2014—2015学年高三数学专题练习及答案 :直线与圆锥曲线(6)
- 格式:doc
- 大小:110.50 KB
- 文档页数:7
高考数学试题汇编---圆锥曲线1. 【2014高考安徽卷文第3题】抛物线241x y =的准线方程是( )A. 1-=yB. 2-=yC. 1-=xD. 2-=x2. 【2014高考全国1卷文第4题】已知双曲线)0(13222>=-a y a x 的离心率为2,则=a ( ) A. 2 B.26 C. 25D. 1 3. 【2014高考大纲卷文第9题】已知椭圆C :22221(0)x y a b a b+=>>的左右焦点为F 1,F 2离心率为33,过F 2的直线l 交C 与A,B 两点,若△AF 1B 的周长为43,则C 的方程为( ) A.22132x y += B. 2213x y += C. 221128x y += D. 221124x y+= 4. 【2014高考大纲卷文第11题】双曲线C:22221(0,0)x y a b a b-=>>的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于( )A. 2B. 22C.4D.425. 【2014高考天津卷卷文第6题】已知双曲线)0,0(12222>>=-b a b y a x 的一条渐近线平行于直线,102:+=x y l 双曲线的一个焦点在直线l 上,则双曲线的方程为( )A .120522=-y x B.152022=-y x C.1100325322=-y x D.1253100322=-y x 6. 【2014高考广东卷文第8题】若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( )A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等7. 【2014高考江西卷文第9题】过双曲线12222=-by a x C :的右顶点作x 轴的垂线与C 的一条渐近线相交于A .若以C 的右焦点为圆心、半径为4的圆经过为坐标原点),两点(、O O A 则双曲线C 的方程为( )A.112422=-y x B.19722=-y x C.18822=-y x D.141222=-y x 8. 【2014高考辽宁卷文第8题】已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( ) A .43-B .1-C .34-D .12- 9. 【2014高考全国2卷文第10题】设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =( )(A )303(B )6 (C )12 (D )73 10. 【2014高考湖北卷文第8题】设a 、b 是关于t 的方程0sin cos 2=+θθt t 的两个不等实根,则过),(2a a A ,),(2b b B 两点的直线与双曲线1sin cos 2222=-θθy x 的公共点的个数为( ) A. 0 B. 1 C. 2 D. 311. 【2014高考重庆卷文第8题】设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P 使得2212(||||)3,PF PF b ab -=-则该双曲线的离心率为( )2 B.15 C.4 D.1712. 【2014高考四川卷文第10题】已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( ) A .2 B .3 C .1728D .101.【2014高考陕西卷文第11题】抛物线24y x =的准线方程为________.2. 【2014高考四川卷文第11题】双曲线2214x y -=的离心率等于____________. 3. 【2014高考上海卷文第4题】若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________.4. 【2014高考北京卷文第10题】设双曲线C 的两个焦点为()2,0-,()2,0,一个顶点为()1,0,则C 的方程为 .5. 【2014高考浙江卷文第17题】设直线)0(03≠=+-m m y x 与双曲线)0,0(12222>>=-b a by a x 的两条渐近线分别交于A 、B ,若)0,(m P 满足||||PB PA =,则双曲线的离心率是 .6. 【2014高考江西卷文第14题】设椭圆()01:2222>>=+b a b y a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于 B A ,两点,B F 1与y 轴交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.7. 【2014高考辽宁卷文第15题】已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .8. 【2014高考湖南卷文第14题】平面上以机器人在行进中始终保持与点()01,F 的距离和到直线1-=x 的距离相等.若机器人接触不到过点()01,-P 且斜率为k 的直线,则k 的取值范围是___________.23. 【2014高考安徽卷文第21题】设1F ,2F 分别是椭圆E :22221(0)x ya b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF = (1) 若2||4,AB ABF =∆的周长为16,求2||AF ; (2) 若23cos 5AF B ∠=,求椭圆E 的离心率.24. 【2014高考北京卷文第19题】已知椭圆C :2224x y +=. (1) 求椭圆C 的离心率;(2)设O 为原点,若点A 在直线2y =,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值.25. 【2014高考大纲卷文第22题】已知抛物线C:22(0)y px p =>的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线l '与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.26. 【2014高考福建卷文第21题】已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2.(1)求曲线Γ的方程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A .直线3y =分别与直线l 及y 轴交于点,M N ,以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B ,试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.27. 【2014高考广东卷文第20题】已知椭圆()2222:10x yC a b a b+=>>的一个焦点为()5,0,离心率为53. (1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.28. 【2014高考湖北卷文第22题】在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C . (1)求轨迹为C 的方程(2)设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围.29. 【2014高考湖南卷文第20题】如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形.(1)求12,C C 的方程;(2)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.30. 【2014高考江苏第17题】如图在平面直角坐标系xoy 中,12,F F 分别是椭圆22221(0)x y a b a b +=>>的左右焦点,顶点B 的坐标是(0,)b ,连接2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接1F C .(1)若点C 的坐标为41(,)33,且22BF =,求椭圆的方程; (2)若1F C AB ⊥,求椭圆离心率e 的值.31. 【2014高考江西文第20题】,已知抛物线2:4C xy =,过点(0,2)M 任作一直线与C 相交于,A B两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点). (1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线2y=相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221||||MN MN -为定值,并求此定值.32. 【2014高考辽宁文第20题】圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图). (Ⅰ)求点P 的坐标;(Ⅱ)焦点在x 轴上的椭圆C 过点P ,且与直线:+3l y x =交于A ,B 两点,若PAB ∆的面积为2,求C 的标准方程.xyOP33. 【2014高考全国2文第20题】设12,F F 分别是椭圆22221(0)x y a b a b +=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .34. 【2014高考山东文第21题】在平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b+=>>的离心率为32,直线y x =被椭圆C 截得的线段长为4105.(Ⅰ)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于,A B 两点(,A B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于,M N 两点.(i )设直线,BD AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ii )求CMN ∆面积的最大值.35. 【2014高考陕西文第20题】已知椭圆22221(0)x y a b a b+=>>经过点(0,3),离心率为12,左右焦点分别为12(,0),(,0)F c F c -. (1)求椭圆的方程; (2)若直线1:2l y x m =-+与椭圆交于,A B 两点,与以12F F 为直径的圆交于,C D 两点,且满足||53||4AB CD =,求直线l 的方程.36. 【2014高考上海文第22题】在平面直角坐标系xoy 中,对于直线l :0ax by c ++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点21P P ,被直线l 分隔,则称直线l 为曲线C 的一条分隔线.⑴ 求证:点),(),(012,1-B A 被直线01=-+y x 分隔; ⑵若直线kx y =是曲线1422=-y x 的分隔线,求实数k 的取值范围;⑶动点M 到点)(2,0Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明y 轴为曲线E 的分割线.37. 【2014高考四川文第20题】已知椭圆C :22221x y a b+=(0a b >>)的左焦点为(2,0)F -,离心率为63. (1)求椭圆C 的标准方程;(2)设O 为坐标原点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q.当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积.38. 【2014高考天津文第18题】设椭圆的左、右焦点分别为,,右顶点为A ,上顶点为B.已知=.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点,经过点的直线与该圆相切与点M ,=.求椭圆的方程.39. 【2014高考浙江文第22题】已知ABP ∆的三个顶点在抛物线C :24x y =上,F 为抛物线C 的焦点,点M 为AB 的中点,3PF FM =;(1)若||3PF =,求点M 的坐标; (2)求ABP ∆面积的最大值.40. 【2014高考重庆文第21题】如题(21)图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||22||F F DF =,12DF F ∆的面积为22. (Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.答案与解析:一、选择题:1-5:ADACA 6-10:DACCA 11-12:DB 二、填空题:1、1-=x2、25 3、2-=x 4、122=-y x 5、25 6、337、12 8、()()∞+⋃∞,,11-- 三、解答题:23. 【2014高考安徽卷文第21题】设1F ,2F 分别是椭圆E :22221(0)x ya b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF = (3) 若2||4,AB ABF =∆的周长为16,求2||AF ;(4) 若23cos 5AF B ∠=,求椭圆E 的离心率. 【答案】(1)5;(2)22. 【解析】试题分析:(1)由题意11||3||,||4AF F B AB ==可以求得11||3,||1AF F B ==,而2ABF ∆的周长为16,再由椭圆定义可得12416,||||28a AF AF a =+==.故21||2||835AF a AF =-=-=.(2)设出1||F B k =,则0k>且1||3,||4AF k AB k ==.根据椭圆定义以及余弦定理可以表示出,a k 的PBA M Fyx关系()(3)a k a k +-=,从而3a k =,212||3||,||5AF k AF BF k ===,则2222||||||BF F A AB =+,24. 【2014高考北京卷文第19题】已知椭圆C :2224x y +=. (2) 求椭圆C 的离心率;(2)设O 为原点,若点A 在直线2y =,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值.25. 【2014高考大纲卷文第22题】已知抛物线C:22(0)y px p =>的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线l '与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.26. 【2014高考福建卷文第21题】已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2.(2)求曲线Γ的方程;(3)曲线Γ在点P 处的切线l 与x 轴交于点A .直线3y =分别与直线l 及y 轴交于点,M N ,以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B ,试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.由弦长,半径及圆心到直线的距离之关系,确定||6AB =.试题解析:解法一:(1)设(,)S x y 为曲线Γ上任意一点,依题意,点S 到(0,1)F 的距离与它到直线1y =-的距离相等, 所以曲线Γ是以点(0,1)F 为焦点,直线1y =-为准线的抛物线, 所以曲线Γ的方程为24x y =.(2)当点P 在曲线Γ上运动时,线段AB 的长度不变,证明如下:解法二:(1)设(,)S x y 为曲线Γ上任意一点,则22|(3)|(0)(1)2y x y --=-+-=,依题意,点(,)S x y 只能在直线3y =-的上方,所以3y >-, 所以22(0)(1)1x y y -+-=+, 化简得,曲线Γ的方程为24x y =. (2)同解法一.考点:抛物线的定义,导数的几何意义,直线方程,直线与抛物线的位置关系,直线与圆的位置关系.27. 【2014高考广东卷文第20题】已知椭圆()2222:10x y C a b a b+=>>的一个焦点为()5,0,离心率为53. (1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【考点定位】本题以椭圆为载体,考查直线与圆锥曲线的位置关系以及动点的轨迹方程,将直线与二次曲线的公共点的个数利用∆的符号来进行转化,计算量较大,从中也涉及了方程思想的灵活应用,属于难题.28. 【2014高考湖北卷文第22题】在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C . (1)求轨迹为C 的方程(2)设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围. 【答案】(1)⎩⎨⎧<≥=)0(,)0(42x o x x y ;(2)当),21()1,(+∞--∞∈ k 时直线l 与轨迹C 恰有一个公共点; 当)0,21[}21,1{--∈ k 时,故此时直线l 与轨迹C 恰有两个公共点;当)21,0()211( -∈k 时,故此时直线l 与轨迹C 恰有三个公共点.所以此时直线l 与轨迹C 恰有一个公共点)1,41(.当0≠k 时,方程①的判别式为)12(162-+-=∆k k ②设直线l 与x 轴的交点为)0,(0x ,则由)2(1+=-x k y ,令0=y ,得kk x 120+=③ (i )若⎩⎨⎧<<∆000x ,由②③解得1-<k 或21>k .即当),21()1,(+∞--∞∈ k 时,直线l 与1C 没有公共点,与2C 有一个公共点, 故此时直线l 与轨迹C 恰有一个公共点. (ii )若⎩⎨⎧<=∆000x 或⎩⎨⎧≥>∆000x ,由②③解得}21,1{-∈k 或021<≤-k ,29. 【2014高考湖南卷文第20题】如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (1)求12,C C 的方程;(2)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.【考点定位】椭圆双曲线向量向量内积30. 【2014高考江苏第17题】如图在平面直角坐标系xoy 中,12,F F 分别是椭圆22221(0)x y a b a b +=>>的左右焦点,顶点B 的坐标是(0,)b ,连接2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接1F C .(1)若点C 的坐标为41(,)33,且22BF =,求椭圆的方程; (2)若1F C AB ⊥,求椭圆离心率e 的值.由1F C AB ⊥得323()13b b a c c c ⋅-=-+,即42243b a c c =+,∴222224()3a c a c c -=+,化简得55c e a ==. 【考点】椭圆标准方程,椭圆离心率,直线与直线的位置关系. 31. 【2014高考江西文第20题】,已知抛物线2:4C xy =,过点(0,2)M 任作一直线与C 相交于,A B两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(2)证明:动点D 在定直线上;(3)作C 的任意一条切线l (不含x 轴)与直线2y =相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221||||MN MN -为定值,并求此定值.32. 【2014高考辽宁文第20题】圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图). (Ⅰ)求点P 的坐标;(Ⅱ)焦点在x 轴上的椭圆C 过点P ,且与直线:+3l y x =交于A ,B 两点,若PAB ∆的面积为2,求C 的标准方程.xyOP【答案】(Ⅰ)(2,2);(Ⅱ)22163x y += 【解析】试题分析:(Ⅰ)首先设切点P 00(x ,y )00(x 0,,y 0)>>,由圆的切线的性质,根据半径OP 的斜率可求切线斜率,进而可表示切线方程为004x x y y +=,建立目标函数000014482S x y x y =⋅⋅=.故要求面积最小值,26a =.从而所求C 的方程为22163x y +=. 【考点定位】1、直线方程;2、椭圆的标准方程;3、弦长公式和点到直线的距离公式.33. 【2014高考全国2文第20题】设12,F F 分别是椭圆22221(0)x y a b a b +=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .【答案】(Ⅰ)12;(Ⅱ)7,27a b == 【解析】34. 【2014高考山东文第21题】在平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b+=>>的离心率为32,直线y x =被椭圆C 截得的线段长为4105.(Ⅰ)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于,A B 两点(,A B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于,M N 两点.(i )设直线,BD AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ii )求CMN ∆面积的最大值.由2214y kx m x y =+⎧⎪⎨+=⎪⎩,可得222(14)8440k x mkx m +++-=. 所以122814mkx x k +=-+,因此121222()214my y k x x m k+=++=+, 由题意知,12x x ≠所以1211121144y y y k x x k x +==-=+,35. 【2014高考陕西文第20题】已知椭圆22221(0)x y a b a b+=>>经过点(0,3),离心率为12,左右焦点分别为12(,0),(,0)F c F c -. (2)求椭圆的方程;(3)若直线1:2l y x m =-+与椭圆交于,A B 两点,与以12F F 为直径的圆交于,C D 两点,且满足||53||4AB CD =,求直线l 的方程.试题解析:(1)由题意可得312222bcaa b c⎧=⎪⎪=⎨⎪⎪=+⎩解得2,3,1a b c===∴直线l 的方程为1323y x =-+或1323y x =--考点:椭圆的标准方程;直线与圆锥曲线的综合问题.36. 【2014高考上海文第22题】在平面直角坐标系xoy 中,对于直线l :0ax by c ++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点21P P ,被直线l 分隔,则称直线l 为曲线C 的一条分隔线.⑴ 求证:点),(),(012,1-B A 被直线01=-+y x 分隔; ⑵若直线kx y =是曲线1422=-y x 的分隔线,求实数k 的取值范围;⑶动点M 到点)(2,0Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明y 轴为曲线E 的分割线.37. 【2014高考四川文第20题】已知椭圆C :22221x y a b+=(0a b >>)的左焦点为(2,0)F -,离心率为63. (1)求椭圆C 的标准方程;(2)设O 为坐标原点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q.当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积.当0m =时,直线PQ 的方程是2x =-,也符合2x my =-的形式. 将2x my =-代入椭圆方程得:22(3)420m y my +--=. 其判别式22168(3)0m m ∆=++>. 设1122(,),(,)P x y Q x y , 则121212122224212,,()4333m y y y y x x m y y m m m --+==+=+-=+++. 因为四边形OPTQ 是平行四边形,所以OP QT =,即1122(,)(3,)x y x m y =---.所以122122123343x x m m y y m m -⎧+==-⎪⎪+⎨⎪+==⎪+⎩,解得1m =±. 此时四边形OPTQ 的面积2122214222||||2()423233OPTQ OPQ m S S OF y y m m -==⨯⋅-=-=++.【考点定位】1、直线及椭圆的方程;2、直线与圆锥曲线的位置关系;3、三角形的面积. 38.【2014高考天津文第18题】设椭圆的左、右焦点分别为,,右顶点为A ,上顶点为B.已知=.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点,经过点的直线与该圆相切与点M ,=.求椭圆的方程.39. 【2014高考浙江文第22题】已知ABP ∆的三个顶点在抛物线C :24x y =上,F 为抛物线C 的焦点,点M 为AB 的中点,3PF FM =; (1)若||3PF =,求点M 的坐标;(2)求ABP ∆面积的最大值.【答案】(1))32,322(-M 或)32,322(M ;(2)1355256. 【解析】PBA M Fyx40. 【2014高考重庆文第21题】如题(21)图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||22||F F DF =,12DF F ∆的面积为22. (Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.由(Ⅰ)知()()121,0,1,0F F -,所以()()111122111,,1,F P x y F P x y =+=--,再由11F P ⊥22F P 得()221110x y -++=,由椭圆方程得()2211112x x -=+,即211340x x +=,解得143x =-或10x =.当10x =时,12,P P 重合,此时题设要求的圆不存在. 当143x =-时,过12,P P 分别与11F P ,22F P 垂直的直线的交点即为圆心C ,设()00,C y20. 【2014高考浙江文第22题】已知ABP ∆的三个顶点在抛物线C :24x y =上,F 为抛物线C 的焦点,点M 为AB 的中点,3PF FM =; (1)若||3PF =,求点M 的坐标; (2)求ABP ∆面积的最大值.21.【2013浙江文22】已知抛物线C 的顶点为O (0,0),焦点F (0,1) (Ⅰ)求抛物线C 的方程;(Ⅱ) 过点F 作直线交抛物线C 于A 、B 两点.若直线AO 、BO 分别交直线l :y=x-2于M 、N 两点,求|MN|的最小值.PBA M Fyx。
高三复习直线与圆锥曲线的位置关系检测及答案一.选择题(1)与直线2x-y+4=0平行的抛物线y= x 2的切线方程是 ( )A 2x -y+3=0B 2x -y -3=0C 2x-y+1=0D 2x-y-1=0(2) 已知x 、y ∈R, 集合A={(x, y)| x 2-y 2=1}, B={(x, y)| y=t(x+2)+2},若A ∩B 是单元素集合, 则t 值的个数是 ( )A 0B 1C 2D 3(3) 设双曲线12222=-by a x (0<a<b)的半焦距c, 直线l 过(a, 0), (0, b)两点. 已知原点到直线l的距离为43c, 则双曲线的离心率为( )A 2 B3 C 2 D332 (4) 已知抛物线y=2x 2上两点A(x 1,y 1), B(x 2,y 2)关于直线y=x+m 对称, 且x 1x 2=-21, 那么m 的值等于 ( )A25 B 23C 2D 3 (5)过双曲线2x 2-y2-8x+6=0的由焦点作直线l 交双曲线于A 、B 两点, 若|AB|=4, 则这样的直线有 ( )A 4条B 3条C 2条D 1条(6) 对于抛物线y 2=2x 上任意一点Q, 点P(a, 0)都满足|PQ|≥|a |, 则a 的取值范围是( )A [0, 1]B (0, 1)C (]1,∞- D (-∞, 0) (7) 直线l 交椭圆4x 2+5y 2=80于M 、N 两点, 椭圆与y 轴交于B 点, 若△BMN 的重心恰好落在椭圆的右焦点上, 则直线l 的方程是 ( )A 5x+6y-28=0B 5x+6y-28=0C 6x+5y-28=0D 6x-5y-28=0(8) 过椭圆的左焦点F 且倾斜角为60°的直线交椭圆于A 、B 两点, 若|FA|=2|FB| 则椭圆的离心率是 ( )A23 B 22 C 32 D 21 (9) 已知F 1, F 2是双曲线的两个焦点, Q 是双曲线上任意一点, 从某一焦点引∠F 1QF 2平分线的垂线, 垂足为P, 则点P 的轨迹是 ( )A 直线B 圆C 椭圆D 双曲线(10) 对于抛物线C: y 2=4x, 我们称满足y 02<4x 0的点M(x 0, y 0)在抛物线的内部, 若点M(x 0, y 0)在抛物线的内部, 则直线l : y 0y=2(x+ x 0)与 C ( )A 恰有一个公共点B 恰有二个公共点C 有一个公共点也可能有二个公共点D 没有公共点二.填空题(11)圆x 2+2x+y 2+4y-3=0上到直线x+y+1=0的距离为2的点共有 个. (12)对任意实数k,直线y=kx+b 与椭圆⎩⎨⎧++,sin 41,cos 23θθ(0≤θ≤2π)恒有公共点,则b 的取值范围是 .(13)已知F 1、F 2是椭圆42x +y 2=1的两个焦点, P 是该椭圆上的一个动点, 则|PF 1|·|PF 2|的最大值是 .(14) 定长为l (l >ab 22)的线段AB 的端点在双曲线b 2x 2-a 2y 2=a 2b 2的右支上, 则AB 中点M 的横坐标的最小值为 . 三.解答题(15) 如图,过抛物线y 2=2px (p>0) 上一定点P(x 0, y 0) (y 0>0),作两条直线分别交抛物线于A(x 1,y 1),B(x 2,y 2).(I )求该抛物线上纵坐标为2P的点到其焦点F 的距离; (II )当PA 与PB 的斜率存在且倾斜角互补时,求021y y y +的值,并证明直线AB 的斜率是非零常数。
第7课时直线与圆锥曲线1.直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点.(2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一元二次方程解的情况来判断.设直线l的方程为Ax+By+C=0,圆锥曲线方程f(x,y)=0.由消元,如消去y后得ax2+bx+c=0.①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行(或重合).②若a≠0,设Δ=b2-4ac.a.Δ0时,直线与圆锥曲线相交于不同两点;b.Δ0时,直线与圆锥曲线相切于一点;c.Δ0时,直线与圆锥曲线没有公共点.2.直线与圆锥曲线相交时的弦长问题(1)斜率为k(k不为0)的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|= 或|P1P2|= .(2)当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式).(3)求经过圆锥曲线的焦点的弦的长度,应用圆锥曲线的定义,转化为两个焦半径之和,往往比用弦长公式简捷.3.圆锥曲线的中点弦问题直线与椭圆和双曲线相交时,必有两个公共点;直线与抛物线相交时,则可能出现两种情况:一是有两个公共点;二是直线与抛物线的对称轴平行时,虽然是相交,但此时却只有一个公共点.考向一直线与圆锥曲线的位置关系【审题视点】本题考查求直线与圆锥曲线是否有交点.【方法总结】求直线与圆锥曲线的交点时,注意用一元二次方程的判别式、根与系数的关系来解决.在解题时,应注意讨论二次项系数为0和不为0的两种情况.考向二圆锥曲线中的相交弦问题【审题视点】本题考查直线与圆锥曲线的相交问题.【方法总结】1.当直线与圆锥曲线相交时,涉及的问题有弦长问题、弦的中点等问题,解决办法是把直线方程与圆锥曲线方程联立,消元后得到关于x(或y)的一元二次方程,设而不求,利用根与系数的关系解决问题.2.要灵活应用弦长公式和点差法.考向三圆锥曲线中的定值或定点问题例3(2013·安徽模拟)已知抛物线P的方程是x2=4y,过直线l:y=-1上任意一点A作抛物线的切线,设切点分别为B、C.证明:(1)△ABC是直角三角形;(2)直线BC过定点,并求出定点坐标.【审题视点】本题考查圆锥曲线中的定点问题.【方法总结】1.求定值问题常见的方法有两种(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y=kx+b,然后利用条件建立b,k等量关系进行消元,借助于直线系的思想找出定点.(2)从特殊情况入手,先探求定点,再证明与变量无关.考向四圆锥曲线中的最值或范围问题【审题视点】本题考查圆锥曲线中的最值问题.【方法总结】圆锥曲线中常见最值问题及解题方法(1)圆锥曲线中的最值问题大致可分为两类:①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.(2)求最值常见的解法有两种:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值.提醒:求最值问题时,一定要注意特殊情况的讨论,如直线斜率不存在的情况,二次三项式最高次项的系数的讨论等.参考答案与解析。
心尺引州丑巴孔市中潭学校 直线与圆锥曲线【例题精选】: 例 1 直线y ax b a x y =+≠+=()0122与圆〔1〕 问a,b 满足什么条件,直线与圆有两个公共点?〔2〕 设这两个公共点为M 、N ,且OM 、ON 〔O 为原点〕与x 轴正方向所成角为αβα、,求证:cos(+β)=-+a a 2211分析:第〔1〕问是求直线与圆什么时候有两个公共点,因直线与圆有两个公共点的充要条件是圆心到直线的距离小于圆的半径,或者直线方程与圆的方程联立的方程组有两个实数解,这里我们用后面的条件求解。
第〔2〕问〔如图〕中角αβ、可以看成是OM 、ON 的倾斜角,直接找αβ+较麻烦,但是由圆的性质,取MN 中点P ,连结OP ,可以知道Lxop =+αβ2,只需求出OP 的斜率,也就可以得到tgαβ+2的值,再根据三角公式,就可以计算出cos()αβ+与a 的关系了。
解 : (1) 由方程组y ax b x y y =++=221消去得,(2)、如图,取MN 中点P , 连结OP ,那么<2βα+=xop例 2椭圆中心为原点O, 焦在坐标轴上,y=x+1与该椭圆相交于Q p 、,434=PQ ,求椭圆方程。
分析: 这个问题中椭圆的焦点在x 轴上还是在y 轴上没有给定,因此在设此椭圆方程时,可以设为Ax By 221+=, 又这个问题中涉及弦PQ 的长,因为P 、Q 在直线 y x =+1上,因此坐标满足方程y x =+1, 所以假设P 、Q 坐标分别为〔x, y), (x 2, y 2) 的话,可推得PQ x x =+-1112,〔我们称它为弦长公式,一般地为1212+-k x x ).由OP ⊥OQ 我们一方面可以知道OP 与OQ 的斜率乘积为-1(斜率存在的情况下),一方面也可以知道PQ中点到原点O 的距离等于PQ 的一半,因此此题可以得到以下两种一般解法.解法一: 设椭圆方程为Ax By A B 22100+=>>(,)设P (),(,),x y Q x y 1122由Ax By y x y A B x Bx B 22211210+==+⎧⎨⎩+++-=消去得,()解法二: 同解法一, 得()A B x Bx B +++-=2210,以下同解法一.例 3 求过点A(3,-1)被A 平分的双曲线x y 2244-=的弦所在直线的方程.解法一: 设过A 点的直线方程为y k x +=-13()代入x y 2244-=消去y , 得解法二 : 设直线与双曲线的两交点坐标分别为p x y Q x y (,),(,)1122那么⎪⎩⎪⎨⎧=-=-444422222121y x y x 两式相减, 得 ()()()()x x x x y y y y 1212121240-+--+=说明: 此题解法二过程简单, 在解题中是一种常用的方法,但是此法实际上是在成认了直线与双曲线存在两个交点的情况下去求解的,题中点A 坐标假设改成'''A A (,)或(,),213212用此法可以得出相应的斜率'=''=-=--=K K x y x y 1234206850或,从而得出直线或它们与双曲线都是设有交点的,因此也是不合题意的。
1.(交汇新)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,以原点为圆心,以椭圆的短半轴为半径的圆与直线x -y +6=0相切,直线l :x =my +4与椭圆C 相交于A ,B 两点.(1)求椭圆C 的方程;(2)求OA →·OB →的取值范围.2.(背景新)已知椭圆方程为x2a2+y2b2=1(a>b>0),它的一个顶点为M(0,1),离心率e=6 3.(1)求椭圆方程;(2)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=3.求证:直线AB过定点,并求出直线AB的斜率k的取值范围.[历 炼]1.解析:(1)∵ 椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为 12,∴ a 2=43b 2.∵ 以椭圆的短半轴为半径的圆与直线x -y +6=0相切,∴ b =3,∴ a 2=4,b 2=3.∴ 椭圆的方程为x 24+y 23=1.(2)设A(x 1,y 1),B(x 2,y 2),将l :x =my +4代入椭圆C ,得(3m 2+4)y 2+24my +36=0,∴ OA →·OB →=x 1x 2+y 1y 2=(m 2+1)y 1y 2+4m(y 1+y 2)+16=-12m 2+1003m 2+4=-4+1163m 2+4. ∵ 由Δ>0知m 2>4,∴ 3m 2+4>16,∴ OA →·OB →∈⎝ ⎛⎭⎪⎫-4,134. ∴ OA →·OB →的取值范围是⎝ ⎛⎭⎪⎫-4,134. 2.解析:(1)依题意,得⎩⎪⎨⎪⎧ b =1,a 2-b 2a =63,解得⎩⎪⎨⎪⎧a =3,b =1, ∴ 椭圆方程为x 23+y 2=1.(2)证明:显然直线AB 的斜率存在,设直线AB 的方程为y =kx +t ,代入椭圆方程,得(3k 2+1)x 2+6ktx +3(t 2-1)=0,设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=-6kt 3k 2+1,x 1x 2=3(t 2-1)3k 2+1, 由k 1+k 2=3,得y 1-1x 1+y 2-1x 2=3,① 又y 1=kx 1+t ,y 2=kx 2+t ,②由①②,得2k +(t -1)·2kt 1-t2=3, 化简,得t =2k -33.则直线AB 的方程为y =kx +2k -33=k ⎝ ⎛⎭⎪⎫x +23-1,∴ 直线AB 过定点⎝ ⎛⎭⎪⎫-23,-1. 又由于直线AB 和椭圆有两个不同的交点,则Δ=36k 2t 2-12(3k 2+1)(t 2-1)>0,又t =2k -33, 解得直线AB 的斜率k 的取值范围是⎝⎛⎭⎪⎫-∞,-1223∪()0,+∞.。
直线与圆锥曲线的位置关系【知识网络】1.直线与圆锥曲线之间的位置关系及其判定方法. 2.一元二次方程根的判别式及韦达定理的应用. 3.中点问题,弦长问题的求解. 4.进一步应用数形结合思想. 【典型例题】[例1](1)过点(2,4)作直线与抛物线x y 82=有且只有一个公共点,这样的直线有( )A.一条 B.两条 C.三条 D.四条(2)直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,则m 的取值范围是( ) A.[)()+∞,55,1 B.(0,5) C.[)+∞,1 D.(1,5)(3)以圆锥曲线过焦点的弦为直径的圆与对应的准线无交点,则此圆锥曲线是( ) A 不能确定 B 椭圆 C 双曲线 D 抛物线(4)斜率为2的直线与圆锥曲线交于),(),,(2211y x B y x A 两点,若弦长52=AB ,则=-21y y .(5)双曲线122=-y x 的左焦点为F,点P为左支下半支上的动点(异于顶点),则直线PF的斜率的范围是 .[例2] 在椭圆141622=+y x 内,求通过点M(1,1)且被这点平分的弦AB所在直线的方程.[例3] 中心在坐标原点,焦点在x 轴上的椭圆,它的离心率为23,与直线x+y -1=0相交于两点M、N,且OM⊥ON.求椭圆的方程.[例4] 如图,在△ABC 中,∠C =90°,BC =2AC ,A 、B 、C 都是椭圆上的点,其中A 是椭圆的左顶点,直线BC 经过椭圆中心(即原点O ).(1)求证:无论 AC 的长取何正实数,椭圆的离心率恒为定值,并求出该 定值; (2)若PQ 是椭圆的一条弦,PQ ∥AB ,求证∠PCQ 的平分线垂直于AO .【课内练习】1.平面内有一线段AB,其长为33,动点P满足3=-PB PA ,O为AB的中点,则OP的最小值为 ( ) A.23B.1 C.2 D.3 2.已知方程0,,0(022>≠≠=++=+c b a ab c by ax ab by ax 其中和,它们所表示的曲线可能是 ( )A B C D3.设A 为双曲线191622=-y x 右支上一点,F 为该双曲线的右焦点,连AF 交双曲线于B ,过B 作直线BC 垂直于双曲线的右准线,垂足为C ,则直线AC 必过定点( )A .(0,1041) B .(0,518) C .(4,0) D .(0,522)4.若直线1-=kx y 与椭圆1422=+ay x 有且只有一公共点,那么 ( ) A.(]⎪⎭⎫ ⎝⎛-∈∈21,21,1,0k a B.()⎪⎭⎫ ⎝⎛-∈∈21,21,1,0k a C.(]⎥⎦⎤⎢⎣⎡-∈∈21,21,1,0k a D.()⎥⎦⎤⎢⎣⎡-∈∈21,21,1,0k a 5.过原点的直线l ,如果它与双曲线14322=-x y 相交,则直线l 的斜率k 的取值范围是 .6.直线y=x -3与抛物线y 2=4x 交于A ,B 两点,过A ,B 两点向抛物线的准线作垂线,垂足分别为P ,Q ,则梯形APQB 的面积是 .7.若曲线y 2=|x |+1与直线y=kx +b 没有公共点,则k,b 应满足的条件是 .8.已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y=e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB . (1)证明:λ=1-e 2; (2)若43=λ,△PF 1F 2的周长为6;写出椭圆C 的方程. .9.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(。
理数圆锥曲线1. (2014大纲全国,9,5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上.若|F1A|=2|F2A|,则cos∠AF2F1=()A. B. C. D.[答案] 1.A[解析] 1.由题意得解得|F2A|=2a,|F1A|=4a,又由已知可得=2,所以c=2a,即|F1F2|=4a,∴cos∠AF2F1===.故选A.2. (2014大纲全国,6,5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点.若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1[答案] 2.A[解析] 2.由题意及椭圆的定义知4a=4,则a=,又==,∴c=1,∴b2=2,∴C的方程为+=1,选A.3. (2014重庆,8,5分)设F1、F2分别为双曲线-=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|·|PF2|=ab,则该双曲线的离心率为()A. B. C. D.3[答案] 3.B[解析] 3.设|PF1|=m,|PF2|=n,依题意不妨设m>n>0,于是∴m·n=··⇒m=3n.∴a=n,b=n⇒c=n,∴e=,选B.4. (2014广东,4,5分)若实数k满足0<k<9,则曲线-=1与曲线-=1的()A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等[答案] 4.A[解析] 4.∵0<k<9,∴9-k>0,25-k>0.∴-=1与-=1均表示双曲线,又25+(9-k)=34-k=(25-k)+9,∴它们的焦距相等,故选A.5. (2014福建,9,5分)设P,Q分别为圆x2+(y-6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.5B.+C.7+D.6[答案] 5.D[解析] 5.设Q(cos θ,sin θ),圆心为M,由已知得M(0,6),则|MQ|====≤5,故|PQ|max=5+=6.6.(2014山东,10,5分)已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为-=1,C1与C2的离心率之积为,则C2的渐近线方程为()A.x±y=0B.x±y=0C.x±2y=0D.2x±y=0[答案] 6.A[解析] 6.设椭圆C1和双曲线C2的离心率分别为e1和e2,则e1=,e2=.因为e1·e2=,所以=,即=,∴=.故双曲线的渐近线方程为y=±x=±x,即x±y=0.7.(2014天津,5,5分)已知双曲线-=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.-=1B.-=1C.-=1D.-=1[答案] 7.A[解析] 7.由题意得=2且c=5.故由c2=a2+b2,得25=a2+4a2,则a2=5,b2=20,从而双曲线方程为-=1.8.(2014山东青岛高三第一次模拟考试, 10) 如图,从点发出的光线,沿平行于抛物线的对称轴方向射向此抛物线上的点,经抛物线反射后,穿过焦点射向抛物线上的点,再经抛物线反射后射向直线上的点,经直线反射后又回到点,则等于()A. B. C.D.[答案] 8. B[解析] 8.由题意可得抛物线的轴为轴,,所以所在的直线方程为,在抛物线方程中,令可得,即从而可得,,因为经抛物线反射后射向直线上的点,经直线反射后又回到点,所以直线的方程为,故选B.9.(2014安徽合肥高三第二次质量检测,4) 下列双曲线中,有一个焦点在抛物线准线上的是()A. B.C. D.[答案] 9. D[解析] 9. 因为抛物线的焦点坐标为,准线方程为,所以双曲线的焦点在轴上,双曲线的焦点在轴且为满足条件. 故选D.10. (2014江西,15,5分)过点M(1,1)作斜率为-的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于________.[答案] 10.[解析] 10.设A(x1,y1),B(x2,y2),则+=1①,+=1②.①、②两式相减并整理得=-·.把已知条件代入上式得,-=-×,∴=,故椭圆的离心率e==.11. (2014湖南,15,5分)如图,正方形ABCD和正方形DEFG的边长分别为a,b(a<b),原点O为AD的中点,抛物线y2=2px(p>0)经过C,F两点,则=________.[答案] 11.1+[解析] 11.|OD|=,|DE|=b,|DC|=a,|EF|=b,故C,F,又抛物线y2=2px(p>0)经过C、F两点,从而有即∴b2=a2+2ab,∴-2·-1=0,又>1,∴=1+.12.(2014安徽,14,5分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为____________.[答案] 12.x2+y2=1[解析] 12.不妨设点A在第一象限,∵AF2⊥x轴,∴A(c,b2)(其中c2=1-b2,0<b<1,c>0).又∵|AF1|=3|F1B|,∴由=3得B,代入x2+=1得+=1,又c2=1-b2,∴b2=.故椭圆E的方程为x2+y2=1.13.(2014浙江,16,4分)设直线x-3y+m=0(m≠0)与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是________.[答案] 13.[解析] 13.由得A,由得B,则线段AB的中点为M.由题意得PM⊥AB,∴k PM=-3,得a2=4b2=4c2-4a2,故e2=,∴e=.14. (2014天津蓟县第二中学高三第一次模拟考试,12) 抛物线+12y=0的准线方程是___________.[答案] 14. y=3[解析] 14. 抛物线的标准方程为:,由此可以判断焦点在y轴上,且开口向下,且p=6,所以其准线方程为y=3.15. (2014大纲全国,21,12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C 的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l'与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.[答案] 15.查看解析[解析] 15.(Ⅰ)设Q(x0,4),代入y2=2px得x0=.所以|PQ|=,|QF|=+x0=+.由题设得+=×,解得p=-2(舍去)或p=2.所以C的方程为y2=4x.(5分)(Ⅱ)依题意知l与坐标轴不垂直,故可设l的方程为x=my+1(m≠0).代入y2=4x得y2-4my-4=0.设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4.故AB的中点为D(2m2+1,2m),|AB|=|y1-y2|=4(m2+1).又l'的斜率为-m,所以l'的方程为x=-y+2m2+3.将上式代入y2=4x,并整理得y2+y-4(2m2+3)=0.设M(x3,y3),N(x4,y4),则y3+y4=-,y3y4=-4(2m2+3).故MN的中点为E,|MN|=|y3-y4|=.(10分)由于MN垂直平分AB,故A、M、B、N四点在同一圆上等价于|AE|=|BE|=|MN|,从而|AB|2+|DE|2=|MN|2,即4(m2+1)2++=.化简得m2-1=0,解得m=1或m=-1.所求直线l的方程为x-y-1=0或x+y-1=0.(12分)16. (2014四川,20,13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.[答案] 16.查看解析[解析] 16.(Ⅰ)由已知可得解得a2=6,b2=2,所以椭圆C的标准方程是+=1.(Ⅱ)(i)由(Ⅰ)可得,F的坐标是(-2,0),设T点的坐标为(-3,m).则直线TF的斜率k TF==-m.当m≠0时,直线PQ的斜率k PQ=,直线PQ的方程是x=my-2.当m=0时,直线PQ的方程是x=-2,也符合x=my-2的形式.设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得消去x,得(m2+3)y2-4my-2=0,其判别式Δ=16m2+8(m2+3)>0.所以y1+y2=,y1y2=,x1+x2=m(y1+y2)-4=.所以PQ的中点M的坐标为.所以直线OM的斜率k OM=-,又直线OT的斜率k OT=-,所以点M在直线OT上,因此OT平分线段PQ.(ii)由(i)可得,|TF|=,|PQ|====.所以==≥=.当且仅当m2+1=,即m=±1时,等号成立,此时取得最小值.所以当最小时,T点的坐标是(-3,1)或(-3,-1).17. (2014广东,20,14分)已知椭圆C:+=1(a>b>0)的一个焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.[答案] 17.查看解析[解析] 17.(1)由题意知c=,e==,∴a=3,b2=a2-c2=4,故椭圆C的标准方程为+=1.(2)设两切线为l1,l2,①当l1⊥x轴或l1∥x轴时,l2∥x轴或l2⊥x轴,可知P(±3,±2).②当l1与x轴不垂直且不平行时,x0≠±3,设l1的斜率为k,且k≠0,则l2的斜率为-,l1的方程为y-y0=k(x-x0),与+=1联立,整理得(9k2+4)x2+18(y0-kx0)kx+9(y0-kx0)2-36=0,∵直线l1与椭圆相切,∴Δ=0,即9(y0-kx0)2k2-(9k2+4)·[(y0-kx0)2-4]=0,∴(-9)k2-2x0y0k+-4=0,∴k是方程(-9)x2-2x0y0x+-4=0的一个根,同理,-是方程(-9)x2-2x0y0x+-4=0的另一个根,∴k·=,整理得+=13,其中x0≠±3,∴点P的轨迹方程为x2+y2=13(x≠±3).检验P(±3,±2)满足上式.综上,点P的轨迹方程为x2+y2=13.18. (2014江西,20,13分)如图,已知双曲线C:-y2=1(a>0)的右焦点为F,点A,B分别在C的两条渐近线上,AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点).(1)求双曲线C的方程;(2)过C上一点P(x0,y0)(y0≠0)的直线l:-y0y=1与直线AF相交于点M,与直线x=相交于点N. 证明:当点P在C上移动时,恒为定值,并求此定值.[答案] 18.查看解析[解析] 18.(1)设F(c,0),因为b=1,所以c=,直线OB的方程为y=-x,直线BF的方程为y=(x-c),解得B.又直线OA的方程为y=x,则A,k AB==.又因为AB⊥OB,所以·=-1,解得a2=3,故双曲线C的方程为-y2=1.(2)由(1)知a=,则直线l的方程为-y0y=1(y0≠0),即y=.因为直线AF的方程为x=2,所以直线l与AF的交点为M;直线l与直线x=的交点为N,则===·.因为P(x0,y0)是C上一点,则-=1,代入上式得=·=·=,所求定值为==.19. (2014陕西,2017,13分)如图,曲线C由上半椭圆C 1:+=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为.(Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.[答案] 19.查看解析[解析] 19.(Ⅰ)在C1,C2的方程中,令y=0,可得b=1,且A(-1,0),B(1,0)是上半椭圆C1的左,右顶点. 设C1的半焦距为c,由=及a2-c2=b2=1得a=2.∴a=2,b=1.(Ⅱ)解法一:由(Ⅰ)知,上半椭圆C1的方程为+x2=1(y≥0).易知,直线l与x轴不重合也不垂直,设其方程为y=k(x-1)(k≠0),代入C1的方程,整理得(k2+4)x2-2k2x+k2-4=0.(*)设点P的坐标为(x P,y P),∵直线l过点B,∴x=1是方程(*)的一个根.由求根公式,得x P=,从而y P=,∴点P的坐标为.同理,由得点Q的坐标为(-k-1,-k2-2k).∴=(k,-4),=-k(1,k+2).∵AP⊥AQ,∴·=0,即[k-4(k+2)]=0,∵k≠0,∴k-4(k+2)=0,解得k=-.经检验,k=-符合题意,故直线l的方程为y=-(x-1).解法二:若设直线l的方程为x=my+1(m≠0),比照解法一给分.20.(2014江苏,17,14分)如图,在平面直角坐标系xOy中,F1、F2分别是椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连结BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连结F1C.(1)若点C的坐标为,且BF 2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.[答案] 20.查看解析[解析] 20.设椭圆的焦距为2c,则F1(-c,0),F2(c,0).(1)因为B(0,b),所以BF2==a.又BF2=,故a=.因为点C在椭圆上,所以+=1,解得b2=1.故所求椭圆的方程为+y2=1.(2)因为B(0,b),F2(c,0)在直线AB上,所以直线AB的方程为+=1.解方程组得所以点A的坐标为.又AC垂直于x轴,由椭圆的对称性,可得点C的坐标为.因为直线F1C的斜率为=,直线AB的斜率为-,且F1C⊥AB,所以·=-1.又b2=a2-c2,整理得a2=5c2.故e2=.因此e=.21.(2014辽宁,20,12分)圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线C1:-=1过点P且离心率为.(Ⅰ)求C1的方程;(Ⅱ)椭圆C2过点P且与C1有相同的焦点,直线l过C2的右焦点且与C2交于A,B两点,若以线段AB为直径的圆过点P,求l的方程.[答案] 21.查看解析[解析] 21.(Ⅰ)设切点坐标为(x 0,y0)(x0>0,y0>0),则切线斜率为-,切线方程为y-y0=-(x-x0),即x0x+y0y=4,此时,两个坐标轴的正半轴与切线围成的三角形面积为S=··=.由+=4≥2x0y0知当且仅当x0=y0=时x0y0有最大值,即S有最小值,因此点P的坐标为(,).由题意知解得a2=1,b2=2,故C1的方程为x2-=1.(Ⅱ)由(Ⅰ)知C2的焦点坐标为(-,0),(,0),由此设C2的方程为+=1,其中b1>0.由P(,)在C2上,得+=1,解得=3,因此C2的方程为+=1.显然,l不是直线y=0.设l的方程为x=my+,点A(x1,y1),B(x2,y2),由得(m2+2)y2+2my-3=0,又y1,y2是方程的根,因此由x1=my1+,x2=my2+,得因=(-x1,-y1),=(-x2,-y2).由题意知·=0,所以x1x2-(x1+x2)+y1y2-(y1+y2)+4=0.⑤将①,②,③,④代入⑤式整理得2m2-2m+4-11=0,解得m=-1或m=-+1. 因此直线l的方程为x-y-=0或x+y-=0.22.(2012太原高三月考,20,12分)已知曲线C:x2+=1.(Ⅰ)由曲线C上任一点E向x轴作垂线,垂足为F,动点P满足:=3,求P点的轨迹方程,并讨论其轨迹的类型;(Ⅱ)如果直线l的斜率为,且过点M(0,-2),直线l与曲线C交于A、B两点,又·=-,求曲线C的方程.[答案] 22.(Ⅰ)设E(x0,y0),P(x,y),则F(x0,0),∵=3,∴(x-x0,y)=3(x-x0,y-y0),∴代入曲线C中得x2+=1为所求的P点的轨迹方程.(2分)①当λ=时,P点轨迹表示:以(0,0)为圆心,半径r=1的圆;(3分)②当0<λ<时,P点轨迹表示:中心在坐标原点,焦点在x轴上的椭圆;(4分)③当λ>时,P点轨迹表示:中心在坐标原点,焦点在y轴上的椭圆;(5分)④当λ<0时,P点轨迹表示:中心在坐标原点,焦点在x轴上的双曲线.(6分)(Ⅱ)由题设知直线l的方程为y=x-2,代入曲线C中得(λ+2)x 2-4x+4-λ=0,(7分)令A(x1,y1),B(x2,y2),∵以上方程有两解,∴Δ=32-4(λ+2)(4-λ)>0,且λ+2≠0,(8分)∴λ>2或λ<0且λ≠-2,x1+x2=,x1·x2=.又·=x1·x2+(y1+2)(y2+2)=3x1·x2==-.(10分)解得λ=-14,(11分)∴曲线C的方程是x2-=1.(12分)22.23.(2012山西大学附中高三十月月考,21,12分)设椭圆的离心率,右焦点到直线的距离为坐标原点.(I)求椭圆的方程;(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明:点到直线的距离为定值,并求弦长度的最小值.[答案] 23.(I)由题意得,∴,∴.由题意得椭圆的右焦点到直线即的距离为,∴,∴∴椭圆C的方程为(II)设,直线AB的方程为则,,直线AB的方程与椭圆C的方程联立得消去得整理得则是关于的方程的两个不相等的实数根,∴,∴,整理得,∴,∴O到直线AB的距离即O到直线AB的距离定值. ……8分∴,当且仅当OA=OB时取“=”号.∴,又,∴,即弦AB的长度的最小值是23.24.(2012广东省“六校教研协作体”高三11月联考,20,14分)已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.(1)求椭圆的方程;(2)已知动直线与椭圆相交于、两点,①若线段中点的横坐标为,求斜率的值;②已知点,求证:为定值.[答案] 24.(1)由题意得……2分解得,所以椭圆C的方程为.…4分(2)①设,直线方程与椭圆C的方程联立得消去,整理得,……6分则是关于的方程两个不相等的实数根,恒成立,,……7分又中点的横坐标为,所以,解得.…………9分②则,由①知,,所以,…………11分…………12分.…14分24.。
1. 2.3. 是否存在同时满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由。
()渐近线方程为及。
()点(,)到双曲线上动点的距离的最小值为。
120202506x y x y A P +=-=4. 抛物线y =x 2上不存在关于直线y =m(x -3)对称的两点,求m 的范围。
5. 已知⊙C 的圆心在抛物线x 2=2py(p>0)上运动,且⊙C 过A (0,p )点,若MN 为⊙C 在x 轴上截得的弦,设|AM|=l 1,|AN|=l 2,求式子l l l l 2112+的取值范围。
6. 已知抛物线y=(t2+t+1)x2-2(a+t)2x+t2+3at+b,对任意实数t,抛物线总过定点P(1,0),求抛物线与x轴交点的横坐标的取值范围。
7. 如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线段C上的任一点到l2直线与圆锥曲线(七)参考答案1. 解法一:设AB 两点为()()pt pt pt pt 12122222,,,(t t t t 12120,且≠≠)由OA OB ⊥知点O (0,0)在以AB 为直径的圆上,方程:()()()()x pt x pt y pt y pt --+--=122212220 ∴+=∴=-=-=p t t p t t t t AB x t t t M p 21222212121212404440当与轴垂直时,,,点(,)当不与轴垂直时,AB x k at at at at t t AB =--=+22212122212AB y at t t x at x t t y p 方程-=+--+-=222801121212()()又消得:y t t x t t =-++1212222804022x y x y p x y px --=∴--= 法二:设OA 的斜率为k ,OA y k :=OB y k x x p kx pk A B :=-⇒==14422y pky pkA B ==-44设M x y OM AB ()00,,⊥∴-=--=-x y y y x x k k A B A B 00211()又方程为 AB x x x x y y y y A B A AB A --=-- 化简代入即可得方程。
第3讲直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系训练提示:根据直线方程和圆锥曲线方程组成的方程组解的个数,可以研究直线与圆锥曲线的位置关系,方程组消元后要注意所得方程的二次项系数是否含有参数,若含参数,需按二次项系数是否为零进行分类讨论,只有二次项系数不为零时,方程才是一元二次方程,才可以用判别式Δ的符号判断方程解的个数,从而说明直线与圆锥曲线的位置关系.1.在平面直角坐标系xOy中,已知椭圆C1:+=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.(1)求椭圆C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.解:(1)因为椭圆C1的左焦点为F1(-1,0),所以c=1,将点P(0,1)代入椭圆方程+=1,得=1,即b2=1,所以a2=b2+c2=2,所以椭圆C1的方程为+y2=1.(2)直线l的斜率显然存在,设直线l的方程为y=kx+m,由消去y并整理得,(1+2k2)x2+4kmx+2m2-2=0,因为直线l与椭圆C1相切,所以Δ1=16k2m2-4(1+2k2)(2m2-2)=0,整理得2k2-m2+1=0, ①由消去y并整理得,k2x2+(2km-4)x+m2=0,因为直线l与抛物线C2相切,所以Δ2=(2km-4)2-4k2m2=0,整理得km=1, ②综合①②,解得或所以直线l的方程为y=x+或y=-x-.2.若双曲线E:-y2=1(a>0)的离心率等于,直线y=kx-1与双曲线E的右支交于A,B两点.(1)求k的取值范围;(2)若|AB|=6,点C是双曲线上一点,且=m(+),求k,m的值.解:(1)由得故双曲线E的方程为x2-y2=1.设A(x1,y1),B(x2,y2),由得(1-k2)x2+2kx-2=0.(*)因为直线与双曲线右支交于A,B两点,故即所以k的取值范围为(1,).(2)由(*)得x1+x2=,x1x2=,所以|AB|=·=2=6,整理得28k4-55k2+25=0,所以k2=或k2=.又1<k<,所以k=,所以x1+x2=4,y1+y2=k(x1+x2)-2=8.设C(x3,y3),由=m(+),得(x3,y3)=m(x1+x2,y1+y2)=(4m,8m).因为点C是双曲线上一点,所以80m2-64m2=1,得m=±.故k=,m=±.圆锥曲线中的弦长、面积问题训练提示:解决弦长、面积问题的关键是联立直线与圆锥曲线方程,借助根与系数的关系求得弦长,选择合适的公式求解面积.3.(2015天津模拟)已知椭圆+=1(a>b>0)的中心为O,它的一个顶点为(0,1),离心率为,过其右焦点的直线交该椭圆于A,B两点.(1)求这个椭圆的方程;(2)若·=0,求△OAB的面积.解:(1)因为=,所以c2=a2,依题意b=1,所以a2-c2=1,所以a2-a2=1,所以a2=2,所以椭圆的方程为+y2=1.(2)椭圆的右焦点为(1,0),当直线AB与x轴垂直时,A,B的坐标为(1,),(1,-),此时·=≠0,所以直线AB与x轴不垂直.设直线AB的斜率为k,则直线AB的方程为y=k(x-1),与+=1,联立得(2k2+1)x2-4k2x+2k2-2=0,设A(x1,y1),B(x2,y2),线段AB的中点为M(x0,y0),所以x1+x2=,x1x2=,M(,),因为·=0,即(x1,y1)·(x2,y2)=0,所以x1x2+y1y2=x1x2+k(x1-1)·k(x2-1)=(k2+1)x1x2-k2(x1+x2)+k2=0,即-+k2=0,所以k2=2,所以k=±,所以|AB|2=4|OM|2=4[()2+()2]=,所以|AB|=.Rt△OAB斜边高为点O到直线AB的距离d==,所以△OAB的面积为d|AB|=××=.4.(2015昆明模拟)设抛物线C:y2=2px(p>0)的焦点为F,准线为l,M∈C,以M为圆心的圆M与l相切于点Q,Q的纵坐标为p,E(5,0)是圆M与x轴的不同于F的一个交点.(1)求抛物线C与圆M的方程;(2)过F且斜率为的直线n与C交于A,B两点,求△ABQ的面积.解:(1)由抛物线的定义知,圆M经过焦点F(,0),Q(-,p),点M的纵坐标为p,又M∈C,则M(,p),|MF|=2p.由题意,M是线段EF的垂直平分线上的点,所以=,解得p=2,故抛物线C:y2=4x,圆M:(x-3)2+(y-2)2=16.(2)由题意知直线n的方程为y=(x-1),由解得或设A(4,4),B(,-1),则|AB|=.点Q(-1,2)到直线n:4x-3y-4=0的距离d=,所以△ABQ的面积S=|AB|·d=.圆锥曲线的轨迹问题训练提示:求动点的轨迹方程的关键:根据题目条件选择合适的方法,寻找关于动点,横纵坐标所满足的关系式.5.(2015甘肃兰州第二次监测)已知点P为y轴上的动点,点M为x轴上的动点,点F(1,0)为定点,且满足+=0,·=0.(1)求动点N的轨迹E的方程;(2)过点F且斜率为k的直线l与曲线E交于两点A,B,试判断在x轴上是否存在点C,使得|CA|2+|CB|2=|AB|2成立,请说明理由.解:(1)设N(x,y),则由+=0,得P为MN的中点.所以P(0,),M(-x,0).所以=(-x,-),=(1,-).所以·=-x+=0,即y2=4x.所以动点N的轨迹E的方程y2=4x.(2)设直线l的方程为y=k(x-1),由消去x得y2-y-4=0.设A(x1,y1),B(x2,y2),则y1+y2=,y1y2=-4.假设存在点C(m,0)满足条件,则=(x1-m,y1),=(x2-m,y2),所以·=x1x2-m(x1+x2)+m2+y1y2=()2-m()+m2-4=-[(y1+y2)2-2y1y2]+m2-3=m2-m(+2)-3.显然关于m的方程m2-m(+2)-3=0有解.即在x轴上存在点C,使得|CA|2+|CB|2=|AB|2成立.6.已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线 C.(1)求C的方程;(2)l是与圆P、圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.解:由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径 r2=3.设圆P的圆心为P(x,y),半径为R.(1)因为圆P与圆M外切并且与圆N内切,所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4.由椭圆的定义可知,曲线C是以M,N为左、右焦点,长半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为+=1(x≠-2).(2)对于曲线C上任意一点D(x,y),由于|DM|-|DN|=2R-2≤2,所以R≤2,当且仅当圆P的圆心为(2,0)时,R=2.所以当圆P的半径最长时,其方程为(x-2)2+y2=4.若l的倾斜角为90°,则l与y轴重合,可得|AB|=2.若l的倾斜角不为90°,由r1≠R知l不平行于x轴, 设l与x轴的交点为Q,则=,可求得Q(-4,0),所以可设l:y=k(x+4),由l与圆M相切得=1,解得k=±.当k=时,y=x+代入+=1,并整理得7x2+8x-8=0,解得x1,2=.所以|AB|=|x2-x1|=.当k=-时,由图形的对称性可知|AB|=.综上,|AB|=2或|AB|=.类型一:直线与圆锥曲线的位置关系1. 如图,F1(-c,0),F2(c,0)分别是椭圆C:+=1(a>b>0)的左、右焦点,过点F1作x轴的垂线交椭圆的上半部分于点P,过点F2作直线PF2的垂线交直线x=于点Q.(1)若点Q的坐标为(4,4),求椭圆C的方程;(2)证明:直线PQ与椭圆C只有一个交点.(1)解:将点P(-c,y1)(y1>0)代入+=1得y1=,PF2⊥QF2⇔·=-1,即2b2=ac(4-c). ①又Q(4,4),所以=4, ②c2=a2-b2(a,b,c>0), ③由①②③得a=2,c=1,b=,所以椭圆C的方程为+=1.(2)证明:设Q(,y2).由(1)知P(-c,).所以==-,==.所以PF2⊥QF2⇔-·=-1⇔y2=2a,所以k PQ==.则直线PQ的方程可表示为y-=(x+c),即cx-ay+a2=0,由消去y可得a2x2+2ca2x+a4-a2b2=0.因为a>0,所以x2+2cx+a2-b2=0,即x2+2cx+c2=0,此时Δ=(2c)2-4c2=0.故直线PQ与椭圆C只有一个交点.2.(2014湖北卷)在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.(1)求轨迹C的方程;(2)设斜率为k的直线l过定点P(-2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.解:(1)设点M(x,y),依题意得|MF|=|x|+1,即=|x|+1.化简整理得y2=2(|x|+x).故点M的轨迹C的方程为y2=(2)在点M的轨迹C中,记C1:y2=4x,C2:y=0(x<0).依题意,可设直线l的方程为y-1=k(x+2).由方程组可得ky2-4y+4(2k+1)=0.(*)①当k=0时,此时y=1.把y=1代入轨迹C的方程,得x=.故此时直线l:y=1与轨迹C恰好有一个公共点(,1).②当k≠0时,方程(*)根的判别式为Δ=-16(2k2+k-1).(**)设直线l与x轴的交点为(x0,0),则由y-1=k(x+2),令y=0,得x0=-.(***)(ⅰ)若由(**)(***)解得k<-1或k>.即当k∈(-∞,-1)∪(,+∞)时,直线l与C1没有公共点,与C2有一个公共点.故此时直线l与轨迹C恰好有一个公共点.(ⅱ)若或由(**)(***)解得k∈(-1,),或-≤k<0.即当k∈(-1,)时,直线l与C1只有一个公共点,与C2有一个公共点.当k∈[-,0)时,直线l与C1有两个公共点,与C2没有公共点.故当k∈[-,0)∪(-1,)时,直线l与轨迹C恰好有两个公共点.(ⅲ)若由(**)(***)解得-1<k<-或0<k<.即当k∈(-1,-)∪(0,)时,直线l与C1有两个公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有三个公共点.综合①②可知,当k∈(-∞,-1)∪(,+∞)∪{0}时,直线l与轨迹C恰好有一个公共点;当k ∈[-,0)∪(-1,)时,直线l与轨迹C恰好有两个公共点;当k∈(-1,-)∪(0,)时,直线l与轨迹C恰好有三个公共点.类型二:弦长、面积及与弦中点、弦端点相关的问题3.(2015安徽卷)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,-b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E 的方程.解:(1)由题设条件知,点M的坐标为(a,b),又k OM=,从而=.进而得a=b,c==2b.故e==.(2)由题设条件和(1)的计算结果可得,直线AB的方程为+=1,点N的坐标为(b,-b). 设点N关于直线AB的对称点S的坐标为(x1,),则线段NS的中点T的坐标为(b+,-b+).又点T在直线AB上,且k NS·k AB=-1,从而有解得b=3.所以a=3,故椭圆E的方程为+=1.4.(2015江西赣州高三模拟)已知椭圆E:+=1(a>b>0)的焦距为2,A是E的右顶点,P,Q是E上关于原点对称的两点,且直线PA的斜率与直线QA的斜率之积为-.(1)求E的方程;(2)过E的右焦点作直线与E交于M,N两点,直线MA,NA与直线x=3分别交于C,D两点,设△ACD与△AMN的面积分别记为S1,S2,求2S1-S2的最小值.解:(1)设P(x0,y0),Q(-x0,-y0),则=(a2-),k PA·k QA=·==-,依题意有=,又c=1,所以解得a2=4,b2=3,故E的方程为+=1.(2)设直线MN的方程为x=my+1,代入E的方程得(3m2+4)y2+6my-9=0,设M(x1,y1),N(x2,y2),则y1+y2=-,y1y2=-,直线MA的方程为y=(x-2),把x=3代入得y C==,同理y D=.所以|CD|=|y C-y D|==3,所以S1=|CD|=.S2=|AF||y1-y2|=,2S1-S2=3-,令=t(t≥1),则m2=t2-1,所以2S1-S2=3t-,记f(t)=3t-,则f′(t)=3+>0,所以f(t)在[1,+∞)上是单调递增的,所以f(t)的最小值为f(1)=.即2S1-S2的最小值为.类型三:圆锥曲线与向量的综合5.(2015吉林模拟)已知椭圆+=1(a>b>0)的离心率为,右焦点到直线x+y+=0的距离为2.(1)求椭圆的方程;(2)过点M(0,-1)作直线l交椭圆于A,B两点,交x轴于N点,且满足=-,求直线l的方程.解:(1)设椭圆的右焦点为(c,0)(c>0),则=2,c+=±2,c=或c=-3(舍去).又离心率=,=,故a=2,b==,故椭圆的方程为+=1.(2)设A(x1,y1),B(x2,y2),N(x0,0),因为=-,所以(x1-x0,y1)=-(x2-x0,y2),y1=-y2, ①易知当直线l的斜率不存在或斜率为0时,①不成立,于是设直线l的方程为y=kx-1(k≠0),联立方程,得消去x得(4k2+1)y2+2y+1-8k2=0, ②因为Δ>0,所以直线与椭圆相交,于是y1+y2=-, ③y1y2=, ④由①③得,y2=,y1=-,代入④整理得8k4+k2-9=0,k2=1,k=±1,所以直线l的方程是y=x-1或y=-x-1.6.(2015黑龙江高三模拟)已知A,B,C是椭圆M:+=1(a>b>0)上的三点,其中点A的坐标为(2,0),BC过椭圆的中心,且·=0,||=2||.(1)求椭圆M的方程;(2)过点(0,t)的直线l(斜率存在时)与椭圆M交于两点P,Q,设D为椭圆M与y轴负半轴的交点,且||=||,求实数t的取值范围.解:(1)因为||=2||且BC过(0,0),则||=||.因为·=0,所以∠OCA=90°,又因为a=2,所以C(,).设椭圆M的方程为+=1,将C点坐标代入得+=1,解得c2=8,b2=4.所以椭圆M的方程为+=1.(2)由条件知D(0,-2),当k=0时,显然-2<t<2;当k≠0时,设l:y=kx+t,消y得(1+3k2)x2+6ktx+3t2-12=0,由Δ>0可得,t2<4+12k2, ①设P(x1,y1),Q(x2,y2),PQ中点H(x0,y0),则x0==,y0=kx0+t=,所以H(,).由||=||,所以DH⊥PQ,即k DH=-.所以=-,化简得t=1+3k2, ②所以t>1,由①②得,1<t<4.综上实数t的取值范围为(-2,4).。
2.
3. 是否存在同时满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由。
()渐近线方程为及。
()点(,)到双曲线上动点的距离的最小值为。
120202506x y x y A P +=-=
4. 抛物线y =x 2上不存在关于直线y =m(x -3)对称的两点,求m 的范围。
5. 已知⊙C 的圆心在抛物线x 2=2py(p>0)上运动,且⊙C 过A (0,p )点,若MN 为⊙C 在x 轴上截得的弦,设|AM|=l 1,|AN|=l 2,求式子l l l l 211
2+的取值范围。
6. 已知抛物线y=(t2+t+1)x2-2(a+t)2x+t2+3at+b,对任意实数t,抛物线总过定点P(1,0),求抛物线与x轴交点的横坐标的取值范围。
7. 如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线段C上的任一
点到l2
=6
直线与圆锥曲线(七)参考答案
1. 解法一:设AB 两点为()()pt pt pt pt 12122
222,,,(t t t t 12120,且≠≠)
由OA OB ⊥知点O (0,0)在以AB 为直径的圆上,
方程:
()()()()x pt x pt y pt y pt --+--=1222
12220 ∴+=∴=-=-=p t t p t t t t AB x t t t M p 21222
212121212
404
440当与轴垂直时,,,点(,)
当不与轴垂直时,AB x k at at at at t t AB =
--=
+222
12
122
212
AB y at t t x at x t t y p 方程-=
+--+-=22280112
12
12()()
又消得:
y t t x t t =-++12
122
2280
4022x y x y p x y px --=∴--= 法二:设OA 的斜率为k ,OA y k :=
OB y k x x p k
x pk A B :=-
⇒==1
4422
y p
k
y pk
A B =
=-44
设M x y OM AB ()00,,⊥
∴-
=--=-x y y y x x k k A B A B 00211()
又方程为 AB x x x x y y y y A B A A
B A --=
-- 化简代入即可得方程。
法三:由法二得AB 方程,令y =0,得x =4p 故AB 过定点(4p ,0),又OM AB ⊥
∴=-⋅--=-∴-+=k k y x y x p
y x px OM AB 104140
22
,
2.解:设动点P 的坐标为(x ,y )
由,得||
||()()()PA PB a a x c y x c y a
=>++-+=02222
化简得:
()()()()1211102222222
-+++-+-=a x c a x c a a y
当时,得a x c a a
x c y ≠++-++=121102
22
22()
整理得()(
)x a a c y ac a -
+-+=-11
21
2
22222
当时,化简得a x ==10
所以当时,点的轨迹是以,为圆心,为半径的圆;
a P a a c ac a ≠+--111
021
222(
)|
|
当时,点的轨迹为轴。
a P y =1
3. 解:假设存在同时满足题中两条件的双曲线。
(1)若双曲线焦点在x 轴上
渐近线方程y x =±
12
∴-
=由条件()设双曲线方程为141
22
22
x b
y b
设动点P 的坐标为(x ,y )
则||()()AP x y x b =-+=
-+-55
4452222
由条件()若,即,则当时最小2242456
2b b x AP b ≤≤==-=||
b 2
1=-这不可能,无解
若,则当时,最小242256b x b AP b >==-=|||| 解得应舍去b =
+-<56256
22()
此时存在双曲线方程为
x y 22
22
56562
1
()
(
)+-+=
()若双曲线焦点在轴上,则可设双曲线方程为
()
24122
22
y x b x b x R -=∈
∴=
-++∈||()AP x b x R 5
44522,
∴==+=当时,最小x AP b 456
2||
∴=-=b y x 2
2
2
141
,此时存在双曲线方程为
4.解:若m =0,曲线y =x 2
上没有关于直线y =0对称的两点
若,设与垂直的直线为:m y m x ≠=-03()l y m x b y x x m x b =-
+=+-=11
022代入得
若l 与抛物线有两交点,则
x x x m y m x m 01200
2123123=+=-=-=--⎧⎨
⎪⎪⎩⎪⎪()
又中点,在上()---121
23m m l
∴-
-=--+123112m m m b ()
又∆=+>1
4022m b ()
()()121221032
代入消得:b m m ++< 即()()2162102
m m m +-+<
又恒成立,62101
22m m m -+>∴<-
故当时满足题设条件m ≥-
1
2
5.解:根据题意,⊙C 方程可设为
()()()x x y y x y p -+-=+-02020202
令,并把代入可得关于的方程y x py x x x x x p ==-+-=022*********
它的两个根为,x x p x x p 1020=-=+ ∴=-=|||MN x x p 212
设∠=M A N θ S l l OA MN p MAN ∆===121
2122
sin ||||θ
∴=
l l p 122
2s i n θ l l l l p 1222
22224+-=c o s θ
∴+
=+=+l l p p p c t g 1
2
2
22
2
24441s i n cos ()
θθθ
∴+=+=+=+=+l l l l l l l l p c t g p 211212
221222
4122224()s i n (s i n c o s )s i n ()θθθθθπ
090<≤︒θ ∴==︒当且仅当时,原式有最大值,又当且仅当时原式有最小值θπ
θ4
22902
∴
+l l l l 211
2
222的取值范围是,[]
6.解:∵抛物线过P (1,0)
∴++-+++++=t t t at a t at b 2222
12230() 即()()11202
-++-=a t b a
这个关于t 的方程的解集是R
故101201
12
-=+-=⎧⎨⎩∴==⎧⎨
⎩a b a a b
抛物线方程为y t t x t t x t t =++-+++++()()2222
122131
设抛物线与x 轴的另一交点为(x ,0)
则x t t t t t t t t t t =
++++=+
++=+
++≠222311
121
12
110()
t t t t t ≠+=+≥011
2
时|||||| 即或t t t t +≥+≤-121
2
t x ==01时,
故时,t R x ∈-≤≤
15
3
而,的横坐标也在,内
P()[]1015
3-
故抛物线与7. 解:
依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一部分,其中A 、B 分别是C 的端点。
设曲线的方程为,C y px p x x x y A B 2
200=>≤≤>()()
其中、分别为、的横坐标,x x A B p MN A B =||
所以,,,M p N p
()()-
2020
由,得||||AM AN ==173
()()
x p
px A A ++=2217
12
()()
x p
px A A -+=229
22
由、两式联立解得,再将其代入并由解得()()()124
10x p p A =
>
p x p x A A ==⎧⎨⎩==⎧⎨⎩412
2或
因为是锐角三角形,所以
∆AMN p
x A 2>
故舍去p x A ==⎧⎨
⎩2
2 ∴==p x A 41, 由点B 在曲线段C 上 得x BN p
B =-
=||24
综上得曲线段C 的方程为
y x x y 2
8140=≤≤>(),。