例函数y2=x图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大值时,点P的坐标是()A.(3,0)B.(72,0)C.(53,0)D.(52,0)二、填空题11.如图,长方形ABCD中,AB=BC=2,点E是DC边上的动点,现将△BEC 沿直线BE折叠,使点C落在点F处,则点D到点F的最短距离为________.12.如图,正∠ABC 的边长为2,过点B 的直线l ∠AB ,且∠ABC 与∠A ′BC ′关于直线l 对称,D 为线段BC ′上一动点,则AD +CD 的最小值是_____.13.如图,已知ABC ,外心为O ,18BC =,60BAC ∠=︒,分别以AB ,AC 为腰向形外作等腰直角三角形ABD △与ACE ,连接BE ,CD 交于点P ,则OP 的最小值是______.14.如图,正方形ABCD 的边长为4,点E 为边AD 上一个动点,点F 在边CD 上,且线段EF =4,点G 为线段EF 的中点,连接BG 、CG ,则BG +12CG 的最小值为 _____.15.如图,在锐角∠ABC 中,AB =2,AC ∠ABC =60°.D 是平面内一动点,且∠ADB =30°,则CD 的最小值是________16.如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠ACD=30°,AD=2,E是AC 的中点,连接DE,则线段DE长度的最小值为______.17.如图,∠O的半径为2,弦AB=2,点P为优弧AB上一动点,AC∠AP交直线PB 于点C,则∠ABC的最大面积是_________.18.如图,AB是半圆O的直径,点D在半圆O上,AB=13,AD=5,C是弧BD上的一个动点,连接AC,过D点作DH∠AC于H.连接BH,在点C移动的过程中,BH 的最小值是___.19.∠ABC中,AB=4,AC=2,以BC为边在∠ABC外作正方形BCDE,BD、CE交于点O,则线段AO的最大值为______.20.如图,点A(a,3)、B(b,1)都在双曲线y3=x上,点C、D分别是x,y轴上的动点,则四边形ABCD的周长最小值为__.21.已知:如图,边长为4的正方形ABCD中,点E为边DC上一点,且DE=1,在AC上找一点P,则DP+EP的最小值为___.22.如图,四边形ABCD为矩形,AB=AD=P为边AB上一点.以DP为折痕将∠DAP翻折,点A的对应点为点A'.连结AA',AA' 交PD于点M,点Q 为线段BC上一点,连结AQ,MQ,则AQ+MQ的最小值是________参考答案:1.B2.C3.A4.C5.D6.A7.C8.B9.A10.A11.212.413.9-14.515.3316.1),(1-171819.20.21.522.。
一、选择题1.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有x 名学生,那么所列方程为( )A .()1119802x x +=B .()1119802x x -= C .()11980x x +=D .()11980x x -= 2.把抛物线y =2(x ﹣3)2+k 向下平移1个单位长度后经过点(2,3),则k 的值是( ) A .2B .1C .0D .﹣1 3.一元二次方程的根是( ) A .3x = B .1203x x ==-, C .1203x x ==, D .1203x x ==,4.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值( )A .0或2B .-2或2C .-2D .2 5.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点6.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x 米.则可列方程为( )A .32×20﹣32x ﹣20x =540 B .(32﹣x )(20﹣x )=540 C .32x +20x =540 D .(32﹣x )(20﹣x )+x 2=5407.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是( )A .13B .14C .15D .168.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( )A .59B .49C .56D .139.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是x =1D .不存在实数根10.下列函数中是二次函数的为( )A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x 2D .y =x 3+2x -3 11.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >4 12.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( )A .﹣1、3B .1、﹣3C .﹣1、﹣3D .1、3 13.如图,AOB 中,30B ∠=︒.将AOB 绕点O 顺时针旋转52︒得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( )A .22︒B .52︒C .60︒D .82︒ 14.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m≥1B .m≤1C .m >1D .m <1 15.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D.230++-=有两个不相等的实数根ax bx c二、填空题16.若直角三角形两边分别为6和8,则它内切圆的半径为_____.17.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.18.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1_____y2.(用“>”、“<”、“=”填空)19.两块大小相同,含有30°角的三角板如图水平放置,将△CDE绕点C按逆时针方向旋转,当点E的对应点E′恰好落在AB上时,△CDE旋转的角度是______度.20.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为_____.21.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.22.已知二次函数y=a(x+3)2﹣b(a≠0)有最大值1,则该函数图象的顶点坐标为_____.23.如图,在Rt△ABC中,∠ACB=90°,CB=4,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将BD绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为_____.24.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y =−140x 2+10,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是______米.(精确到1米)25.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_________.三、解答题26.用你喜欢的方法解方程(1)x 2﹣6x ﹣6=0(2)2x 2﹣x ﹣15=027.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m 的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.28.二次函数2y x bx =+上部分点的横坐标x 与纵坐标y 的对应值如下表:x…1-12-0123…y (35)401-0m…(1)直接写出此二次函数的对称轴;(2)求b的值;(3)直接写出表中的m值,m= ;(4)在平面直角坐标系xOy中,画出此二次函数的图象.29.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.30.在平面直角坐标系xOy中,抛物线y=a2x-4ax与x轴交于A,B两点(A在B的左侧).(1)求点A,B的坐标;(2)已知点C(2,1),P(1,-32a),点Q在直线PC上,且Q点的横坐标为4.①求Q点的纵坐标(用含a的式子表示);②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.A3.D4.D5.D6.B7.A8.B9.A10.B11.B12.A13.D14.D15.C二、填空题16.2或-1【解析】【分析】根据已知题意求第三边的长必须分类讨论即8是斜边或直角边的两种情况然后利用勾股定理求出另一边的长再根据内切圆半径公式求解即可【详解】若8是直角边则该三角形的斜边的长为:∴内切圆17.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面18.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x2-4x-1=(x-2)2-5可知其图象开口向上19.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线可得△E′CB是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE旋转的度数【详解】解:∵三角板是两块大小20.(2)【解析】由题意得:即点P的坐标21.【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1男2女1女2男1(男1男2)(男1女122.(﹣31)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(hk)即可求解【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1∴﹣b=1根据二次函数的顶点式方程y23.【解析】【分析】根据题意用的面积减去扇形的面积即为所求【详解】由题意可得AB =2BC∠ACB=90°弓形BD与弓形AD完全一样则∠A=30°∠B=∠BCD=60°∵CB=4∴AB =8AC=4∴阴影部24.85【解析】由于两盏EF距离水面都是8m因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平25.【解析】【分析】【详解】解:从袋子中随机取出1个球总共有6种等可能结果这个球为红球的结果有5中所以从袋子中随机取出1个球则它是红球的概率是故答案为:三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】根据题意得:每人要赠送(x-1)张贺卡,有x个人,然后根据题意可列出方程:(x-1)x=1980.【详解】解:根据题意得:每人要赠送(x-1)张贺卡,有x个人,∴全班共送:(x-1)x=1980,故选:D.【点睛】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x个人是解决问题的关键.2.A解析:A【解析】【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论.【详解】解:设抛物线y=2(x-3)2+k 向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1,∴k=2,故选A .【点睛】本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.3.D解析:D【解析】x 2−3x=0,x(x−3)=0,∴x 1=0,x 2=3.故选:D.4.D解析:D【解析】【分析】将()1212122(2)2=3x x x x x x -+--+-化简可得,()21212124423x x x x x x +-+=--, 利用韦达定理,()2142(2)3k k ----+=-,解得,k =±2,由题意可知△>0, 可得k =2符合题意.【详解】解:由韦达定理,得: 12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x -+--+=-,得:()21212423x x x x --+=-,即()21212124423x x x x x x +-+=--,所以,()2142(2)3k k ----+=-,化简,得:24k =,解得:k =±2,因为关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根,所以,△=()214(2)k k ---+=227k k +-〉0,k =-2不符合,所以,k =2故选:D.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键. 5.D解析:D【解析】【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误.【详解】当1a =-时,()224125=--+=-++y x x x ,∴当2x =-时,函数取得最大值5,故A 正确;当1a =时,()224125y x x x =--=--,∴函数图象开口向上,对称轴为2x =,∴当2x ≥时,y 随x 的增大而增大,故B 正确;当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误;故选D.【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键. 6.B解析:B【解析】【分析】先将图形利用平移进行转化,可得剩余图形的长等于原来的长减去小路的宽,剩余图形的宽等于原来的宽减去路宽,然后再根据矩形面积公式计算.【详解】利用图形平移可将原图转化为下图,设道路的宽为x ,根据题意得:(32-x )(20-x )=540.故选B.【点睛】本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.7.A解析:A【解析】【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8.B解析:B【解析】【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:49. 【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.9.A解析:A 【解析】 【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可. 【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根, 1+8﹣c =0,解得c =9, ∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0, ∴方程有两个不相等的实数根. 故选:A . 【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.10.B解析:B 【解析】A. y =3x −1是一次函数,故A 错误;B. y =3x 2−1是二次函数,故B 正确;C. y =(x +1)2−x 2不含二次项,故C 错误;D. y =x 3+2x −3是三次函数,故D 错误; 故选B.11.B解析:B【解析】【分析】【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选B.12.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a,b的值.【详解】解:∵P(-b,2)与点Q(3,2a)关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A.【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.13.D解析:D【解析】【分析】根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得∠'的度数.A CO【详解】∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.14.D解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->, 解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.15.C解析:C 【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2ba-=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误; ∵对称轴x=2ba-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确; ∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误, 故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2ba-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x 轴有两个交点.二、填空题 16.2或-1【解析】【分析】根据已知题意求第三边的长必须分类讨论即8是斜边或直角边的两种情况然后利用勾股定理求出另一边的长再根据内切圆半径公式求解即可【详解】若8是直角边则该三角形的斜边的长为:∴内切圆解析:2-1 【解析】 【分析】根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.【详解】若8是直角边,则该三角形的斜边的长为:226+8=10,∴内切圆的半径为:6+810=22-;若8是斜边,则该三角形的另一条直角边的长为:228627=-,∴内切圆的半径为:6+278=712--.故答案为2或7-1.【点睛】本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键.17.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面解析:16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积,依此列式计算即可.【详解】解:如图.2+2=4,恒星的面积=4×4-4π=16-4π.故答案为16-4π.【点睛】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积-半径为2的圆的面积.18.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x2-4x-1=(x-2)2-5可知其图象开口向上解析:<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小. 【详解】由二次函数y=x 2-4x-1=(x-2)2-5可知,其图象开口向上,且对称轴为x=2, ∵1<x 1<2,3<x 2<4,∴A 点横坐标离对称轴的距离小于B 点横坐标离对称轴的距离, ∴y 1<y 2. 故答案为<.19.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB 的中线可得△E′CB 是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE 旋转的度数【详解】解:∵三角板是两块大小解析:30 【解析】 【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB 的中线,可得△E′CB 是等边三角形,从而得出∠ACE′的度数和CE′的长,从而得出△CDE 旋转的度数. 【详解】解:∵三角板是两块大小一样且含有30°的角, ∴CE′是△ACB 的中线, ∴CE′=BC =BE′, ∴△E′CB 是等边三角形, ∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°, 故答案为:30. 【点睛】本题考查了含有30°角的直角三角形的性质,等边三角形的判定和性质,旋转的性质,本题关键是得到CE ´是△ABC 的中线.20.(2)【解析】由题意得:即点P 的坐标解析: ,2). 【解析】由题意得:441a a =⇒= 2y x ⇒=222OD x x =⇒=⇒=,即点P 的坐标)2.21.【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1男2女1女2男1(男1男2)(男1女1解析:2 3【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.【详解】解:所有可能的结果如下表:的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为812=23,故答案为23.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(﹣31)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(hk)即可求解【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1∴﹣b=1根据二次函数的顶点式方程y解析:(﹣3,1)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(h,k),即可求解.【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1,∴﹣b=1,根据二次函数的顶点式方程y=a(x+3)2﹣b(a≠0)知,该函数的顶点坐标是:(﹣3,﹣b),∴该函数图象的顶点坐标为(﹣3,1).故答案为:(﹣3,1).【点睛】本题考查了二次函数的性质,解答该题时,需熟悉二次函数的顶点式y=a (x-h )2+k 中的h 、k 所表示的意义.23.【解析】【分析】根据题意用的面积减去扇形的面积即为所求【详解】由题意可得AB =2BC∠ACB=90°弓形BD 与弓形AD 完全一样则∠A=30°∠B=∠BCD=60°∵CB=4∴AB=8AC =4∴阴影部解析:83π. 【解析】 【分析】 根据题意,用ABC 的面积减去扇形CBD 的面积,即为所求.【详解】 由题意可得,AB =2BC ,∠ACB =90°,弓形BD 与弓形AD 完全一样, 则∠A =30°,∠B =∠BCD =60°, ∵CB =4,∴AB =8,AC =,2604360π⨯⨯-=83π,故答案为:83π. 【点睛】本题考查不规则图形面积的求法,属中档题.24.85【解析】由于两盏EF 距离水面都是8m 因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平解析:8√5 【解析】由于两盏E 、F 距离水面都是8m ,因而两盏景观灯之间的水平距离就 是直线y=8与抛物线两交点的横坐标差的绝对值. 故有−140x 2+10=8,即x 2=80,x 1=4√5,x 2=−4√5.所以两盏警示灯之间的水平距离为:|x 1−x 2|=|4√5−(−4√5)|=8√5≈18(m )25.【解析】【分析】【详解】解:从袋子中随机取出1个球总共有6种等可能结果这个球为红球的结果有5中所以从袋子中随机取出1个球则它是红球的概率是故答案为:解析:56【解析】 【分析】 【详解】解:从袋子中随机取出1个球,总共有6种等可能结果,这个球为红球的结果有5中,所以从袋子中随机取出1个球,则它是红球的概率是56故答案为:56.三、解答题 26.(1)x 1=x 2=32)x 1=﹣2.5,x 2=3 【解析】 【分析】(1)先求出b 2﹣4ac 的值,再代入公式求出即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】 x 2﹣6x ﹣6=0, ∵a=1,b=-6,c=-6,∴b 2﹣4ac =(﹣6)2﹣4×1×(﹣6)=60,x =632±=x 1=x 2=3 (2)2x 2﹣x ﹣15=0, (2x +5)(x ﹣3)=0, 2x +5=0,x ﹣3=0, x 1=﹣2.5,x 2=3. 【点睛】此题考查一元二次方程的解法,根据每个方程的特点选择适合的方法是关键,由此才能使计算更简便.27.(1)60,10;(2)96°;(3)1020;(4)23【解析】 【分析】(1)根据基本了解的人数以及所占的百分比可求得接受调查问卷的人数,进行求得不了解的人数,即可求得m 的值;(2)用360度乘以“了解很少”的比例即可得;(3)用“非常了解”和“基本了解”的人数和除以接受问卷的人数,再乘以1800即可求得答案; (4)画树状图表示出所有可能的情况数,再找出符合条件的情况数,利用概率公式进行求解即可. 【详解】(1)接受问卷调查的学生共有3050%60÷=(人),604301610m =---=, 故答案为:60,10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数163609660=︒⨯=︒, 故答案为:96°;(3)该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为:4301800102060+⨯=(人), 故答案为:1020; (4)由题意列树状图:由树状图可知,所有等可能的结果有12 种,恰好抽到1名男生和1名女生的结果有8种, ∴恰好抽到1名男生和1名女生的概率为82123=. 【点睛】本题考查了条形统计图与扇形统计图信息关联,列表法或树状图法求概率,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.28.(1)对称轴x =1;(2)b=-2;(3)m=3;(4)见解析 【解析】 【分析】(1)根据图表直接写出此二次函数的对称轴即可; (2)图象经过点(1,-1),代入求b 的值即可;(3)由题意将x=3代入解析式得到并直接写出表中的m 值; (4)由题意采用描点法画出图像即可. 【详解】解:(1)观察图像直接写出此二次函数的对称轴x=1.(2)∵二次函数2y x bx =+的图象经过点(1,-1),∴2b =-.(3)将x=3代入解析式得m=3.(4)如图.【点睛】本题考查了二次函数的图象和性质,根据二次函数的图象和性质分析是解此题的关键.29.(1)相切,证明见解析;(2)62.【解析】【分析】(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出r=3,由tan∠E=OB CDEB DE=,推出348CD=,可得CD=BC=6,再利用勾股定理即可解决问题.【详解】解:(1)相切,理由如下,如图,连接OC,∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)设⊙O的半径为r,在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,AB=2r=6,∵tan ∠E=OB CD EB DE=, ∴348CD =, ∴CD=BC=6,在Rt △ABC 中,=【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,正确添加辅助线,熟练掌握和灵活应用相关知识解决问题是关键. 30.(1)A (0,0),B (4,0);(2)①Q 点的纵坐标为3+3a ,②符合题意的a 的取值范围是 -1≤a <0.【解析】【分析】(1)令y =0,则a 2x -4ax =0,可求得A 、B 点坐标;(2)①设直线PC 的解析式为,将点P (1,-32a ),C (2,1)代入可解得31,13.2k a b a =+=-- ()3113.2y x a =+-- 由于Q 点的横坐标为4,可求得Q 点的纵坐标为3+3a ②当a >0时,如图1,不合题意;当a <0时,由图2,图3可知,3+3a≥0,可求出a 的取值范围.【详解】(1)令y =0,则a 2x -4ax =0.解得 120, 4.x x ==∴ A (0,0),B (4,0)(2)①设直线PC 的解析式为.y kx b =+将点P (1,-32a ),C (2,1)代入上式, 解得31,13.2k ab a =+=-- ∴y=(1+32a)x-1-3a. ∵点Q 在直线PC 上,且Q 点的横坐标为4,∴Q 点的纵坐标为3+3a②当a >0时,如图1,不合题意;当a <0时,由图2,图3可知,3+3a≥0.∴a≥-1.∴符合题意的a的取值范围是 -1≤a<0.图1 图2 图3【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.。
2022中考数学考点必杀500题专练04(填空题-基础)(50道)1.(2022·山东济南·一模)分解因式:34a a-=______.2.(2021·湖南永州·模拟预测)0.000502用科学记数法表示为:__________.3.(2022·安徽·_______.4.(2022·陕西安康·一模)要使分式34xx++有意义,则字母x的取值范围是_________.5.(2022·广东佛山·一模)已知|x+2y|+(x﹣4)2=0,则xy=_____.6.(2022·江苏无锡·一模)函数y=2x+12x+的自变量x的取值范围是_____.7.(2022·河南·模拟预测)要使分式121xx+-的值为零,则x的值为______.8.(2021·四川成都·二模)关于x的一元二次方程x2+4x﹣3a=0有实数根,则a的取值范围是_________.9.(2022·山东济南·一模)使分式21x-与33x+的值相等的x的值为______.10.(2021·四川内江·一模)已知456a b+=,543a b+=,则a b-=__.11.(2022·山东济南·一模)某学区房房价连续两次上涨,由原来的每平方米10000元涨至每平方米12100元,设每次涨价的百分率相同,则涨价的百分率为______.12.(2022·山东济南·一模)在一个不透明的袋子中装有3个红球和若干个白球,每个球除颜色外都相同,任意摸出一个球,摸出红球的概率是14,则白球的个数是______.13.(2022·山西吕梁·一模)不等式组212320xx+⎧≥-⎪⎨⎪->⎩①②的解集是__________.14.(2022·湖北·崇阳县桃溪中学一模)方程x2-4=2(x+2)的解为__________15.(2022·河南周口·一模)如图所示,点C位于A,B两点之间(不与A,B重合),且点C对应的实数为1-2x,则x的取值范围是______.16.(2022·四川泸州·一模)设a、b是方程2730x x+-=的两个实数根.则(a-1)(b-1)的值为______.17.(2019·河南·漯河市郾城区第二初级实验中学一模)二次函数2y ax bx=+的图象如图,若一元二次方程20ax bx m++=有实数根,则m的范围为________.18.(2022·陕西安康·一模)已知点(),P a b 为直线7y x =-与双曲线5y x =-的交点,则11b a-的值等于_________.19.(2022·陕西·西安铁一中分校一模)若一个反比例函数的图象与直线26y x =-的一个交点为(),2A m m -,则这个反比例函数的表达式是______.20.(2022·四川成都·二模)二次函数y =x 2-2x +4的图像与x 轴有__________ 个交点.21.(2022·河南安阳·一模)已知反比例函数22022k y x +=的图象分布在第二、四象限,则k 的取值范围是______.22.(2022·陕西渭南·一模)用总长为80米的篱笆围成一个面积为S 平方米的矩形场地,设矩形场地的一边长为x 米,则当x =______米时,矩形场地的面积S 最大.23.(2022·山东菏泽·一模)抛物线2y ax bx c =++经过点()2,0A 、()4,0B 两点,则关于x 的一元二次方程20ax bx c ++=的解是______.24.(2022·北京朝阳·模拟预测)将直线y =2x 向下平移3个单位长度后,得到的直线经过点(m +2,﹣5),则m 的值为 _____.25.(2022·湖北随州·一模)把抛物线y =﹣2x 2先向右平移3个单位长度,再向上平移2个单位长度后,所得函数的表达式为 _____.26.(2022·陕西宝鸡·模拟预测)如图,过y 轴正半轴上任意一点P ,作x 轴的平行线,分别与反比例函数y =k x 与y =2x的图象交于点A ,B ,若C 为x 轴上任意一点,连接AC ,BC ,若S △ABC =4,则k 的值为____.27.(2022·安徽·合肥寿春中学一模)如图,菱形OABC 的边长为4,且点A 、B 、C 在⊙O 上,则劣弧BC 的长度为_____.28.(2022·江苏·常州市武进区前黄实验学校一模)如图,直线CD 与O 相切于点C ,AB AC =且//CD AB ,则cos A ∠=______.29.(2022·江苏·常州市武进区前黄实验学校一模)用圆心角为150︒,半径为3cm 的扇形作圆锥的侧面,则这个圆锥的底面半径为____cm .30.(2022·河南·柘城县实验中学一模)如图,在扇形ABC 中,60,2ABC BA ∠=︒=,点D 为弧AC 的中点,过点D 作DE AB ∥交BC 于点E ,则阴影部分的面积为_________.31.(2022·湖北孝感·一模)如图,a b ∥,160∠=︒,则2∠=______.32.(2022·安徽·模拟预测)如图,在菱形ABCD 中,∠A =60°,如果菱形边长为2a ,那么菱形的面积是______.33.(2021·山东济南·一模)若多边形的内角和是外角和的2倍,则该多边形是_____边形.34.(2021·江苏省锡山高级中学实验学校三模)一个多边的内角和为720︒,则这个多边形的边数为_________. 35.(2022·江苏·南通市海门区东洲国际学校一模)在平面直角坐标系中,以原点为中心,把点A (3,﹣5)逆时针旋转180°,得到的点B 的坐标为 _________.36.(2022·江苏·无锡市天一实验学校一模)一个斜坡的坡角为30,则这个斜坡的坡度为__________,沿着斜坡前进50米则上升了________米.37.(2022·山西吕梁·一模)在平面直角坐标系中,∠ABC 和∠DEF 是以原点O 为位似中心的位似图形,其位似比为1:3,那么点A (1,3)的对应点D 的坐标为_______.38.(2022·江苏宿迁·一模)在锐角ABC 中,8AB =,60B ∠=︒,7AC =,C α∠=,则cos α=___________.39.(2022·山东滨州·一模)计算:101()2sin302-+-︒=_____.40.(2022·广东·珠海市第十一中学一模)在⊙ABC 中,22cos 1tan 0A B +-=(,则⊙ABC 的形状是___________.41.(2022·陕西·模拟预测)如图,在菱形ABCD 中,DE AB ⊥于点E ,3cos 5A =,6AE =,则AB 的长为______.42.(2022·广东佛山·一模)如图,小树AB 在路灯O 的照射下形成树影BC . 若树高AB =2m ,树影BC =3m ,树与路灯的水平距离BP =5m ,则路灯的高度OP 为 _____m .43.(2022·四川攀枝花·模拟预测)若(3﹣2x ):2=(3+2x ):5,则x =_____.44.(2022·广东·模拟预测)若34yx=,则x yy+的值为_____.45.(2022·山东聊城·一模)从标有数字1,2,3,4,5的五张卡片中,无放回地随机抽取两张,将抽取的卡片上的数字组成一个两位数,所组成的两位数的数字中为偶数的概率为______.46.(2022·浙江金华·一模)已知一组数据5,4,x,3,9众数为3,则这组数据的中位数是______.47.(2022·陕西西安·一模)若数列7、9、11、a、13的平均数为10.5,则a的值为______.48.(2022·广西·3.14,0,12中,无理数出现的频率为________49.(2022·河南驻马店·一模)一个不透明的袋子里装着2个红球,3个白球,它们除了颜色不同以外,其他完全相同.若从袋子里随机摸出一个球,不放回,再从袋子里摸出一个球,两次摸到的球恰好颜色相同的概率为______.50.(2022·浙江温州·一模)若2022年杭州亚运会志愿者招聘分笔试和面试,成绩分别占总分的40%和60%,小明的笔试和面试成绩如表所示,则小明的总分为_______分.小明的笔方和面试成绩统计表。
一、填空题1.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)2.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量100 200 500 1000 2000 A出芽种子数 96 165 491 984 1965 发芽率 0.96 0.83 0.98 0.98 0.98 B出芽种子数 96 192 486 977 1946 发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样; ②随着实验种子数量的增加,A 种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98;③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号). 3.使分式x 2−1x+1的值为0,这时x=_____.4.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______ 5.当m =____________时,解分式方程533x mx x-=--会出现增根. 6.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 . 7.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____. 8.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。