中考复习之专题五 函数
- 格式:doc
- 大小:718.00 KB
- 文档页数:14
初三数学函数知识点归纳一、函数的概念1. 定义在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数。
2. 函数的表示方法解析法:用数学式子表示两个变量之间的函数关系,如。
列表法:通过列出自变量与函数的对应值来表示函数关系,例如,在研究正方形面积与边长的关系时,可列出时,;时,等表格。
图象法:用图象来表示函数关系,如一次函数的图象是一条直线。
二、一次函数1. 定义形如是常数,的函数叫做一次函数。
当时,叫做正比例函数,正比例函数是特殊的一次函数。
2. 一次函数的图象与性质图象:一次函数的图象是一条直线,叫做直线在轴上的截距。
当,时,图象经过一、二、三象限;当,时,图象经过一、三、四象限;当,时,图象经过一、二、四象限;当,时,图象经过二、三、四象限。
性质当时,随的增大而增大;当时,随的增大而减小。
3. 一次函数的解析式的确定通常采用待定系数法,设出函数解析式,根据已知条件列出关于、的方程组,解方程组求出、的值,从而确定函数解析式。
三、反比例函数1. 定义形如为常数,的函数叫做反比例函数。
2. 反比例函数的图象与性质图象:反比例函数的图象是双曲线。
当时,双曲线的两支分别位于第一、三象限,在每一象限内随的增大而减小;当时,双曲线的两支分别位于第二、四象限,在每一象限内随的增大而增大。
反比例函数图象关于原点对称,它的对称轴是直线和。
3. 反比例函数解析式的确定同样采用待定系数法,设,把已知点的坐标代入求出的值即可确定解析式。
四、二次函数1. 定义形如是常数,的函数叫做二次函数。
2. 二次函数的图象与性质图象:二次函数的图象是一条抛物线。
顶点坐标:。
对称轴:直线。
性质当时,抛物线开口向上,在对称轴左侧随的增大而减小,在对称轴右侧随的增大而增大,函数有最小值;当时,抛物线开口向下,在对称轴左侧随的增大而增大,在对称轴右侧随的增大而减小,函数有最大值。
函数应用中考知识点总结一、函数的定义函数是一种特殊的关系,它将一个或多个输入值映射到一个输出值。
函数通常用字母表示,例如f(x),其中x表示输入值,f(x)表示输出值。
函数的定义包括定义域、值域和对应关系。
其中,定义域是指函数可以接受的输入值的范围,值域是函数输出值的集合,对应关系则描述了输入值与输出值之间的映射关系。
例如,对于函数f(x)=x^2,其定义域为实数集,值域为非负实数集,对应关系为x与x^2的映射关系。
二、函数的性质在中考中,学生需要掌握函数的一些基本性质,包括奇偶性、周期性和单调性等。
其中,奇偶性是指函数图像关于原点对称时称为奇函数,关于y轴对称时称为偶函数;周期性是指函数在一定范围内具有重复的规律性;单调性是指函数在定义域内的增减规律。
这些性质对于理解函数的图像和求解函数的最值等问题具有重要的作用。
三、函数的图像函数的图像是函数在平面直角坐标系中的几何表现,它可以帮助我们直观地理解函数的性质和特点。
在中考中,学生需要学会绘制函数的图像,并理解函数图像与函数性质之间的关系。
例如,对于一元二次函数f(x)=ax^2+bx+c,学生可以通过绘制函数的图像来理解函数的开口方向、顶点坐标和对称轴等特点,从而更好地理解函数的性质和应用。
四、函数的应用函数在实际问题中具有广泛的应用,它可以帮助我们描述和求解各种实际问题。
在中考中,学生需要学会应用函数解答与函数相关的问题,例如函数的定义域、值域和逆函数的求解等。
此外,函数还可以帮助我们求解各种实际问题,如函数模型的建立和函数方程的求解等。
通过学习函数的应用,学生可以更好地理解函数的概念和性质,并将其运用到实际问题中去。
总之,函数是数学和计算机科学中的重要概念,它在解决问题和设计算法时起着至关重要的作用。
在中考中,函数也是一个重要的知识点,学生需要掌握函数的定义、性质和应用等方面的知识。
通过本文的总结,相信学生们可以更好地理解函数的相关知识,从而更好地应对中考中与函数相关的各种问题。
函数实际问题综合题一、一次函数+二次函数应用问题例题(2020·湖北随州·中考真题)2020年新冠肺炎疫情期间.部分药店趁机将口罩涨价.经调查发现某药店某月(按30天计)前5天的某型号口罩销售价格p (元/只)和销量q (只)与第x 天的关系如下表:第x 天1 2 3 4 5 销售价格p (元/只)2 3 4 5 6 销量q (只)7075808590店从第6天起将该型号口罩的价格调整为1元/只.据统计.该药店从第6天起销量q (只)与第x 天的关系为2280200q x x =-+-(630x ≤≤.且x 为整数).已知该型号口罩的进货价格为0.5元/只.(1)直接写出....该药店该月前5天的销售价格p 与x 和销量q 与x 之间的函数关系式. (2)求该药店该月销售该型号口罩获得的利润W (元)与x 的函数关系式.并判断第几天的利润最大.(3)物价部门为了进一步加强市场整顿.对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以m 倍的罚款.若罚款金额不低于2000元.则m 的取值范围为______.【答案】(1)1p x =+.15x ≤≤且x 为整数.565q x =+.15x ≤≤且x 为整数.(2)22135655,152240100,630x x x x W x x x x ⎧++⎪=⎨⎪-+-⎩且为整数且为整数.第5天时利润最大.(3)85m . 【解析】 【分析】(1)根据表格数据.p 是x 的一次函数.q 是x 的一次函数.分别求出解析式即可. (2)根据题意.求出利润w 与x 的关系式.再结合二次函数的性质.即可求出利润的最大值.(3)先求出前5天多赚的利润.然后列出不等式.即可求出m 的取值范围. 【详解】(1)观察表格发现p 是x 的一次函数.q 是x 的一次函数. 设p=k 1x+b 1.将x=1.p=2.x=2.p=3分别代入得:1111232k b k b =+⎧⎨=+⎩. 解得:1111k b =⎧⎨=⎩. 所以1p x =+.经验证p=x+1符合题意. 所以1p x =+.15x ≤≤且x 为整数. 设q=k 2x+b 2.将x=1.q=70.x=2.q=75分别代入得:222270752k b k b =+⎧⎨=+⎩. 解得:22565k b =⎧⎨=⎩. 所以565q x =+.经验证565q x =+符合题意. 所以565q x =+.15x ≤≤且x 为整数. (2)当15x ≤≤且x 为整数时.(10.5)(565)W x x =+-+213565522x x =++. 当630x ≤≤且x 为整数时.()2(10.5)280200W x x =--+-240100x x =-+-.即有22135655,152240100,630x x x x W x x x x ⎧++⎪=⎨⎪-+-⎩且为整数且为整数. 当15x ≤≤且x 为整数时.售价.销量均随x 的增大而增大. 故当5x =时.495W =最大(元)当630x ≤≤且x 为整数时.2240100(20)300W x x x =-+-=--+ 故当20x时.300W =最大(元).由495300>.可知第5天时利润最大. (3)根据题意.前5天的销售数量为:7075808590400q =++++=(只). ∴前5天多赚的利润为:(270375480585690)140016504001250W =⨯+⨯+⨯+⨯+⨯-⨯=-=(元).∴12502000m ≥. ∴85m. ∴m 的取值范围为85m . 【点睛】此题考查二次函数的性质及其应用.一次函数的应用.不等式的应用.也考查了二次函数的基本性质.另外将实际问题转化为求函数最值问题.从而来解决实际问题. 练习题1.(2021·山东青岛·中考真题)科研人员为了研究弹射器的某项性能.利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升.此时.在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽路空气阻力).在1秒时.它们距离地面都是35米.在6秒时.它们距离地面的高度也相同.其中无人机离地面高度1y (米)与小钢球运动时间x (秒)之间的函数关系如图所示.小钢球离地面高度2y (米)与它的运动时间x (秒)之间的函数关系如图中抛物线所示.(1)直接写出1y 与x 之间的函数关系式. (2)求出2y 与x 之间的函数关系式.(3)小钢球弹射1秒后直至落地时.小钢球和无人机的高度差最大是多少米?【答案】(1)1530y x =+.(2)22540y x x =-+.(3)70米【解析】 【分析】(1)先设出一次函数的解析式.再用待定系数法求函数解析式即可. (2)用待定系数法求函数解析式即可.(3)当1<x ≤6时小钢球在无人机上方.因此求y 2-y 1.当6<x ≤8时.无人机在小钢球的上方.因此求y 1-y 2.然后进行比较判断即可. 【详解】解:(1)设y 1与x 之间的函数关系式为y 1=kx +b'. ∵函数图象过点(0.30)和(1.35).则'35'30k b b +=⎧⎨=⎩. 解得5'30k b =⎧⎨=⎩. ∴y 1与x 之间的函数关系式为1530y x =+. (2)∵6x =时.1563060y =⨯+=. ∵2y 的图象是过原点的抛物线.∴设22y ax bx =+.∴点()1,35.()6,60在抛物线22y ax bx =+上.∴3536660a b a b +=⎧⎨+=⎩.即35610a b a b +=⎧⎨+=⎩. 解得540a b =-⎧⎨=⎩. ∴22540y x x =-+.答:2y 与x 的函数关系式为22540y x x =-+.(3)设小钢球和无人机的高度差为y 米. 由25400x x -+=得10x =或28x =. ①16x <≤时.21y y y =-2540530x x x =-+-- 253530x x =-+-27125524x ⎛⎫=--+⎪⎝⎭. ∵50a =-<.∴抛物线开口向下. 又∵16x <≤. ∴当72x =时.y 的最大值为1254. ②68x <≤时.12y y y =-2530540x x x =++- 253530x x =-+27125524x ⎛⎫=--⎪⎝⎭. ∵50a =>.∴拋物线开口向上. 又∵对称轴是直线72x =. ∴当72x >时.y 随x 的增大而增大. ∵68x <≤.∴当8x =时.y 的最大值为70. ∵125704<. ∴高度差的最大值为70米. 答:高度差的最大值为70米. 【点睛】本题考查了二次函数以及一次函数的应用.关键是根据根据实际情况判断无人机和小钢球的高度差.2.(2021·辽宁盘锦·中考真题)某工厂生产并销售A .B 两种型号车床共14台.生产并销售1台A 型车床可以获利10万元.如果生产并销售不超过4台B 型车床.则每台B 型车床可以获利17万元.如果超出4台B 型车床.则每超出1台.每台B 型车床获利将均减少1万元.设生产并销售B 型车床x 台. (1)当4x >时.完成以下两个问题: ①请补全下面的表格:A 型B 型车床数量/台 ________ x每台车床获利/万元10________70万元.问:生产并销售B 型车床多少台?(2)当0<x ≤14时.设生产并销售A .B 两种型号车床获得的总利润为W 万元.如何分配生产并销售A .B 两种车床的数量.使获得的总利润W 最大?并求出最大利润. 【答案】(1)①14x -.21x -.②10台.(2)分配产销A 型车床9台、B 型车床5台.或产销A 型车床8台、B 型车床6台.此时可获得总利润最大值170万元 【解析】 【分析】(1)①由题意可知.生产并销售B 型车床x 台时.生产A 型车床(14-x )台.当4x >时.每台就要比17万元少(4x -)万元.所以每台获利17(4)x --.也就是(21x -)万元. ②根据题意可得根据题意:(21)10(14)70x x x ---=然后解方程即可. (2)当0≤x ≤4时.W =10(14)x -+17x =7140x +.当4<x ≤14时. W =2( 5.5)170.25x --+.分别求出两个范围内的最大值即可得到答案. 【详解】解:(1)当4x >时.每台就要比17万元少(4x -)万元 所以每台获利17(4)x --.也就是(21x -)万元 ①补全表格如下面:A 型B 型车床数量/台 14x -x每台车床获利/万元1021x -由B 型可获得利润为(21)x x -万元.根据题意:(21)10(14)70x x x ---=. 2312100x x -+=.(21)(10)0x x --=.∵0≤x ≤14. ∴10x =.即应产销B 型车床10台. (2)当0≤x ≤4时. 当0≤x ≤4 A 型 B 型车床数量/台 14x -x每台车床获利/万元 1017 利润10(14)x -17x该函数值随着x 的增大而增大.当x 取最大值4时.W 最大1=168(万元). 当4<x ≤14时. 当4<x ≤14 A 型 B 型车床数量/台 14x -x每台车床获利/万元1021x -利润10(14)x - (21)x x -则=+=211140x x -++=( 5.5)170.25x --+.当5x =或6x =时(均满足条件4<x ≤14).W 达最大值W 最大2=170(万元). ∵W 最大2> W 最大1.∴应分配产销A 型车床9台、B 型车床5台.或产销A 型车床8台、B 型车床6台.此时可获得总利润最大值170万元. 【点睛】本题主要考查了一元二次方程的实际应用.一次函数和二次函数的实际应用.解题的关键在于能够根据题意列出合适的方程或函数关系式求解.3.(2021·辽宁锦州·中考真题)某公司计划购进一批原料加工销售.已知该原料的进价为6.2万元/t .加工过程中原料的质量有20%的损耗.加工费m (万元)与原料的质量x (t )之间的关系为m =50+0.2x .销售价y (万元/t )与原料的质量x (t )之间的关系如图所示.(1)求y 与x 之间的函数关系式.(2)设销售收入为P (万元).求P 与x 之间的函数关系式.(3)原料的质量x 为多少吨时.所获销售利润最大.最大销售利润是多少万元?(销售利润=销售收入﹣总支出).【答案】(1)1y 204x =-+.(2)21165P x x =-+.(3)原料的质量为24吨时.所获销售利润最大.最大销售利润是3265万元 【解析】 【分析】(1)利用待定系数法求函数关系式.(2)根据销售收入=销售价×销售量列出函数关系式.(3)设销售总利润为W .根据销售利润=销售收入﹣原料成本﹣加工费列出函数关系式.然后根据二次函数的性质分析其最值. 【详解】解:(1)设y 与x 之间的函数关系式为y kx b +=. 将(20.15).(30.12.5)代入. 可得:20153012.5k b k b +=⎧⎨+=⎩. 解得:1420k b ⎧=-⎪⎨⎪=⎩. ∴y 与x 之间的函数关系式为1y 204x =-+.(2)设销售收入为P (万元).∴()2411120%2016545P xy x x x x ⎛⎫=-=⨯-+=-+ ⎪⎝⎭.∴P 与x 之间的函数关系式为21165P x x =-+.(3)设销售总利润为W .∴()216.216 6.2500.25W P x m x x x x =--=-+--+.整理.可得:()22148132650245555W x x x =-+-=--+. ∵﹣15<0.∴当24x =时.W 有最大值为3265. ∴原料的质量为24吨时.所获销售利润最大.最大销售利润是3265万元. 【点睛】本题考查了二次函数的实际应用.涉及了数形结合的数学思想.熟练掌握待定系数法求解析式是解决本题的关键.4.(2021·湖北荆门·中考真题)某公司电商平台.在2021年五一长假期间.举行了商品打折促销活动.经市场调查发现.某种商品的周销售量y (件)是关于售价x (元/件)的一次函数.下表仅列出了该商品的售价x .周销售量y .周销售利润W (元)的三组对应值数据. x 40 70 90 y1809030W 3600 4500 2100.(2)若该商品进价a (元/件).售价x 为多少时.周销售利润W 最大?并求出此时的最大利润.(3)因疫情期间.该商品进价提高了m (元/件)(0m >).公司为回馈消费者.规定该商品售价x 不得超过55(元/件).且该商品在今后的销售中.周销售量与售价仍满足(1)中的函数关系.若周销售最大利润是4050元.求m 的值.【答案】(1)3300y x =-+.(2)售价60元时.周销售利润最大为4800元.(3)5m = 【解析】 【分析】(1)①依题意设y=kx+b.解方程组即可得到结论.(2)根据题意得(3300)()W x x a =-+-.再由表格数据求出20a =.得到2(3300)(20)3(60)4800W x x x =-+-=--+.根据二次函数的顶点式.求出最值即可.(3)根据题意得3(100)(20)(55)W x x m x =----.由于对称轴是直线60602mx =+>.根据二次函数的性质即可得到结论. 【详解】解:(1)设y kx b =+.由题意有401807090k b k b +=⎧⎨+=⎩.解得3300k b =-⎧⎨=⎩. 所以y 关于x 的函数解析式为3300y x =-+. (2)由(1)(3300)()W x x a =-+-.又由表可得: 3600(340300)(40)a =-⨯+-.20a ∴=.22(3300)(20)336060003(60)4800W x x x x x ∴=-+-=-+-=--+.所以售价60x =时.周销售利润W 最大.最大利润为4800. (3)由题意3(100)(20)(55)W x x m x =----. 其对称轴60602mx =+>.055x ∴<时上述函数单调递增. 所以只有55x =时周销售利润最大.40503(55100)(5520)m ∴=----. 5m ∴=.【点睛】本题考查了二次函数在实际生活中的应用.重点是掌握求最值的问题.注意:数学应用题来源于实践.用于实践.在当今社会市场经济的环境下.应掌握一些有关商品价格和利润的知识.总利润等于总收入减去总成本.然后再利用二次函数求最值.5.(2021·辽宁营口·中考真题)某商家正在热销一种商品.其成本为30元/件.在销售过程中发现随着售价增加.销售量在减少.商家决定当售价为60元/件时.改变销售策略.此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y (件)与售价x (元/件)满足如图所示的函数关系.(其中4070x ≤≤.且x 为整数)(1)直接写出y 与x 的函数关系式.(2)当售价为多少时.商家所获利润最大.最大利润是多少?【答案】(1)10700406052006070x x y x x -+≤≤⎧=⎨-<≤⎩.(2)当售价为70元时.商家所获利润最大.最大利润是4500元 【解析】 【分析】(1)利用待定系数法分段求解函数解析式即可.(2)分别求出当4060x ≤≤时与当6070x <≤时的销售利润解析式.利用二次函数的性质即可求解. 【详解】解:(1)当4060x ≤≤时.设11y k x b =+. 将()40,300和()60,100代入.可得11113004010060k b k b =+⎧⎨=+⎩.解得1110700k b =-⎧⎨=⎩.即10700y x =-+. 当6070x <≤时.设22y k x b =+. 将()70,150和()60,100代入.可得22221507010060k b k b =+⎧⎨=+⎩.解得225200k b =⎧⎨=-⎩.即5200y x =-. ∴10700406052006070x x y x x -+≤≤⎧=⎨-<≤⎩. (2)当4060x ≤≤时.销售利润()()22301010002100010504000w y x x x x =⋅-=-+-=--+.当50x =时.销售利润有最大值.为4000元. 当6070x <≤时.销售利润()()()2230150605500150005502500w y x x x x x =⋅---=-+=-+.该二次函数开口向上.对称轴为50x =.当6070x <≤时位于对称轴右侧. 当70x =时.销售利润有最大值.为4500元. ∵45004000>.∴当售价为70元时.商家所获利润最大.最大利润是4500元. 【点睛】本题考查一次函数的应用、二次函数的性质.根据图象列出解析式是解题的关键. 6.(2021·湖南郴州·中考真题)某商店从厂家以每件2元的价格购进一批商品.在市场试销中发现.此商品的月销售量y (单位:万件)与销售单价x (单位:元)之间有如下表所示关系:x… 4.0 5.0 5.5 6.5 7.5 … y…8.06.05.03.01.0…(1)根据表中的数据.在图中描出实数对(,)x y 所对应的点.并画出y 关于x 的函数图象. (2)根据画出的函数图象.求出y 关于x 的函数表达式. (3)设经营此商品的月销售利润为P (单位:万元). ①写出P 关于x 的函数表达式.②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本).若物价局限定商品的销售单价不得超过....进价的200%.则此时的销售单价应定为多少元? 【答案】(1)图象见详解.(2)216y x =-+.(3)①222032P x x =-+-.②销售单价应定为3元. 【解析】 【分析】(1)由题意可直接进行作图.(2)由图象可得y 与x 满足一次函数的关系.所以设其关系式为y kx b =+.然后任意代入表格中的两组数据进行求解即可.(3)①由题意易得()2P x y =-.然后由(2)可进行求解.②由①及题意可得22203210x x -+-=.然后求解.进而根据销售单价不得超过进价的200%可求解.【详解】解:(1)y 关于x 的函数图象如图所示:(2)由(1)可设y 与x 的函数关系式为y kx b =+.则由表格可把()()4,8,5,6代入得:4856k b k b +=⎧⎨+=⎩.解得:216k b =-⎧⎨=⎩. ∴y 与x 的函数关系式为216y x =-+. (3)①由(2)及题意可得:()()()22221622032P x y x x x x =-=--+=-+-.∴P 关于x 的函数表达式为222032P x x =-+-. ②由题意得:2200x ≤⨯%.即4x ≤. ∴22203210x x -+-=. 解得:123,7x x ==.∴3x=.答:此时的销售单价应定为3元.【点睛】本题主要考查二次函数与一次函数的应用.熟练掌握二次函数与一次函数的应用是解题的关键.7.(2021·四川南充·中考真题)超市购进某种苹果.如果进价增加2元/千克要用300元.如果进价减少2元/千克.同样数量的苹果只用200元.(1)求苹果的进价.(2)如果购进这种苹果不超过100千克.就按原价购进.如果购进苹果超过100千克.超过部分购进价格减少2元/千克.写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式.(3)超市一天购进苹果数量不超过300千克.且购进苹果当天全部销售完.据统计.销售单价z(元/千克)与一天销售数量x(千克)的关系为112100z x=-+.在(2)的条件下.要使超市销售苹果利润w(元)最大.求一天购进苹果数量.(利润=销售收入-购进支出)【答案】(1)苹果的进价为10元/千克.(2)10(100)8200(100)x xyx x≤⎧=⎨+>⎩.(3)要使超市销售苹果利润w最大.一天购进苹果数量为200千克.【解析】【分析】(1)设苹果的进价为x元/千克.根据等量关系.列出分式方程.即可求解.(2)分两种情况:当x≤100时. 当x>100时.分别列出函数解析式.即可.(3)分两种情况:若x≤100时.若x>100时.分别求出w关于x的函数解析式.根据二次函数的性质.即可求解.【详解】解:(1)设苹果的进价为x元/千克.由题意得:30020022x x=+-.解得:x=10.经检验:x=10是方程的解.且符合题意.答:苹果的进价为10元/千克.(2)当x≤100时.y=10x.当x>100时.y=10×100+(10-2)×(x-100)=8x+200.∴10(100)8200(100)x x y x x ≤⎧=⎨+>⎩. (3)若x ≤100时.w =zx -y =21112102100100x x x x x ⎛⎫-+-=-+ ⎪⎝⎭=()21100100100x --+. ∴当x =100时.w 最大=100. 若x >100时.w =zx -y =()2111282004200100100x x x x x ⎛⎫-+-+=-+- ⎪⎝⎭=()21200200100x --+. ∴当x =200时.w 最大=200.综上所述:当x =200时.超市销售苹果利润w 最大.答:要使超市销售苹果利润w 最大.一天购进苹果数量为200千克. 【点睛】本题主要考查分式方程、一次函数、二次函数的实际应用.根据数量关系.列出函数解析式和分式方程.是解题的关键.8.(2021·湖北十堰·中考真题)某商贸公司购进某种商品的成本为20元/kg .经过市场调研发现.这种商品在未来40天的销售单价y (元/kg )与时间x (天)之间的函数关系式为:0.2530(120)35(2040)x x y x +≤≤⎧=⎨<≤⎩且x 为整数.且日销量()kg m 与时间x (天)之间的变化规律符合一次函数关系.如下表: 时间x (天) 1 3 6 10 …日销量()kg m 142 138 132 124 …(1)m 与x 的函数关系为___________.(2)哪一天的销售利润最大?最大日销售利润是多少?(3)在实际销售的前20天中.公司决定每销售1kg 商品就捐赠n 元利润(4n <)给当地福利院.后发现:在前20天中.每天扣除捐赠后的日销售利润随时间x 的增大而增大.求n 的取值范围.【答案】(1)2144m x =-+.(2)第16天销售利润最大.最大为1568元.(3)1.75<n <4 【解析】 【分析】(1)设m kx b =+.将()1142,.()3138,代入.利用待定系数法即可求解. (2)分别写出当120x ≤≤时与当2040x <≤时的销售利润表达式.利用二次函数和一次函数的性质即可求解.(3)写出在前20天中.每天扣除捐赠后的日销售利润表达式.根据二次函数的性质可得对称轴16220n +≤.求解即可. 【详解】解:(1)设m kx b =+.将()1142,.()3138,代入可得: 1421383k b k b =+⎧⎨=+⎩.解得2144k b =-⎧⎨=⎩. ∴2144m x =-+. (2)当120x ≤≤时.销售利润()()()212021440.2530201615682W my m x x x =-=-++-=--+. 当16x =时.销售利润最大为1568元. 当2040x <≤时.销售利润20302160W my m x =-=-+. 当21x =时.销售利润最大为1530元.综上所述.第16天销售利润最大.最大为1568元. (3)在前20天中.每天扣除捐赠后的日销售利润为:()()()21'200.2510214416214401442W my m nm x n x x n x n =--=+--+=-+++-.对称轴为直线x ═16+2n .∵在前20天中.每天扣除捐赠后的日销售利润随时间x 的增大而增大.且x 只能取整数.故只要第20天的利润高于第19天. 即对称轴要大于19.5 ∴16+2n >19.5. 求得n >1.75.又∵n <4. ∴n 的取值范围是:1.75<n <4. 答:n 的取值范围是1.75<n <4. 【点睛】本题考查二次函数与一次函数的实际应用.掌握二次函数与一次函数的性质是解题的关键.9.(2021·江苏扬州·中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租.下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元.那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元.那么将少租出1辆汽车.另外.公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元.无论是否租出汽车.公司均需一次性支付月维护费共计1850元. ..②月利润=月租车费-月维护费.③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润. 在两公司租出的汽车数量相等的条件下.根据上述信息.解决下列问题:(1)当每个公司租出的汽车为10辆时.甲公司的月利润是_______元.当每个公司租出的汽车为_______辆时.两公司的月利润相等. (2)求两公司月利润差的最大值.(3)甲公司热心公益事业.每租出1辆汽车捐出a 元()0a >给慈善机构.如果捐款后甲公司剩余的月利润仍高于乙公司月利润.且当两公司租出的汽车均为17辆时.甲公司剩余的月利润与乙公司月利润之差最大.求a 的取值范围. 【答案】(1)48000.37.(2)33150元.(3)50150a << 【解析】 【分析】(1)用甲公司未租出的汽车数量算出每辆车的租金.再乘以10.减去维护费用可得甲公司的月利润.设每个公司租出的汽车为x 辆.根据月利润相等得到方程.解之即可得到结果. (2)设两公司的月利润分别为y 甲.y 乙.月利润差为y .同(1)可得y 甲和y 乙的表达式.再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况.列出y 关于x 的表达式.根据二次函数的性质.结合x 的范围求出最值.再比较即可.(3)根据题意得到利润差为()25018001850y x a x =-+-+.得到对称轴.再根据两公司租出的汽车均为17辆.结合x 为整数可得关于a 的不等式180016.517.5100a-<<.即可求出a 的范围. 【详解】解:(1)()50105030001020010-⨯+⨯-⨯⎡⎤⎣⎦=48000元.当每个公司租出的汽车为10辆时.甲公司的月利润是48000元. 设每个公司租出的汽车为x 辆.由题意可得:()5050300020035001850x x x x -⨯+-=-⎡⎤⎣⎦. 解得:x =37或x =-1(舍).∴当每个公司租出的汽车为37辆时.两公司的月利润相等.(2)设两公司的月利润分别为y 甲.y 乙.月利润差为y . 则y 甲=()50503000200x x x -⨯+-⎡⎤⎣⎦. y 乙=35001850x -.当甲公司的利润大于乙公司时.0<x <37. y =y 甲-y 乙=()()5050300020035001850x x x x -⨯+---⎡⎤⎣⎦ =25018001850x x -++. 当x =1800502--⨯=18时.利润差最大.且为18050元. 当乙公司的利润大于甲公司时.37<x ≤50. y =y 乙-y 甲=()3500185050503000200x x x x ---⨯++⎡⎤⎣⎦ =25018001850x x --. ∵对称轴为直线x =1800502--⨯=18. 当x =50时.利润差最大.且为33150元. 综上:两公司月利润差的最大值为33150元.(3)∵捐款后甲公司剩余的月利润仍高于乙公司月利润.则利润差为25018001850y x x ax =-++-=()25018001850x a x -+-+.对称轴为直线x =1800100a-. ∵x 只能取整数.且当两公司租出的汽车均为17辆时.月利润之差最大. ∴180016.517.5100a-<<. 解得:50150a <<. 【点睛】本题考查了二次函数的实际应用.二次函数的图像和性质.解题时要读懂题意.列出二次函数关系式.尤其(3)中要根据x 为整数得到a 的不等式.10.(2018·湖北荆门·中考真题)随着龙虾节的火热举办.某龙虾养殖大户为了发挥技术优势.一次性收购了10000kg 小龙虾.计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同.放养10天的总成本为166000.放养30天的总成本为178000元.设这批小龙虾放养t 天后的质量为akg.销售单价为y 元/kg.根据往年的行情预测.a 与t 的函数关系为a=()()1000002010080002050t t t ⎧≤≤⎪⎨+<≤⎪⎩.y 与t 的函数关系如图所示. (1)设每天的养殖成本为m 元.收购成本为n 元.求m 与n 的值. (2)求y 与t 的函数关系式.(3)如果将这批小龙虾放养t 天后一次性出售所得利润为W 元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少? (总成本=放养总费用+收购成本.利润=销售总额﹣总成本)【答案】(1)m=600.n=160000.(2)()()316020513220505t t y t t ⎧+≤≤⎪⎪=⎨⎪-+<≤⎪⎩.(3)该龙虾养殖大户将这批小龙虾放养25天后一次性出售所得利润最大.最大利润是108500元. 【解析】 【详解】【分析】(1)根据题意列出方程组.求出方程组的解得到m 与n 的值即可. (2)根据图象.分类讨论利用待定系数法求出y 与P 的解析式即可.(3)根据W=ya ﹣mt ﹣n.表示出W 与t 的函数解析式.利用一次函数与二次函数的性质求出所求即可.【详解】(1)依题意得1016600030178000m n m n +=⎧⎨+=⎩ . 解得:600160000m n =⎧⎨=⎩. (2)当0≤t≤20时.设y=k 1t+b 1.由图象得:111162028b k b =⎧⎨+=⎩. 解得:113516k b ⎧=⎪⎨⎪=⎩ ∴y=35t+16.当20<t≤50时.设y=k 2t+b 2.由图象得:222220285022k b k b +=⎧⎨+=⎩.解得:221532k b ⎧=-⎪⎨⎪=⎩. ∴y=﹣15t+32.综上.()()3160t 205y 13220t 505t t ⎧+≤≤⎪⎪=⎨⎪-+<≤⎪⎩. (3)W=ya ﹣mt ﹣n.当0≤t≤20时.W=10000(35t+16)﹣600t ﹣160000=5400t.∵5400>0.∴当t=20时.W 最大=5400×20=108000.当20<t≤50时.W=(﹣15t+32)(100t+8000)﹣600t ﹣160000=﹣20t 2+1000t+96000=﹣20(t ﹣25)2+108500. ∵﹣20<0.抛物线开口向下. ∴当t=25.W 最大=108500. ∵108500>108000.∴当t=25时.W 取得最大值.该最大值为108500元.【点睛】本题考查了二次函数的应用.具体考查了待定系数法确定函数解析式.利用二次函数的性质确定最值.熟练掌握二次函数的性质是解本题的关键.二、一次函数+反比例函数应用问题例题(2021·广东深圳·中考真题)探究:是否存在一个新矩形.使其周长和面积为原矩形的2倍、12倍、k 倍.(1)若该矩形为正方形.是否存在一个正方形.使其周长和面积都为边长为2的正方形的2倍?_______(填“存在”或“不存在”).(2)继续探究.是否存在一个矩形.使其周长和面积都为长为3.宽为2的矩形的2倍? 同学们有以下思路:设新矩形长和宽为x 、y .则依题意10x y +=.12xy =.联立1012x y xy +=⎧⎨=⎩得210120x x -+=.再探究根的情况:根据此方法.请你探究是否存在一个矩形.使其周长和面积都为原矩形的12倍.如图也可用反比例函数与一次函数证明1l :10y x =-+.2l :12y x=.那么.①是否存在一个新矩形为原矩形周长和面积的2倍?_______. ②请探究是否有一新矩形周长和面积为原矩形的12.若存在.用图像表达. ③请直接写出当结论成立时k 的取值范围:.【答案】(1)不存在.(2)①存在.②不存在.见解析.③2425k 【解析】 【分析】(1)直接求出边长为2的正方形周长与面积.再求出周长扩大2倍即边长扩大2倍时正方形的面积.比较是否也为2倍即可.(2)①依题意根据一元二次方程根的情况判断即可.②设新矩形长和宽为x 、y .则依题意52x y +=.3xy =.联立.求出关于x 、y 的一元二次方程.判断根的情况.③设新矩形长和宽为x 和y .则由题意5x y k +=.6xy k =.同样列出一元二次方程.利用根的判别式进行求解即可. 【详解】(1)边长为2的正方形.周长为8.面积为4.当周长为其2倍时.边长即为4.面积为16.即为原来的4倍.故不存在. (2)①存在.∵210120x x -+=的判别式0∆>.方程有两组正数解.故存在. 从图像来看.1l :10y x =-+.2l :12y x=在第一象限有两个交点.故存在. ②设新矩形长和宽为x 、y .则依题意52x y +=.3xy =.联立523x y xy ⎧+=⎪⎨⎪=⎩得25302x x -+=. 因为∆<0.此方程无解.故这样的新矩形不存在.从图像来看.1l :52y x =-+.2l :3y x =在第一象限无交点.故不存在.③2425k. 设新矩形长和宽为x 和y .则由题意5x y k +=.6xy k =. 联立56x y k xy k +=⎧⎨=⎩得2560x kx k -+=.225240k k ∆=-.故2425k .【点睛】本题考查了一元二次方程的应用.根的判别式.需要认真阅读理解题意.根据题干过程模仿解题. 练习题1.(2021·浙江台州·中考真题)电子体重科读数直观又便于携带.为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R 1. R 1与踏板上人的质量m 之间的函数关系式为R 1=km +b (其中k .b 为常数.0≤m ≤120).其图象如图1所示.图2的电路中.电源电压恒为8伏.定值电阻R 0的阻值为30欧.接通开关.人站上踏板.电压表显示的读数为U 0 .该读数可以换算为人的质量m . 温馨提示:①导体两端的电压U .导体的电阻R .通过导体的电流I .满足关系式I =UR. ②串联电路中电流处处相等.各电阻两端的电压之和等于总电压.(1)求k .b 的值.(2)求R 1关于U 0的函数解析式. (3)用含U 0的代数式表示m .(4)若电压表量程为0~6伏.为保护电压表.请确定该电子体重秤可称的最大质量.【答案】(1)2402b k =⎧⎨=-⎩.(2)1024030R U =-.I (3)0120135m U =-.(4)该电子体重秤可称的最大质量为115千克. 【解析】 【分析】(1)根据待定系数法.即可求解.(2)根据“串联电路中电流处处相等.各电阻两端的电压之和等于总电压”.列出等式.进而即可求解.(3)由R 1=12-m +240.1024030R U =-.即可得到答案. (4)把06U =时.代入0480540m U =-.进而即可得到答案. 【详解】解:(1)把(0.240).(120.0)代入R 1=km +b .得2400120bk b =⎧⎨=+⎩.解得:2402b k =⎧⎨=-⎩. (2)∵001830U U R -=. ∴1024030R U =-. (3)由(1)可知:2402b k =⎧⎨=-⎩. ∴R 1=2-m +240. 又∵1024030R U =-. ∴024030U -=2-m +240.即:0120135m U =-. (4)∵电压表量程为0~6伏. ∴当06U =时.1201351156m =-= 答:该电子体重秤可称的最大质量为115千克. 【点睛】本题主要考查一次函数与反比例函数的实际应用.熟练掌握待定系数法.是解题的关键. 2.(2021·安徽·中考真题)已知正比例函数(0)y kx k =≠与反比例函数6y x=的图象都经过点A (m .2). (1)求k .m 的值.(2)在图中画出正比例函数y kx =的图象.并根据图象.写出正比例函数值大于反比例函数值时x 的取值范围.【答案】(1),k m 的值分别是23和3.(2)30x -<<或3x > 【解析】 【分析】(1)把点A (m .2)代入6y x=求得m 的值.从而得点A 的坐标.再代入(0)y kx k =≠求得k 值即可.(2)在坐标系中画出y kx =的图象.根据正比例函数(0)y kx k =≠的图象与反比例函数6y x=图象的两个交点坐标关于原点对称.求得另一个交点的坐标.观察图象即可解答. 【详解】(1)将(,2)A m 代入6y x=得62m =.3m ∴=.(3,2)A ∴.将(3,2)A 代入y kx =得23k =.23k ∴=. ,k m ∴的值分别是23和3.(2)正比例函数23y x =的图象如图所示.∵正比例函数(0)y kx k =≠与反比例函数6y x=的图象都经过点A (3.2). ∴正比例函数(0)y kx k =≠与反比例函数6y x=的图象的另一个交点坐标为(-3.-2). 由图可知:正比例函数值大于反比例函数值时x 的取值范围为30x -<<或3x >. 【点睛】本题是正比例函数与反比例函数的综合题.利用数形结合思想是解决问题的关键. 3.(2020·广西柳州·中考真题)如图.平行于y 轴的直尺(部分)与反比例函数my x=(x >0)的图象交于A 、C 两点.与x 轴交于B 、D 两点.连接AC .点A 、B 对应直尺上的刻度分别为5、2.直尺的宽度BD =2.OB =2.设直线AC 的解析式为y =kx +b . (1)请结合图象.直接写出: ①点A 的坐标是 . ②不等式mkx b x+>的解集是 . (2)求直线AC 的解析式.。
专题五用锐角三角函数解航海问题航海问题主要包括求航行的时间、求航行速度、判断是否有触礁危险等,是考试中的热点问题.解决航行问题的关键是从实际问题中构建一个或两个直角三角形,通过三角函数直接解决或根据图形中的数量关系建立方程解决.例1如图1,灯塔A周围1 000米水域内有礁石,一舰艇由西向东航行,在O处测得灯塔A在北偏东74°方向线上,这时O,A相距4 200米,如果不改变航向,此舰艇是否有触礁的危险?分析:要判断舰艇是否有触礁的危险,关键比较点A到正东方向的距离与1 000米的大小,因此,需过点A向正东方向引垂线,转化为直角三角形中的问题.解:如图1,过点A作AB与正东方向线垂直,垂足为B.在Rt△AOB中,OA=4 200,∠AOB=90°-74°=16°.AB=AO·sin∠AOB=4 200·sin16°=4 200×0.275 6≈1 158(米).因为1 158>1 000,所以此舰艇按原航向继续航行没有触礁的危险.说明:本题是一道比较简单的航行问题,不仅要能从实际问题中构造出直角三角形,而且还要注意一些解题技巧,如能用乘法的运算的,不用除法,能用正弦计算的,不用余弦.例2如图2,某船以每小时36海里的速度向正东方向航行,在点A测得某岛C在北偏东60°方向上,航行半小时后到达点B,测得该岛在北偏东30°方向上,已知该岛周围16海里内有暗礁.(1)试说明点B是否在暗礁区域外?(2)若继续向东航行有无触礁危险?请说明理由.分析:要判断点B是否在暗礁区域外.则需要计算BC的长度,看其长度是否大于16海里,若BC>16海里,则点B在暗礁区域外;要判断继续向东航行有无触礁危险,则需要计算船到岛C的最短距离,看是否小于16海里.若小于16海里,则有触礁的危险.为此,需要构造直角三角形解决.解:(1)过点B 作BD ∥A E ,交AC 于点D .因为AB =36×0.5=18(海里),∠ADB =60°,∠DBC =30°,所以∠ACB =30°.又∠CAB =30°,所以BC =AB .即BC =AB =18>16.所以点B 在暗礁区域外.(2)过点C 作CH ⊥AB ,垂足为H ,在Rt △CHB 中,∠BCH =30°,令BH =x ,则CH .在Rt △ACH 中,∠CAH =30°,所以3tan 30CH AH x ====o . 因为AH AB BH =+,所以318x x =+.解得9x =.所以16CH =<.所以船继续向东航行有触礁的危险.说明:有无触礁问题是航海中的热点,也是中考试题中经常出现的试题.解决此类问题需要正确理解题意,从实际问题构建直角三角形模型.专题训练:1.如图3,一艘船向正东方向航行,在B 处测得有一灯塔在它的北偏东30°,距离为72海里的A 处.当行至C 处测得灯塔恰好在它的正北方向,求此时它与灯塔的距离AC (计算结果精确到0.1海里).2.如图4,海上有一灯塔P ,在它周围3海里处有暗礁.一艘客轮以9海里/时的速度由西向东航行,行至A 点处测得P 在它的北偏东60°的方向,继续行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向. 问客轮不改变方向继续前进有无触礁的危险?参考答案:1.据题意∠ABC =90°-30°=60°,AB =72.在Rt △ABC 中,因为sin ∠ABC =AC AB, 所以AC =AB sin ∠ABC =72sin60°=72×1.7322≈62.4(海里). 2.过P 作PC ⊥AB 于C 点.据题意知:AB =9×26=3,∠P AB =90°-60°=30°,∠PBC =90°-45°=45°,∠PCB =90°. 所以PC =BC .在Rt △P AC 中,tan 303PC PC PC AC AB BC PC===++o .3PC PC =+.所以3PC =>. 所以客轮不改变方向继续前进无触礁危险.。
中考专题复习之五:函数初步知识一、 函数概念相关题型 1.(2010江苏泰州)已知点A 、B 的坐标分别为(2,0),(2,4),以A 、B 、P 为顶点的三角形与△ABO 全等,写出一个符合条件的点P 的坐标: .2. (2010湖北随州)若函数22(2)2x x y x ⎧+=⎨⎩ ≤ (x>2),则当函数值y =8时,自变量x 的值是( )AB .4 C4 D .43. (2010湖北鄂州)如图所示,四边形OABC 为正方形,边长为6,点A 、C 分别在x 轴,y 轴的正半轴上, 点D在OA 上,且D点的坐标为(2,0),P 是OB 上的一个动点,试求PD +P A 和的最小值是( )A .102B .10C .4D .64.(2010湖南娄底)如果点P (m -1,2-m )在第四象限,则m 的取值范围是_________ 5.(2010 山东荷泽)已知点P 的坐标为(m ,n ),O 为坐标原点,连结OP ,将线段OP 绕O 点顺时针旋转90°得OP ',则点P '的坐标为 . 6.(2009年兰州)函数y =x -2+31-x 中自变量x 的取值范围是 A .x ≤2 B .x =3 C . x <2且x ≠3 D .x ≤2且x ≠37.(2010浙江杭州)(本小题满分6分)常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A ,B 两点. 请你用 两种不同方法表述点B 相对点A 的位置.二、 图像理解 1.(2010江苏南京)如图,夜晚,小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间的函数关系的图像大致为2.(2010 山东省德州)某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h 与注水时间t 关系的是(A) (B) (C)(D)3.(2010四川凉山)如图,因水桶中的水有图错误!未找到引用源。
三年(2019-2021)中考真题数学分项汇编(浙江专用)专题05一次函数(浙江专用)一.选择题(共8小题)1.(2021•嘉兴)已知点P (a ,b )在直线y =﹣3x ﹣4上,且2a ﹣5b ≤0,则下列不等式一定成立的是( ) A .a b≤52B .a b≥52C .b a≥25D .b a≤25【分析】结合选项可知,只需要判断出a 和b 的正负即可,点P (a ,b )在直线y =﹣3x ﹣4上,代入可得关于a 和b 的等式,再代入不等式2a ﹣5b ≤0中,可判断出a 与b 正负,即可得出结论. 【详解】解:∵点P (a ,b )在直线y =﹣3x ﹣4上, ∴﹣3a ﹣4=b , 又2a ﹣5b ≤0,∴2a ﹣5(﹣3a ﹣4)≤0, 解得a ≤−2017<0,当a =−2017时,得b =−817, ∴b ≥−817, ∵2a ﹣5b ≤0, ∴2a ≤5b , ∴ba≤25.故选:D .2.(2020•嘉兴)一次函数y =2x ﹣1的图象大致是( )A .B .C .D .【分析】根据一次函数的性质,判断出k 和b 的符号即可解答.【详解】解:由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.故选:B.3.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=√2x+2C.y=4x+2D.y=2√33x+2【分析】求得A、B的坐标,然后分别求得各个直线与x的交点,进行比较即可得出结论.【详解】解:∵直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.∴A(﹣1,0),B(﹣3,0)A、y=x+2与x轴的交点为(﹣2,0);故直线y=x+2与x轴的交点在线段AB上;B、y=√2x+2与x轴的交点为(−√2,0);故直线y=√2x+2与x轴的交点在线段AB上;C、y=4x+2与x轴的交点为(−12,0);故直线y=4x+2与x轴的交点不在线段AB上;D、y=2√33x+2与x轴的交点为(−√3,0);故直线y=2√33x+2与x轴的交点在线段AB上;故选:C.4.(2020•杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.【分析】求得解析式即可判断.【详解】解:∵函数y=ax+a(a≠0)的图象过点P(1,2),∴2=a+a,解得a=1,∴y=x+1,∴直线交y 轴的正半轴于点(0,1),且过点(1,2), 故选:A .5.(2019•绍兴)若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于( ) A .﹣1B .0C .3D .4【分析】利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a ,10)代入解析式即可; 【详解】解:设经过(1,4),(2,7)两点的直线解析式为y =kx +b , ∴{4=k +b 7=2k +b ∴{k =3b =1, ∴y =3x +1,将点(a ,10)代入解析式,则a =3; 故选:C .6.(2019•杭州)已知一次函数y 1=ax +b 和y 2=bx +a (a ≠b ),函数y 1和y 2的图象可能是( )A .B .C .D .【分析】根据直线判断出a 、b 的符号,然后根据a 、b 的符号判断出直线经过的象限即可,做出判断.【详解】解:A 、由图可知:直线y 1=ax +b ,a >0,b >0.∴直线y 2=bx +a 经过一、二、三象限,故A 正确;B、由图可知:直线y1=ax+b,a<0,b>0.∴直线y2=bx+a经过一、四、三象限,故B错误;C、由图可知:直线y1=ax+b,a<0,b>0.∴直线y2=bx+a经过一、二、四象限,交点不对,故C错误;D、由图可知:直线y1=ax+b,a<0,b<0,∴直线y2=bx+a经过二、三、四象限,故D错误.故选:A.7.(2020•台州)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A.B.C.D.【分析】小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,由此即可判断.【详解】解:由题意小球在左侧时,V=kt,∴y=0+kt2•t=12kt2,∴小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,在右侧上升时,情形与左侧相反,故选:C.8.(2019•衢州)如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C 移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A.B.C.D.【分析】根据题意分类讨论,随着点P位置的变化,△CPE的面积的变化趋势.【详解】解:通过已知条件可知,当点P与点E重合时,△CPE的面积为0;当点P在EA上运动时,△CPE的高BC不变,则其面积是x的一次函数,面积随x增大而增大,当x=2时有最大面积为4,当P在AD边上运动时,△CPE的底边EC不变,则其面积是x的一次函数,面积随x增大而增大,当x=6时,有最大面积为8,当点P在DC边上运动时,△CPE的底边EC不变,则其面积是x的一次函数,面积随x增大而减小,最小面积为0;故选:C.二.填空题(共5小题)9.(2021•杭州)如图,在直角坐标系中,以点A(3,1)为端点的四条射线AB,AC,AD,AE分别过点B (1,1),点C(1,3),点D(4,4),点E(5,2),则∠BAC═∠DAE(填“>”、“=”、“<”中的一个).【分析】在直角坐标系中构造直角三角形,根据三角形边之间的关系推出角之间的关系.【详解】解:连接DE,由上图可知AB═2,BC═2,∴△ABC是等腰直角三角形,∴∠BAC═45°,又∵AE═√AF2+EF2═√22+12═√5,同理可得DE═√22+12═√5,AD═√12+32═√10,则在△ADE中,有AE2+DE2═AD2,∴△ADE 是等腰直角三角形, ∴∠DAE ═45°, ∴∠BAC ═∠DAE , 故答案为:═.10.(2019•杭州)某函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1,写出一个满足条件的函数表达式 y =﹣x +1(答案不唯一) . 【分析】根据题意写出一个一次函数即可. 【详解】解:设该函数的解析式为y =kx +b ,∵函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1, ∴{k +b =0b =1 解得:{k =−1b =1,所以函数的解析式为y =﹣x +1, 故答案为:y =﹣x +1(答案不唯一).11.(2019•金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s 关于行走时间t 的函数图象,则两图象交点P 的坐标是 (32,4800) .【分析】根据题意可以得到关于t 的方程,从而可以求得点P 的坐标,本题得以解决. 【详解】解:令150t =240(t ﹣12), 解得,t =32,则150t =150×32=4800, ∴点P 的坐标为(32,4800), 故答案为:(32,4800).12.(2020•金华)点P (m ,2)在第二象限内,则m 的值可以是(写出一个即可) ﹣1(答案不唯一). . 【分析】直接利用第二象限内点的坐标特点得出m 的取值范围,进而得出答案. 【详解】解:∵点P (m ,2)在第二象限内, ∴m <0,则m 的值可以是﹣1(答案不唯一). 故答案为:﹣1(答案不唯一).13.(2019•衢州)如图,由两个长为2,宽为1的长方形组成“7”字图形(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF ,其中顶点A 位于x 轴上,顶点B ,D 位于y 轴上,O 为坐标原点,则OB OA的值为 12.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F 1,摆放第三个“7”字图形得顶点F 2,依此类推,…,摆放第n 个“7”字图形得顶点F n ﹣1,…,则顶点F 2019的坐标为 (6062√55,405√5) .【分析】(1)先证明△AOB ∽△BCD ,所以OB OA=DC BC,因为DC =1,BC =2,所有OB OA=12;(2)利用三角形相似与三角形全等依次求出F 1,F 2,F 3,F 4的坐标,观察求出F 2019的坐标. 【详解】解:(1)∵∠ABO +∠DBC =90°,∠ABO +∠OAB =90°, ∴∠DBC =∠OAB , ∵∠AOB =∠BCD =90°, ∴△AOB ∽△BCD , ∴OB OA=DC BC,∵DC =1,BC =2, ∴OB OA=12,故答案为12;(2)解:过C 作CM ⊥y 轴于M ,过M 1作M 1N ⊥x 轴,过F 作FN 1⊥x 轴.根据勾股定理易证得BD =√22+12=√5,CM =OA =2√55,DM =OB =AN =√55, ∴C (2√55,√5), ∵AF =3,M 1F =BC =2, ∴AM 1=AF ﹣M 1F =3﹣2=1, ∴△BOA ≌ANM 1(AAS ), ∴NM 1=OA =2√55, ∵NM 1∥FN 1, ∴M 1N FN 1=AM 1AF, 2√55FN 1=13,∴FN 1=6√55, ∴AN 1=3√55, ∴ON 1=OA +AN 1=2√55+3√55=5√55 ∴F (5√55,6√55), 同理, F 1(8√55,7√55),即(1×3+55√5,6+15√5) F 2(11√55,8√55),即(2×3+55√5,6+25√5) F 3(14√55,9√55),即(3×3+55√5,6+35√5)F 4(17√55,10√55),即(4×3+55√5,6+45√5) …F 2019(2019×3+55√5,6+20195√5),即(60625√5,405√5), 故答案为即(60625√5,405√5). 三.解答题(共17小题)14.(2021•嘉兴)根据数学家凯勒的“百米赛跑数学模型”,前30米称为“加速期”,30米~80米为“中途期”,80米~100米为“冲刺期”.市田径队把运动员小斌某次百米跑训练时速度y (m /s )与路程x (m )之间的观测数据,绘制成曲线如图所示. (1)y 是关于x 的函数吗?为什么? (2)“加速期”结束时,小斌的速度为多少? (3)根据如图提供的信息,给小斌提一条训练建议.【分析】(1)根据函数的定义,可直接判断;(2)由图象可知,“加速期”结束时,即跑30米时,小斌的速度为10.4m /s . (3)答案不唯一.建议合理即可.【详解】解:(1)y 是x 的函数,在这个变化过程中,对于x 的每一个确定的值,y 都有唯一确定的值与之对应.(2)“加速期”结束时,小斌的速度为10.4m /s .(3)答案不唯一.例如:根据图象信息,小斌在80米左右时速度下降明显,建议增加耐力训练,提高成绩.15.(2020•嘉兴)经过实验获得两个变量x (x >0),y (y >0)的一组对应值如下表.x ..... 1 2 3 4 5 6 ...... y......6321.51.21......(1)请画出相应函数的图象,并求出函数表达式.(2)点A (x 1,y 1),B (x 2,y 2)在此函数图象上.若x 1<x 2,则y 1,y 2有怎样的大小关系?请说明理由.【分析】(1)利用描点法即可画出函数图象,再利用待定系数法即可得出函数表达式.(2)根据反比例函数的性质解答即可.【详解】解:(1)函数图象如图所示,设函数表达式为y=kx(k≠0),把x=1,y=6代入,得k=6,∴函数表达式为y=6x(x>0);(2)∵k=6>0,∴在第一象限,y随x的增大而减小,∴0<x1<x2时,则y1>y2.16.(2021•丽水)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s关于t的函数表达式;(3)当货车显示加油提醒后,问行驶时间t在怎样的范围内货车应进站加油?【分析】(1)由图象直接求出工厂离目的地的路程; (2)用待定系数法求出函数解析式即可;(3)当油箱中剩余油量为10升时和当油箱中剩余油量为0升时,求出t 的取值即可. 【详解】解:(1)由图象,得t =0时,s =880, ∴工厂离目的地的路程为880千米, 答:工厂离目的地的路程为880千米; (2)设s =kt +b (k ≠0),将(0,880)和(4,560)代入s =kt +b 得, {880=b 560=4k +b , 解得:{k =−80b =880,∴s 关于t 的函数表达式:s =﹣80t +880(0≤t ≤11), 答:s 关于t 的函数表达式:s =﹣80t +880(0≤t ≤11); (3)当油箱中剩余油量为10升时, s =880﹣(60﹣10)÷0.1=380(千米), ∴380=﹣80t +880, 解得:t =254(小时), 当油箱中剩余油量为0升时, s =880﹣60÷0.1=280(千米), ∴280=﹣80t +880,解得:t =152(小时), ∵k =﹣80<0, ∴s 随t 的增大而减小, ∴t 的取值范围是254<t <152.17.(2021•金华)在平面直角坐标系中,点A 的坐标为(−√73,0),点B 在直线l :y =38x 上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C .(1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D . ①若BA =BO ,求证:CD =CO .②若∠CBO =45°,求四边形ABOC 的面积.(2)是否存在点B ,使得以A ,B ,C 为顶点的三角形与△BCO 相似?若存在,求OB 的长;若不存在,请说明理由.【分析】(1)①由BC ⊥AB ,CO ⊥BO ,可得∠BAD +∠ADB =∠COD +∠DOB =90°,而根据已知有∠BAD =∠DOB ,故∠ADB =∠COD ,从而可得∠COD =∠CDO ,CD =CO ;②过A 作AM ⊥OB 于M ,过M 作MN ⊥y 轴于N ,设M (m ,38m ),可得tan ∠OMN =tan ∠AOM =38,即AM OM=38,设AM =3n ,则OM =8n ,Rt △AOM 中,AM 2+OM 2=OA 2,可求出AM =3,OM =8,由∠CBO =45°可知△BOC 是等腰直角三角形,△ABM 是等腰直角三角形,从而有AM =BM =3,BO =CO =OM ﹣BM =5,AB =√2AM =3√2,BC =√2BO =5√2,即可求出S 四边形ABOC =S △ABC +S △BOC =552; (2)(一)过A 作AM ⊥OB 于M ,当B 在线段OM 或OM 延长线上时,设OB =x ,则BM =|8﹣x |,AB =√9+(8−x)2, 由△AMB ∽△BOC ,OC BM=OB AM,即OC|8−x|=x3,得OC =x 3⋅|8−x|,BC =√OB 2+OC 2=x3√9+(8−x)2,以A ,B ,C 为顶点的三角形与△BCO 相似,分两种情况:①若AB OB=BC OC,OB =4;②若AB OC=BC OB,OB =4+√7或OB =4−√7或OB =9;(二)当B 在线段MO 延长线上时,设OB =x ,则BM =8+x ,AB =√9+(8+x)2,由△AMB ∽△BOC ,OCBM=OB AM,即OC8+x=x3,得OC =x3•(8+x ),以A ,B ,C 为顶点的三角形与△BCO 相似,需满足AB OC =BC OB ,即√9+(8+x)2x 3(8+x)=x3√9+(8+x)2x,可得OB =1.【详解】(1)①证明:∵BC ⊥AB ,CO ⊥BO , ∴∠ABC =∠BCO =90°,∴∠BAD +∠ADB =∠COD +∠DOB =90°, ∵BA =BO , ∴∠BAD =∠DOB , ∴∠ADB =∠COD , ∵∠ADB =∠CDO , ∴∠COD =∠CDO , ∴CD =CO ;②解:过A 作AM ⊥OB 于M ,过M 作MN ⊥y 轴于N ,如图:∵M 在直线l :y =38x 上,设M (m ,38m ),∴MN =|m |=﹣m ,ON =|38m |=−38m ,Rt △MON 中,tan ∠OMN =ON OM =38, 而OA ∥MN , ∴∠AOM =∠OMN , ∴tan ∠AOM =38,即AM OM=38,设AM =3n ,则OM =8n ,Rt △AOM 中,AM 2+OM 2=OA 2, 又A 的坐标为(−√73,0),∴OA=√73,∴(3n)2+(8n)2=(√73)2,解得n=1(n=﹣1舍去),∴AM=3,OM=8,∵∠CBO=45°,CO⊥BO,∴△BOC是等腰直角三角形,∵BC⊥AB,∠CBO=45°,∴∠ABM=45°,∵AM⊥OB,∴△ABM是等腰直角三角形,∴AM=BM=3,BO=CO=OM﹣BM=5,∴等腰直角三角形△ABM中,AB=√2AM=3√2,等腰直角三角形△BOC中,BC=√2BO=5√2,∴S△ABC=12AB•BC=15,S△BOC=12BO•CO=252,∴S四边形ABOC=S△ABC+S△BOC=55 2;(2)解:存在点B,使得以A,B,C为顶点的三角形与△BCO相似,理由如下:(一)过A作AM⊥OB于M,当B在线段OM或OM延长线上时,如图:由(1)②可知:AM=3,OM=8,设OB =x ,则BM =|8﹣x |,AB =√9+(8−x)2, ∵CO ⊥BO ,AM ⊥BO ,AB ⊥BC ,∴∠AMB =∠BOC =90°,∠ABM =90°﹣∠OBC =∠BCO , ∴△AMB ∽△BOC , ∴OC BM=OB AM,即OC|8−x|=x3,∴OC =x3⋅|8−x|,Rt △BOC 中,BC =√OB 2+OC 2=x3√9+(8−x)2,∵∠ABC =∠BOC =90°,∴以A ,B ,C 为顶点的三角形与△BCO 相似,分两种情况: ①若ABOB=BC OC,则√9+(8−x)2x=x3√9+(8−x)2x3|8−x|, 解得x =4, ∴此时OB =4; ②若AB OC=BC OB,则√9+(8−x)2x3|8−x|=x3√9+(8−x)2x,解得x 1=4+√7,x 2=4−√7,x 3=9,x 4=﹣1(舍去), ∴OB =4+√7或OB =4−√7或OB =9; (二)当B 在线段MO 延长线上时,如图:由(1)②可知:AM =3,OM =8, 设OB =x ,则BM =8+x ,AB =√9+(8+x)2, ∵CO ⊥BO ,AM ⊥BO ,AB ⊥BC ,∴∠AMB =∠BOC =90°,∠ABM =90°﹣∠OBC =∠BCO , ∴△AMB ∽△BOC , ∴OC BM=OB AM,即OC8+x=x3,∴OC =x3•(8+x ),Rt △BOC 中,BC =√OB 2+OC 2=x3•√9+(8+x)2,∵∠ABC =∠BOC =90°,∴以A ,B ,C 为顶点的三角形与△BCO 相似,需满足AB OC=BC OB,即√9+(8+x)2x3(8+x)=x3√9+(8+x)2x,解得x 1=﹣9(舍去),x 2=1, ∴OB =1,综上所述,以A ,B ,C 为顶点的三角形与△BCO 相似,则OB 的长度为:4或4+√7或4−√7或9或1; 18.(2021•绍兴)Ⅰ号无人机从海拔10m 处出发,以10m /min 的速度匀速上升,Ⅱ号无人机从海拔30m 处同时出发,以a (m /min )的速度匀速上升,经过5min 两架无人机位于同一海拔高度b (m ).无人机海拔高度y (m )与时间x (min )的关系如图.两架无人机都上升了15min . (1)求b 的值及Ⅱ号无人机海拔高度y (m )与时间x (min )的关系式; (2)问无人机上升了多少时间,Ⅰ号无人机比Ⅱ号无人机高28米.【分析】(1)由题意得:b =10+10×5=60;再用待定系数法求出函数表达式即可; (2)由题意得:(10z +10)﹣(6x +30)=28,即可求解. 【详解】解:(1)b =10+10×5=60, 设函数的表达式为y =kx +t ,将(0,30)、(5,60)代入上式得{t =3060=5k +t ,解得{k =6t =30,故函数表达式为y =6x +30(0≤x ≤15);(2)由题意得:(10z +10)﹣(6x +30)=28, 解得x =12<5,故无人机上升12min ,Ⅰ号无人机比Ⅱ号无人机高28米.19.(2021•温州)某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成份 每千克含铁42毫克配料表原料 每千克含铁 甲食材 50毫克 乙食材10毫克 规格 每包食材含量每包单价 A 包装 1千克 45元 B 包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完. ①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A 的数量不低于B 的数量,则A 为多少包时,每日所获总利润最大?最大总利润为多少元?【分析】(1)设乙食材每千克进价为a 元,则甲食材每千克进价为2a 元,根据“用80元购买的甲食材比用20元购买的乙食材多1千克”列分式方程解答即可;(2)①设每日购进甲食材x 千克,乙食材y 千克,根据(1)的结论以及“每日用18000元购进甲、乙两种食材并恰好全部用完”列方程组解答即可; ②设A 为m 包,则B 为500−m 0.25包,根据“A 的数量不低于B 的数量”求出m 的取值范围;设总利润为W 元,根据题意求出W 与x 的函数关系式,再根据一次函数的性质,即可得到获利最大的进货方案,并求出最大利润.【详解】解:(1)设乙食材每千克进价为a 元,则甲食材每千克进价为2a 元, 由题意得802a−20a=1,解得a =20,经检验,a =20是所列方程的根,且符合题意, ∴2a =40(元),答:甲食材每千克进价为40元,乙食材每千克进价为20元; (2)①设每日购进甲食材x 千克,乙食材y 千克, 由题意得{40x +20y =1800050x +10y =42(x +y),解得{x =400y =100,答:每日购进甲食材400千克,乙食材100千克; ②设A 为m 包,则B 为500−m 0.25=(2000﹣4m )包,∵A 的数量不低于B 的数量, ∴m ≥2000﹣4m , ∴m ≥400,设总利润为W 元,根据题意得:W =45m +12(2000﹣4m )﹣18000﹣2000=﹣3m +4000, ∵k =﹣3<0,∴W 随m 的增大而减小,∴当m =400时,W 的最大值为2800,答:当A 为400包时,总利润最大,最大总利润为2800元.20.(2020•金华)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T (℃)和高度h (百米)的函数关系如图所示. 请根据图象解决下列问题: (1)求高度为5百米时的气温; (2)求T 关于h 的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.【分析】(1)根据高度每增加1百米,气温大约降低0.6℃,由3百米时温度为13.2℃,即可得出高度为5百米时的气温;(2)应用待定系数法解答即可;(3)根据(2)的结论解答即可.【详解】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(℃), ∴13.2﹣1.2=12(℃),∴高度为5百米时的气温大约是12℃;(2)设T 关于h 的函数表达式为T =kh +b , 则:{3k +b =13.25k +b =12,解得{k =−0.6b =15,∴T 关于h 的函数表达式为T =﹣0.6h +15(h >0);(3)当T =6时,6=﹣0.6h +15, 解得h =15.∴该山峰的高度大约为15百米,即1500米.21.(2020•宁波)A ,B 两地相距200千米.早上8:00货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B 地.两辆货车离开各自出发地的路程y (千米)与时间x (小时)的函数关系如图所示.(通话等其他时间忽略不计) (1)求货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式.(2)因实际需要,要求货车乙到达B 地的时间比货车甲按原来的速度正常到达B 地的时间最多晚1个小时,问货车乙返回B 地的速度至少为每小时多少千米?【分析】(1)由待定系数法可求出函数解析式;(2)根据图中的信息求出乙返回B 地所需的时间,由题意可列出不等式1.6v ≥120,解不等式即可得出答案.【详解】解:(1)设函数表达式为y =kx +b (k ≠0),把(1.6,0),(2.6,80)代入y =kx +b ,得{0=1.6k +b80=2.6k +b ,解得:{k =80b =−128,∴y 关于x 的函数表达式为y =80x ﹣128;由图可知200﹣80=120(千米),120÷80=1.5(小时),1.6+1.5=3.1(小时), ∴x 的取值范围是1.6≤x <3.1.∴货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式为y =80x ﹣128(1.6≤x <3.1); (2)当y =200﹣80=120时, 120=80x ﹣128, 解得x =3.1, 由图可知,甲的速度为801.6=50(千米/小时),货车甲正常到达B 地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时), 设货车乙返回B 地的车速为v 千米/小时, ∴1.6v ≥120, 解得v ≥75.答:货车乙返回B 地的车速至少为75千米/小时.22.(2020•衢州)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km /h ,游轮行驶的时间记为t (h ),两艘轮船距离杭州的路程s (km )关于t (h )的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C 点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长. (2)若货轮比游轮早36分钟到达衢州.问: ①货轮出发后几小时追上游轮? ②游轮与货轮何时相距12km ?【分析】(1)根据图中信息解答即可.(2)①求出B,C,D,E的坐标,利用待定系数法求解即可.②分三种情形种情形分别构建方程求解即可.【详解】解:(1)C点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h.∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h).(2)①280÷20=14h,∴点A(14,280),点B(16,280),∵36÷60=0.6(h),23﹣0.6=22.4,∴点E(22.4,420),设BC的解析式为s=20t+b,把B(16,280)代入s=20t+b,可得b=﹣40,∴s=20t﹣40(16≤t≤23),同理由D(14,0),E(22.4,420)可得DE的解析式为s=50t﹣700(14≤t≤22.4),由题意:20t﹣40=50t﹣700,解得t=22,∵22﹣14=8(h),∴货轮出发后8小时追上游轮.②相遇之前相距12km时,20t﹣40﹣(50t﹣700)=12,解得t=21.6.相遇之后相距12km时,50t﹣700﹣(20t﹣40)=12,解得t=22.4,当游轮在刚离开杭州12km时,此时根据图象可知货轮就在杭州,游轮距离杭州12km,所以此时两船应该也是相距12km,即在0.6h的时候,两船也相距12km∴0.6h或21.6h或22.4h时游轮与货轮相距12km.23.(2020•绍兴)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x (厘米)时,秤钩所挂物重为y (斤),则y 是x 的一次函数.下表中为若干次称重时所记录的一些数据. x (厘米) 1 2 4 7 11 12 y (斤)0.751.001.502.753.253.50(1)在上表x ,y 的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?【分析】(1)利用描点法画出图形即可判断.(2)设函数关系式为y =kx +b ,利用待定系数法解决问题即可. 【详解】解:(1)观察图象可知:x =7,y =2.75这组数据错误.(2)设y =kx +b ,把x =1,y =0.75,x =2,y =1代入可得{k +b =0.752k +b =1,解得{k =14b =12, ∴y =14x +12, 当x =16时,y =4.5,答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.24.(2020•温州)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a的代数式表示b.②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.【分析】(1)根据4月份用39000元购进一批相同的T恤衫,数量是3月份的2倍,可以得到相应的分式方程,从而可以求得4月份进了这批T恤衫多少件;(2)①根据甲乙两店的利润相同,可以得到关于a、b的方程,然后化简,即可用含a的代数式表示b;②根据题意,可以得到利润与a的函数关系式,再根据乙店按标价售出的数量不超过九折售出的数量,可以得到a的取值范围,从而可以求得乙店利润的最大值.【详解】解:(1)设3月份购进x件T恤衫,18000 x +10=390002x,解得,x=150,经检验,x=150是原分式方程的解,则2x=300,答:4月份进了这批T恤衫300件;(2)①每件T恤衫的进价为:39000÷300=130(元),(180﹣130)a+(180×0.8﹣130)(150﹣a)=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)化简,得b=150−a2;②设乙店的利润为w元,w=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)=54a+36b﹣600=54a+36×150−a2−600=36a+2100,∵乙店按标价售出的数量不超过九折售出的数量,∴a≤b,即a ≤150−a2, 解得,a ≤50,∴当a =50时,w 取得最大值,此时w =3900, 答:乙店利润的最大值是3900元.25.(2019•绍兴)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x ≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x ≤200时,求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.【分析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,据此即可求出1千瓦时的电量汽车能行驶的路程;(2)运用待定系数法求出y 关于x 的函数表达式,再把x =180代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.【详解】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米. 1千瓦时的电量汽车能行驶的路程为:15060−35=6千米;(2)设y =kx +b (k ≠0),把点(150,35),(200,10)代入, 得{150k +b =35200k +b =10, ∴{k =−0.5b =110, ∴y =﹣0.5x +110,当x =180时,y =﹣0.5×180+110=20,答:当150≤x≤200时,函数表达式为y=﹣0.5x+110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.26.(2019•温州)如图,在平面直角坐标系中,直线y=−12x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连接OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长.(2)设点Q2为(m,n),当nm =17tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.【分析】(1)令y=0,可得B的坐标,利用勾股定理可得BC的长,进而求出OE的长;(2)如图1,作辅助线,证明△CDN∽△MEN,得CN=MN=1,计算EN的长,根据面积法可得OF的长,利用勾股定理得OF的长,由nm =17tan∠EOF和n=−12m+4,可得结论;(3)①先设s关于t成一次函数关系,设s=kt+b,根据当点P运动到AO中点时,点Q恰好与点C重合,得t=2时,CD=4,DQ3=2,s=2√5,根据Q3(﹣4,6),Q2(6,1),可得t=4时,s=5√5,利用待定系数法可得s关于t的函数表达式,根据s和t都不是负数,确定t的取值;②分三种情况:(i)当PQ∥OE时,如图2,根据cos∠QBH=ABBQ3=BHBQ=126√5=25√5,表示BH的长,根据AB=12,列方程可得t的值;(ii)当PQ∥OF时,如图3,根据tan∠HPQ=tan∠CDN=14,列方程为2t﹣2=14(7−32t),可得t的值.(iii)由图形可知PQ不可能与EF平行.【详解】解:(1)令y=0,则−12x+4=0,∴x=8,∴B(8,0),∵C(0,4),∴OC=4,OB=8,在Rt△BOC中,BC=√82+42=4√5,又∵E为BC中点,∴OE=12BC=2√5;(2)如图1,作EM⊥OC于M,则EM∥CD,∵E是BC的中点∴M是OC的中点∴EM=12OB=4,OE=12BC=2√5∵∠CDN=∠NEM,∠CND=∠MNE ∴△CDN∽△MEN,∴CNMN =CDEM=1,∴CN=MN=1,∴EN=√12+42=√17,∵S△ONE=12EN•OF=12ON•EM,∴OF=√17=1217√17,由勾股定理得:EF=√OE2−OF2=(2√5)2−(12√1717)2=1417√17,∴tan∠EOF=EFOF=14√171712√1717=76,∴n m=17×76=16,∵n =−12m +4, ∴m =6,n =1, ∴Q 2(6,1);(3)①∵动点P 、Q 同时作匀速直线运动, ∴s 关于t 成一次函数关系,设s =kt +b ,∵当点P 运动到AO 中点时,点Q 恰好与点C 重合, ∴t =2时,CD =4,DQ 3=2, ∴s =Q 3C =√22+42=2√5, ∵Q 3(﹣4,6),Q 2(6,1),∴t =4时,s =√(6+4)2+(6−1)2=5√5,将{t =2s =2√5和{t =4s =5√5代入得{2k +b =2√54k +b =5√5,解得:{k =32√5b =−√5, ∴s =3√52t −√5, ∵s ≥0,t ≥0,且32√5>0,∴s 随t 的增大而增大, 当s ≥0时,3√52t −√5≥0,即t ≥23,当t =23时,Q 3与Q 重合,∵点Q 在线段Q 2Q 3上,综上,s 关于t 的函数表达式为:s =3√52t −√5(23≤t ≤4);②(i )当PQ ∥OE 时,如图2,∠QPB =∠EOB =∠OBE , 作QH ⊥x 轴于点H ,则PH =BH =12PB ,Rt △ABQ 3中,AQ 3=6,AB =4+8=12, ∴BQ 3=√62+122=6√5, ∵BQ =6√5−s =6√5−3√52t +√5=7√5−3√52t , ∵cos ∠QBH =ABBQ 3=BHBQ =6√5=25√5, ∴BH =14﹣3t , ∴PB =28﹣6t , ∴t +28﹣6t =12,t =165;(ii )当PQ ∥OF 时,如图3,过点Q 作QG ⊥AQ 3于点G ,过点P 作PH ⊥GQ 于点H ,由△Q 3QG ∽△CBO 得:Q 3G :QG :Q 3Q =1:2:√5, ∵Q 3Q =s =3√52t −√5, ∴Q 3G =32t ﹣1,GQ =3t ﹣2,∴PH =AG =AQ 3﹣Q 3G =6﹣(32t ﹣1)=7−32t ,∴QH =QG ﹣AP =3t ﹣2﹣t =2t ﹣2, ∵∠HPQ =∠CDN , ∴tan ∠HPQ =tan ∠CDN =14, ∴2t ﹣2=14(7−32t),t =3019,(iii )由图形可知PQ 不可能与EF 平行, 综上,当PQ 与△OEF 的一边平行时,AP 的长为165或3019.27.(2019•台州)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h (单位:m )与下行时间x (单位:s )之间具有函数关系h=−310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.【分析】(1)根据函数图象中的数据可以得到y关于x的函数解析式;(2)分别令h=0和y=0求出相应的x的值,然后比较大小即可解答本题.【详解】解:(1)设y关于x的函数解析式是y=kx+b,{b=615k+b=3,解得,{k=−15 b=6,∴y=−15x+6,∴当y=0时,x=30,即y关于x的函数解析式是y=−15x+6(0≤x≤30);(2)当h=0时,0=−310x+6,得x=20,当y=0时,0=−15x+6,得x=30,∵20<30,∴甲先到达地面.28.(2019•宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)【分析】(1)设y =kx +b ,运用待定系数法求解即可;(2)把y =1500代入(1)的结论即可;(3)设小聪坐上了第n 班车,30﹣25+10(n ﹣1)≥40,解得n ≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.【详解】解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0),把(20,0),(38,2700)代入y =kx +b ,得{0=20k +b 2700=38k +b ,解得{k =150b =−3000, ∴第一班车离入口处的路程y (米)与时间x (分)的函数表达为y =150x ﹣3000(20≤x ≤38);(2)把y =1500代入y =150x ﹣3000,解得x =30,30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;(3)设小聪坐上了第n 班车,则30﹣25+10(n ﹣1)≥40,解得n ≥4.5,∴小聪坐上了第5班车,等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20﹣(8+5)=7(分),∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.。
专题05二次函数中的平移、旋转、对称(五大题型)通用的解题思路:1.二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x–h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.3.二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。
4.二次函数图象的翻折与旋转y=a(x-h)²+k绕原点旋转180°y=-a(x+h)²-k a、h、k均变号沿x轴翻折y=-a(x-h)²-k a、k变号,h不变沿y轴翻折y=a(x+h)²+k a、h不变,h变号题型一:二次函数中的平移问题1.(2024•牡丹区校级一模)如图,在平面直角坐标系xOy中,抛物线21(0)y ax bx aa=+-<与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示).(2)当B的纵坐标为3时,求a的值;(3)已知点11(,2Pa-,(2,2)Q,若抛物线与线段PQ恰有一个公共点,请结合函数图象求出a的取值范围.2.(2024•平原县模拟)已知抛物线212:23C y ax ax a =++-.(1)写出抛物线1C 的对称轴:.(2)将抛物线1C 平移,使其顶点是坐标原点O ,得到抛物线2C ,且抛物线2C 经过点(2,2)A --和点B (点B 在点A 的左侧),若ABO ∆的面积为4,求点B 的坐标.(3)在(2)的条件下,直线1:2l y kx =-与抛物线2C 交于点M ,N ,分别过点M ,N 的两条直线2l ,3l 交于点P ,且2l ,3l 与y 轴不平行,当直线2l ,3l 与抛物线2C 均只有一个公共点时,请说明点P 在一条定直线上.3.(2024•和平区一模)已知抛物线21(y ax bx a =+-,b 为常数.0)a ≠经过(2,3),(1,0)两个点.(Ⅰ)求抛物线的解析式;(Ⅱ)抛物线的顶点为;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线.4.(2024•礼县模拟)如图,在平面直角坐标系中,抛物线23y ax bx =++交y 轴于点A ,且过点(1,2)B -,(3,0)C .(1)求抛物线的函数解析式;(2)求ABC ∆的面积;(3)将抛物线向左平移(0)m m >个单位,当抛物线经过点B 时,求m 的值.5.(2024•珠海校级一模)已知抛物线223y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.6.(2024•关岭县一模)如图,二次函数212y x bx c =++与x 轴有两个交点,其中一个交点为(1,0)A -,且图象过点(1,2)B ,过A ,B 两点作直线AB .(1)求该二次函数的表达式,并用顶点式来表示;(2)将二次函数212y x bx c =++向左平移1个单位,得函数2y =;函数2y 与坐标轴的交点坐标为;(3)在(2)的条件下,将直线AB 向下平移(0)n n >个单位后与函数2y 的图象有唯一交点,求n 的值.7.(2024•温州模拟)如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式.(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.8.(2024•巴东县模拟)已知二次函数2y ax bx c =++图象经过(2,3)A ,(3,6)B 、(1,6)C -三点.(1)求该二次函数解析式;(2)将该二次函数2y ax bx c =++图象平移使其经过点(5,0)D ,且对称轴为直线4x =,求平移后的二次函数的解析式.9.(2024•郑州模拟)在平面直角坐标系中,抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B .(1)求抛物线的解析式;(2)直线y x m =+经过点A ,判断点B 是否在直线y x m =+上,并说明理由;(3)平移抛物线2y x bx c =-++使其顶点仍在直线y x m =+上,若平移后抛物线与y 轴交点的纵坐标为n ,求n 的取值范围.10.(2024•鞍山模拟)已知抛物线2246y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.11.(2023•原平市模拟)(1)计算:3211()(5)|2|3--+---⨯-;(2)观察表格,完成相应任务:x3-2-1-012221A x x =+-21-2-1-①72(1)2(1)1B x x =-+--721-2-②2任务一:补全表格;任务二:观察表格不难发现,当x m =时代数式A 的值与当1x m =+时代数式B 的值相等,我们称这种现象为代数式B 参照代数式A 取值延后,相应的延后值为1:换个角度来看,将代数式A ,B 变形,得到(A =③2)2-,22B x =-将A 与B 看成二次函数,则将A 的图象④(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式P =⑤.12.(2024•南山区校级模拟)数形结合是解决数学问题的重要方法.小明同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:【观察探究】:方程2(||1)1x --=-的解为:;【问题解决】:若方程2(||1)x a --=有四个实数根,分别为1x 、2x 、3x 、4x .①a 的取值范围是;②计算1234x x x x +++=;【拓展延伸】:①将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?画出平移后的图象并写出平移过程;②观察平移后的图象,当123y 时,直接写出自变量x 的取值范围.13.(2023•花山区一模)已知抛物线2y x ax b =++的顶点坐标为(1,2).(1)求a ,b 的值;(2)将抛物线2y x ax b =++向下平移m 个单位得到抛物线1C ,存在点(,1)c 在1C 上,求m 的取值范围;(3)抛物线22:(3)C y x k =-+经过点(1,2),直线(2)y n n =>与抛物线2y x ax b =++相交于A 、B (点A 在点B 的左侧),与2C 相交于点C 、D (点C 在点D 的左侧),求AD BC -的值.14.(2023•环翠区一模)已知抛物线2y x bx c =++经过点(1,0)和点(0,3).(1)求此抛物线的解析式;(2)当自变量x 满足13x - 时,求函数值y 的取值范围;(3)将此抛物线沿x 轴平移m 个单位长度后,当自变量x 满足15x 时,y 的最小值为5,求m 的值.15.(2023•南宁一模)如图1,抛物线21y x c =-+的图象经过(1,3).(1)求c 的值及抛物线1y 的顶点坐标;(2)当132x -时,求1y 的最大值与最小值的和;(3)如图2,将抛物线1y 向右平移m 个单位(0)m >,再向上平移2m 个单位得到新的抛物线2y ,点N 为抛物线1y 与2y 的交点.设点N 到x 轴的距离为n ,求n 关于m 的函数关系式,并直接写出当n 随m 的增大而减小时,m 的取值范围.16.(2023•奉贤区一模)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的对称轴为直线2x =,顶点为A ,与x 轴分别交于点B 和点C (点B 在点C 的左边),与y 轴交于点D ,其中点C 的坐标为(3,0).(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E ,联结DE .①如果//DE AC ,求四边形ACDE 的面积;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,当DQE CDQ ∠=∠时,求点Q 的坐标.17.(2023•下城区校级模拟)如图已知二次函数2(y x bx c b =++,c 为常数)的图象经过点(3,1)A -,点(0,4)C -,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交二次函数2y x bx c =++的图象于点B ,连接BC .(1)求该二次函数的表达式及点M 的坐标:(2)若将该二次函数图象向上平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围;(3)若E 为y 轴上且位于点C 下方的一点,P 为直线AC 上一点,在第四象限的抛物线上是否存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q 的横坐标:若不存在,请说明理由.18.(2023•即墨区一模)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为243y x x =-+.已知二次函数2y ax bx c =++的图象经过点(0,3)A ,(1,0)B ,.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件:;(2)当函数值6y <时,自变量x 的取值范围:;(3)如图1,将函数243(0)y x x x =-+<的图象向右平移4个单位长度,与243(4)y x x x =-+ 的图象组成一个新的函数图象,记为L .若点(3,)P m 在L 上,求m 的值;(4)如图2,在(3)的条件下,点A 的坐标为(2,0),在L 上是否存在点Q ,使得9OAQ S ∆=.若存在,求出所有满足条件的点Q 的坐标;若不存在,请说明理由.19.(2023•武侯区模拟)定义:将二次函数l 的图象沿x 轴向右平移t ,再沿x 轴翻折,得到新函数l '的图象,则称函数l '是函数l 的“t 值衍生抛物线”.已知2:23l y x x =--.(1)当2t =-时,①求衍生抛物线l '的函数解析式;②如图1,函数l 与l '的图象交于(M ,)n ,(,N m -两点,连接MN .点P 为抛物线l '上一点,且位于线段MN 上方,过点P 作//PQ y 轴,交MN 于点Q ,交抛物线l 于点G ,求QNG S ∆与PNG S ∆存在的数量关系.(2)当2t =时,如图2,函数l 与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC .函数l '与x 轴交于D ,E 两点,与y 轴交于点F .点K 在抛物线l '上,且EFK OCA ∠=∠.请直接写出点K 的横坐标.20.(2023•天门三模)如图,在平面直角坐标系中,已知抛物线223y x x =--的顶点为A ,与y 轴交于点C ,线段//CB x 轴,交该抛物线于另一点B .(1)求点B 的坐标及直线AC 的解析式;(2)当二次函数223y x x =--的自变量x 满足1m x m + 时,此函数的最大值为p ,最小值为q ,且2p q -=.求m 的值;(3)平移抛物线223y x x =--,使其(备用图)顶点始终在直线AC 上移动,当平移后的抛物线与射线BA 只有一个公共点时,设此时抛物线的顶点的横坐标为n ,请直接写出n 的取值范围.21.(2023•米东区模拟)如图,已知二次函数2(y x bx c b =-++,c 为常数)的图象经过点(3,1)A ,点(0,4)C ,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交该二次函数图象于点B ,连结BC .(1)求该二次函数的解析式及点M 的坐标;(2)若将该二次函数图象向下平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围.22.(2023•驻马店二模)如图1所示,平面直角坐标系中,抛物线223y ax ax =-+交x 轴于A 、B 两点,与y 轴交于点C ,已知点A 坐标为(1,0)-.(1)求抛物线解析式及其顶点坐标.(2)若将抛物线向右平移m 个单位,得新抛物线“V ”,若“V ”与坐标轴仅有两个交点,求m 值.(3)若点M 为线段AB 上一动点,过点M 作y 轴平行线,该平行线与“V ”交点为N ,请直接写出点N 的纵坐标N y 的取值范围.23.(2023•宝鸡二模)如图,抛物线2:4L y ax bx =++与x 轴交于点(1,0)A -、(3,0)B ,与y 轴交于点C .将抛物线L 向右平移一个单位得到抛物线L '.(1)求抛物线L 与L '的函数解析式;(2)连接AC ,探究抛物线L '的对称轴上是否存在点P ,使得以点A ,C ,P 为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.题型二:二次函数中的翻折问题24.(2024•江西模拟)已知二次函数265(0)y kx kx k k =-+>经过A ,B 两定点(点A 在点B 的左侧),顶点为P .(1)求定点A ,B 的坐标;(2)把二次函数265y kx kx k =-+的图象在直线AB 下方的部分向上翻折,将向上翻折得到的部分与原二次函数位于直线AB 上方的部分的组合图象记作图象W ,求向上翻折部分的函数解析式;(3)在(2)中,已知ABP ∆的面积为8.①当14x 时,求图象W 中y 的取值范围;②若直线y m =与图象W 从左到右依次交于C ,D ,E ,F 四点,若CD DE EF ==,求m 的值.25.(2023•零陵区三模)在平面直角坐标系中,二次函数2229y x mx m =-+-+的图象与x 轴交于A ,B 两点(点A 在点B 的左侧).(1)求A 、B 两点的坐标(用含m 的式子表示);(2)将该二次函数图象在x 轴下方的部分沿x 轴翻折,其他部分保持不变,得到一个新的函数图象.若当31x -- 时,这个新函数G 的函数值y 随x 的增大而减小,结合函数图象,求m 的取值范围;(3)已知直线:1l y =,点C 在二次函数2229y x mx m =-+-+的图象上,点C 的横坐标为2m ,二次函数2229y x mx m =-+-+的图象在C 、B 之间的部分记为M (包括点C ,)B ,图象M 上恰有一个点到直线l 的距离为2,直接写出m 的取值范围.26.(2023•连云港)如图,在平面直角坐标系xOy 中,抛物线21:23L y x x =--的顶点为P .直线l 过点(0M ,)(3)m m - ,且平行于x 轴,与抛物线1L 交于A 、B 两点(B 在A 的右侧).将抛物线1L 沿直线l 翻折得到抛物线2L ,抛物线2L 交y 轴于点C ,顶点为D .(1)当1m =时,求点D 的坐标;(2)连接BC 、CD 、DB ,若BCD ∆为直角三角形,求此时2L 所对应的函数表达式;(3)在(2)的条件下,若BCD ∆的面积为3,E 、F 两点分别在边BC 、CD 上运动,且EF CD =,以EF 为一边作正方形EFGH ,连接CG ,写出CG 长度的最小值,并简要说明理由.27.(2024•盐城模拟)已知抛物线2(31)2(y ax a x a =---为常数且0)a ≠与y 轴交于点A .(1)点A 的坐标为;对称轴为(用含a 的代数式表示);(2)无论a 取何值,抛物线都过定点B (与点A 不重合),则点B 的坐标为;(3)若0a <,且自变量x 满足13x - 时,图象最高点的纵坐标为2,求抛物线的表达式;(4)将点A 与点B 之间的函数图象记作图象M (包含点A 、)B ,若将M 在直线2y =-下方的部分保持不变,上方的部分沿直线2y =-进行翻折,可以得到新的函数图象1M ,若图象1M 上仅存在两个点到直线6y =-的距离为2,求a 的值.28.(2023•扶余市二模)如图,抛物线2y x bx c =++与x 轴交于点(1,0)A ,(5,0)B ,顶点为P .(1)求该抛物线的解析式,并直接写出点P 的坐标;(2)如图,把原抛物线x 轴下方的部分沿x 轴翻折到x 轴上方,将翻折得到的部分与原抛物线x 轴上方的部分记作图形M ,在图形M 中,回答:①点A ,B 之间的函数图象所对应的函数解析式为2(3)4y x =--+(15)x ;②当342x 时,求y 的取值范围;③当2m x m + ,且32m >时,若最高点与最低点的纵坐标的差为154,直接写出m 的值.29.(2023•余江区一模)已知抛物线21:23(0)C y ax ax a =--≠(1)当1a =时,①抛物线1C 的顶点坐标为.②将抛物线1C 沿x 轴翻折得到抛物线2C ,则抛物线2C 的解析式为.(2)无论a 为何值,直线y m =与抛物线1C 相交所得的线段EF (点E 在点F 左侧)的长度都不变,求m 的值和EF 的长;(3)在(2)的条件下,将抛物线1C 沿直线y m =翻折,得到抛物线3C ,抛物线1C ,3C 的顶点分别记为P ,Q ,是否存在实数a ,使得以点E ,F ,P ,Q 为顶点的四边形为正方形?若存在,请求出a 的值:若不存在,请说明理由.30.(2023•越秀区校级三模)已知二次函数2y x bx m =++图象的对称轴为直线2x =,将二次函数2y x bx m =++图象中y 轴左侧部分沿x 轴翻折,保留其他部分得到新的图象C .(1)求b 的值;(2)①当0m <时,图C 与x 轴交于点M ,(N M 在N 的左侧),与y 轴交于点P .当MNP ∆为直角三角形时,求m 的值;②在①的条件下,当图象C 中40y -< 时,结合图象求x 的取值范围;(3)已知两点(1,1)A --,(5,1)B -,当线段AB 与图象C 恰有两个公共点时,直接写出m 的取值范围.题型三:二次函数对称问题31.(2024•雁塔区校级二模)如图,抛物线2:3L y ax bx =++经过(1,0)A -,(5,3)B 两点,与y 轴交于点C .(1)求该抛物线L 的表达式;(2)抛物线L '与抛物线L 关于直线BC 对称,P 是抛物线L 的x 轴上方且在对称轴左侧的一点,过点P 作y 轴的平行线交抛物线L '于点Q ,点P 、Q 关于抛物线L 的对称轴对称的点分别为M 、N .试探究是否存在一点P ,使得四边形PQNM 为长宽之比是1:2的矩形?若存在,求出点P 的横坐标;若不存在,请说明理由.32.(2023•鄞州区校级模拟)已知二次函数21441y ax ax a =++-的图象是M .(1)求M 关于点(1,0)R 成中心对称的图象N 的解析式2y ;(2)当25x 时,2y 的最大值为5,求a 的值.33.(2024•沙坪坝区校级模拟)如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠与x 轴交于(2,0)A ,(4,0)B -,与y 轴交于(0,4)C ,连接AC ,作直线BC .(1)求该抛物线的解析式;(2)已知直线BC 上方抛物线上有一动点P ,过点P 作//PM x 轴交BC 于M ,过M 作//MN y 轴交x 轴于N ,求PM MN +的最大值和此时P 点坐标;(3)将原抛物线沿CB 方向平移个单位长度得到新抛物线,已知D 点是新抛物线上一动点,且DBC OAC BCO ∠=∠+∠,求所有符合条件的点D 的横坐标并写出其中一种情况的求解过程.34.(2023•海安市模拟)已知两个函数,如果对于任意的自变量x ,这两个函数对应的函数值记为1y ,2y ,都有点1(,)x y 、2(,)x y 关于点(,)x x 对称,则称这两个函数为关于y x =的对称函数,例如,112y x =和232y x =为关于y x =的对称函数.(1)判断:①13y x =和2y x =-;②11y x =+和21y x =-;③211y x =+和221y x =-,其中为关于y x =的对称函数的是(填序号);(2)若132y x =+和2(0)y kx b k =+≠为关于y x =的对称函数.求k 、b 的值.(3)若21(0)y ax bx c a =++≠和22y x n =+为关于y x =的对称函数,令21w y y =-,当函数w 与函数(02)y x x = 有且只有一个交点时,求n 的取值范围.35.(2023•雁塔区校级模拟)已知抛物线21:3C y ax bx =+-与x 轴于点(1,0)A -,(3,0)B ,与y 轴交于点C .(1)求抛物线1C 的解析式;(2)已知抛物线2C 与抛物线1C 关于y 轴对称,过点C 作//CD x 轴交抛物线1C 于点D ,P 是抛物线2C 上的一个动点,连接PB 、PC 、BC 、BD .若PBC BCD S S ∆∆=,求点P 的坐标.36.(2023•灞桥区校级模拟)如图,顶点M在y轴负半轴上的抛物线与直线2y x=+相交于点(2,0)A-,(4,6)B,连接AM,BM.(1)求该抛物线的函数表达式;(2)若将抛物线向下平移3个单位长度,则在平移后的抛物线上,且在直线AB的下方,是否存在点P,使得118ABP ABMS S∆∆=若存在,求出点P的坐标;若不存在,请说明理由.题型四:二次函数中的旋转问题37.(2023•吉安县校级一模)已知抛物线21y ax bx c =++分别交x 轴于(1,0)A -,(3,0)B 两点,且与y 轴交于点(0,3)C -.(1)求抛物线的解析式及顶点P 坐标;(2)将该二次函数绕点(4,0)旋转180︒,求旋转后的二次函数解析式;(3)设旋转后的抛物线顶点坐标为Q ,且与x 轴的右侧交点为D ,顺次连接A 、P 、D 、Q ,求四边形APDQ 的面积.38.(2023•郏县一模)如图,直线24y x =--与x 轴交于点A ,抛物线2421y ax x a =+++经过点(1,8),与x 轴的一个交点为(B B 在A 的左侧),过点B 作BC 垂直x 轴交直线于C .(1)求a 的值及点B 的坐标;(2)将ABC ∆绕点A 顺时针旋转90︒,点B 、C 的对应点分别为点E 、F .将抛物线2421y ax x a =+++沿x 轴向右平移使它过点F ,求平移后所得抛物线的解析式.39.(2023•郸城县二模)如图1,抛物线21y ax bx c =++分别交x 轴于(1,0)A -,(3,0)B 两点,且与y 轴交于点(0,3)C -.(1)求抛物线的表达式及顶点P 的坐标.(2)如图2,将该抛物线绕点(4,0)旋转180︒.①求旋转后的抛物线的表达式;②旋转后的抛物线顶点坐标为Q ,且与x 轴的右侧交于点D ,顺次连接A ,P ,D ,Q ,求四边形APDQ 的面积.40.(2023•长春模拟)如图,直线122y x =-与y 轴交于点A ,与x 轴交于点B .抛物线214y x bx c =++经过点A ,点B ,并与x 轴有另一交点C .(1)依题,点A 的坐标是,点B 的坐标是.(2)求抛物线的解析式.(3)在直线AB 下方的抛物线上有一点D ,求四边形ADBC 面积的最大值.(4)在x 轴上有一个动点(,0)P m ,将线段OA 绕点P 逆时针旋转90︒得到线段MN .直接写出线段MN 与抛物线只有一个公共点时m 的取值范围.题型五:二次函数中的几何变换41.(2024•梧州模拟)九年级数学兴趣小组的同学研究发现若把二次函数21y ax bx c =++的系数调换位置变成新的二次函数22y cx bx a =-+,且0b ≠,这两个函数有一定的关连,于是命名它们为“互为对调函数”,根据这个规定,解答下列问题:(1)若二次函数21325y x x =+-,则它的“对调函数”是2y =,且此“对调函数”与y 轴的交点是;(2)若k 、m 为非零实数,二次函数213y x kx m =++经过两个不同的点(,)A k h 与点(,)B m h ,请求出“对调函数”2y 的对称轴;(3)在(2)中,“对调函数”2y 的图象是否经过某两个定点?若经过,求出这两个定点坐标;若不经过,请说明理由.。
中考数学复习考点题型专题练习专题05 一次方程(组)与一元二次方程一.选择题1.(2022·内蒙古包头)若12,x x 是方程2230x x --=的两个实数根,则212x x ⋅的值为( )A .3或9-B .3-或9C .3或6-D .3-或62.(2022·黑龙江)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?( )A .8B .10C .7D .93.(2022·四川雅安)若关于x 的一元二次方程x 2+6x +c =0配方后得到方程(x +3)2=2c ,则c 的值为( )A .﹣3B .0C .3D .94.(2022·贵州黔东南)已知关于x 的一元二次方程220x x a --=的两根分别记为1x ,2x ,若11x =-,则2212a x x --的值为( ) A .7 B .7- C .6 D .6-5.(2022·广西梧州)一元二次方程2310x x -+=的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定6.(2022·湖北武汉)若关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,且()()121222217x x x x ++-=,则m =( )A .2或6B .2或8C .2D .67.(2022·湖南郴州)一元二次方程2210x x +-=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根8.(2022·广西贵港)若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是( )A .0,2-B .0,0C .2-,2-D .2-,09.(2022·北京)若关于x 的一元二次方程20x x m ++=有两个相等的实数根,则实数m 的值为( )A .4-B .14-C .14D .4 10.(2022·山东临沂)方程22240x x --=的根是( )A .16x =,24x =B .16x =,24x =-C .16x =-,24x =D .16x =-,24x =-11.(2022·黑龙江牡丹江)下列方程没有实数根的是( )A .2410x x +=B .23830x x +-=C .2230x x -+=D .()()2312x x --=12.(2022·海南)若代数式1x +的值为6,则x 等于( )A .5B .5-C .7D .7-13.(2022·广西贺州)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”, “沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm ,高是6cm ;圆柱体底面半径是3cm ,液体高是7cm .计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )A.2cm B.21cm4C.4cm D.5cm14.(2022·黑龙江)国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?()A.5B.6C.7D.815.(2022·辽宁营口)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x天可以追上慢马,则下列方程正确的是()A.24015015012x x+=⨯B.24015024012x x-=⨯C.24015024012x x+=⨯D.24015015012x x-=⨯16.(2022·广西)方程3x=2x+7的解是()A.x=4B.x=﹣4C.x=7D.x=﹣717.(2022·贵州铜仁)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( )A .14B .15C .16D .1718.(2022·广东深圳)张三经营了一家草场,草场里面种植上等草和下等草.他卖五捆上等草的根数减去11根,就等下七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.设上等草一捆为x 根,下等草一捆为y 根,则下列方程正确的是( )A .51177255y x y x -=⎧⎨-=⎩B .51177255x y x y +=⎧⎨+=⎩C .51177255x y x y -=⎧⎨-=⎩D .71155257x y x y-=⎧⎨-=⎩ 19.(2022·贵州贵阳)在同一平面直角坐标系中,一次函数y ax b =+与()0y mx n a m =+<<的图象如图所示,小星根据图象得到如下结论:①在一次函数y mx n =+的图象中,y 的值随着x 值的增大而增大;②方程组y ax b y mx n -=⎧⎨-=⎩的解为32x y =-⎧⎨=⎩; ③方程0mx n +=的解为2x =;④当0x =时,1ax b +=-.其中结论正确的个数是( )A .1B .2C .3D .420.(2022·广西河池)某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x .则所列方程为( )A .30(1+x )2=50B .30(1﹣x )2=50C .30(1+x 2)=50D .30(1﹣x 2)=50二.填空题21.(2022·湖北鄂州)若实数a 、b 分别满足a 2﹣4a +3=0,b 2﹣4b +3=0,且a ≠b ,则11a b+的值为 _____.22.(2022·福建)推理是数学的基本思维方式、若推理过程不严谨,则推理结果可能产生错误.例如,有人声称可以证明“任意一个实数都等于0”,并证明如下:设任意一个实数为x ,令x m =,等式两边都乘以x ,得2x mx =.①等式两边都减2m ,得222x m mx m -=-.②等式两边分别分解因式,得()()()x m x m m x m +-=-.③等式两边都除以x m -,得x m m +=.④等式两边都减m ,得x =0.⑤所以任意一个实数都等于0.以上推理过程中,开始出现错误的那一步对应的序号是______.23.(2022·广西梧州)一元二次方程()()270x x -+=的根是_________.24.(2022·四川内江)已知x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,且2112x x x x +=x 12+2x 2﹣1,则k 的值为 _____.25.(2022·广东深圳)已知一元二次方程260x x m ++=有两个相等的实数根,则m 的值为________________.26.(2022·上海)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.27.(2022·山东威海)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn =_____.28.(2022·广西贺州)若实数m ,n满足50m n --∣∣,则3m n +=__________.29.(2022·广东)若1x =是方程220x x a -+=的根,则=a ____________.30.(2022·江苏无锡)二元一次方程组321221x y x y +=⎧⎨-=⎩的解为________. 31.(2022·四川雅安)已知12x y =⎧⎨=⎩是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 _____. 32.(2022·广西)阅读材料:整体代值是数学中常用的方法.例如“已知32a b -=,求代数式621a b --的值.”可以这样解:()6212312213a b a b --=--=⨯-=.根据阅读材料,解决问题:若2x =是关于x 的一元一次方程3ax b +=的解,则代数式2244421a ab b a b ++++-的值是________.33.(2022·内蒙古呼和浩特)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______千克糯米;设某人的付款金额为x 元,购买量为y 千克,则购买量y 关于付款金额(10)x x >的函数解析式为______.34.(2022·山东潍坊)方程组2313320x y x y +=⎧⎨-=⎩的解为___________. 35.(2022·贵州贵阳)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”如: 从左到右列出的算筹数分别表示方程中未知数x ,y 的系数与相应的常数项,即可表示方程423x y +=,则 表示的方程是_______.36.(2022·吉林长春)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,设店中共有x 间房,可求得x 的值为________.37.(2022·湖南长沙)关于的一元二次方程220x x t ++=有两个不相等的实数根,则实数t 的值为___________.38.(2022·江苏泰州)方程2x 2x m 0-+=有两个相等的实数根,则m 的值为__________.39.(2022·湖北武汉)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货___________吨.40.(2022·上海)解方程组2213x y x y +=⎧⎨-=⎩的结果为_____. 三.解答题 41.(2022·广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?42.(2022·内蒙古赤峰)某学校建立了劳动基地,计划在基地上种植A 、B 两种苗木共6000株,其中A 种苗木的数量比B 种苗木的数量的一半多600株.(1)请问A 、B 两种苗木各多少株?(2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A 种苗木50株或B 种苗木30株,应分别安排多少人种植A 种苗木和B 种苗木,才能确保同时..完成任务?43.(2022·湖南)中国“最美扶贫高铁”之一的“张吉怀高铁”开通后,张家界到怀化的运行时间由原来的3.5小时缩短至1小时,运行里程缩短了40千米.已知高铁的平均速度比普通列车的平均速度每小时快200千米,求高铁的平均速度.44.(2022·四川广安)某企业下属A、B两厂向甲乙两地运送水泥共520吨,A厂比B 厂少运送20吨,从A厂运往甲乙两地的运费分别为40元/吨和35元/吨,从B厂运往甲乙两地的运费分别为28元/吨和25元/吨.(1)求A、B两厂各运送多少吨水泥?(2)现甲地需要水泥240吨,乙地需要水泥280吨.受条件限制,B厂运往甲地的水泥最多150吨.设从A厂运往甲地a吨水泥,A、B两厂运往甲乙两地的总运费为w元.求w 与a之间的函数关系式,请你为该企业设计一种总运费最低的运输方案,并说明理由45.(2022·广西桂林)解二元一次方程组:13x yx y-=⎧⎨+=⎩.46.(2022·江苏常州)第十四届国际数学教育大会(ICME-14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3210387848582021⨯+⨯+⨯+⨯=,表示ICME-14的举办年份.(1)八进制数3746换算成十进制数是_______;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.47.(2022·江苏泰州)如图,在长为50 m,宽为38 m的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260 m2,道路的宽应为多少?48.(2022·黑龙江齐齐哈尔)解方程:22+=+(23)(32)x x49.(2022·贵州贵阳)(1)a,b两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a_______b,ab_______0;(2)在初中阶段我们已经学习了一元二次方程的三种解法,他们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+2x−1=0;②x2−3x=0;③x2−4x=4;④x2−4=0.50.(2022·内蒙古呼和浩特)计算求解:(1)计算112sin45|23-⎛⎫-+- ⎪⎝⎭︒(2)解方程组451223x yx y+=⎧⎪-⎨+=⎪⎩51.(2022·湖南长沙)电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相同.问:应该如何分?请你根据题意解答下列问题:(1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.()②刘三姐的姐妹们给出的答案是唯一正确的答案.()③该歌词表达的数学题的正确答案有无数多种.()(2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.52.(2022·四川雅安)某商场购进A,B两种商品,已知购进3件A商品和5件B商品费用相同,购进3件A商品和1件B商品总费用为360元.(1)求A,B两种商品每件进价各为多少元?(列方程或方程组求解)(2)若该商场计划购进A,B两种商品共80件,其中A商品m件.若A商品按每件150元销售,B商品按每件80元销售,求销售完A,B两种商品后获得总利润w(元)与m(件)的函数关系式.53.(2022·海南)我省某村委会根据“十四五”规划的要求,打造乡村品牌,推销有机黑胡椒和有机白胡椒.已知每千克有机黑胡椒比每千克有机白胡椒的售价便宜10元,购买2千克有机黑胡椒和3千克有机白胡椒需付280元,求每千克有机黑胡椒和每千克有机白胡椒的售价.。
一. 教学目标:1. 会根据点的坐标描出点的位置,由点的位置写出它的坐标2. 会确定点关于x 轴,y 轴及原点的对称点的坐标3. 能确定简单的整式,分式和实际问题中的函数自变量的取值范围,并会求函数值。
4. 能准确地画出一次函数,反比例函数,二次函数的图像并根据图像和解析式探索并理解其性质。
5. 能用适当的函数表示法刻画某些实际问题中变量之间的关系并用函数解决简单的实际问题。
二. 教学重点、难点:重点:一次函数,反比例函数,二次函数的图像与性质及应用 难点:函数的实际应用题是中考的重点又是难点。
三.知识要点:知识点1、平面直角坐标系与点的坐标 一个平面被平面直角坐标分成四个象限,平面内的点可以用一对有序实数来表示平面内的点与有序实数对是一一对应关系,各象限内点都有自己的特征,特别要注意坐标轴上的点的特征。
点P (x 、y )在x 轴上⇔y =0,x 为任意实数,点P (x 、y )在y 轴上,⇔x =0,y 为任意实数,点P (x 、y )在坐标原点⇔x =0,y =0。
知识点2、对称点的坐标的特征点P (x 、y )关于x 轴的对称点P 1的坐标为(x ,-y );关于y 轴的对称轴点P 2的坐标为(-x ,y );关于原点的对称点P 3为(-x ,-y )知识点3、距离与点的坐标的关系点P (a ,b )到x 轴的距离等于点P 的纵坐标的绝对值,即|b | 点P (a ,b )到y 轴的距离等于点P 的横坐标的绝对值,即|a |点P (a ,b )到原点的距离等于:22b a +知识点4、与函数有关的概念函数的定义,函数自变量及函数值;函数自变量的取值必须使解析式有意义当解析式是整式时,自变量取一切实数,当解析式是分式时,要使分母不为零,当解析式是根式时,自变量的取值要使被开方数为非负数,特别地,在一个函数关系中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分。
知识点5、已知函数解析式,判断点P (x ,y )是否在函数图像上的方法,若点P (x ,y )的坐标适合函数解析式,则点P 在其图象上;若点P 在图象上,则P (x ,y )的坐标适合函数解析式.知识点6、列函数解析式解决实际问题设x 为自变量,y 为x 的函数,先列出关于x ,y 的二元方程,再用x 的代数式表示y ,最后写出自变量的取值范围,要注意使自变量在实际问题中有意义。
知识点7、一次函数与正比例函数的定义:例如:y =kx +b (k ,b 是常数,k ≠0)那么y 叫做x 的一次函数,特别地当b =0时,一次函数y =kx +b 就成为y =kx (k 是常数,k ≠0)这时,y 叫做x 的正比例函数。
知识点8、一次函数的图象和性质一次函数y =kx +b 的图象是经过点(0,b )和点(-kb,0)的一条直线,k 值决定直线自左向右是上升还是下降,b 值决定直线交于y 轴的正半轴还是负半轴或过原点。
知识点9、两条直线的位置关系设直线 1和 2的解析式为y =k 1x +b 1和y 2=k 2x +b 2则它们的位置关系由系数关系确定 k 1≠k 2⇔ 1与 2相交,k 1=k 2,b 1≠b 2⇔ 1与 2平行,k 1=k 2, b 1=b 2⇔ 1与 2重合。
教学准备专题复习之五 函数知识点10、反比例函数的定义 形如:y =xk 或y =kx -1(k 是常数且k ≠0)叫做反比例函数,也可以写成xy =k (k ≠0)形式,它表明在反比例函数中自变量x 与其对应的函数值y 之积等于已知常数k ,知识点11、反比例函数的图像和性质反比例函数的图像是双曲线,它是以原点为对称中心的中心对称图形,同时又是直线y =x 或y =-x 为对称轴的轴对称图形,当k >0时,图像的两个分支分别在一、三象限,在每个象限内y 随x 的增大而减小,当k <0时,图象的两个分支分别在二、四象限,在每个象限内,y 随x 的增大而增大。
知识点12、反比例函数中比例系数k 的几何意义。
过双曲线上任意一点P 作x 轴、y 轴的垂线PA 、PB 所得矩形的PAOB 的面积为|k|。
知识点13、二次函数的定义形如:y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)那么y 叫做x 的二次函数,它常用的三种基本形式。
一般式:y =ax 2+bx +c (a ≠0) 顶点式:y =a (x -h )2+k (a ≠0) 交点式:y =a (x -x 1)(x -x 2)( a ≠0,x 1、x 2是图象与x 轴交点的横坐标) 知识点14、二次函数的图象与性质二次函数y =ax 2+bx +c (a ≠0)的图象是以(ab ac a b 44,22--)为顶点,以直线y =a b 2-为对称轴的抛物线。
在a >0时,抛物线开口向上,在对称轴的左侧,即x <ab2-时,y 随x 的增大而减小;在对称轴的右侧,即当x >ab2-时,y 随着x 的增大而增大。
在a <0时,抛物线开口向下,在对称轴的左侧,即x <ab2-时,y 随着x 的增大而增大。
在对称轴的右侧,即当x >ab2-时,y 随着x 的增大而减小。
当a >0,在x =a b 2-时,y 有最小值,y 最小值=a b ac 442-,当a <0,在x =a b 2-时, y 有最大值,y 最大值=ab ac 442-。
知识点15、二次函次图象的平移二次函数图象的平移只要移动顶点坐标即可。
知识点16、二次函数y =ax 2+bx +c 的图象与坐标轴的交点。
(1)与y 轴永远有交点(0,c )(2)在b 2-4ac >0时,抛物线与x 轴有两个交点,A (x 1,0)、B (x 2,0)这两点距离为AB =|x 1-x 2|,(x 1、x 2是ax 2+bx +c =0的两个根)。
在b 2-4ac =0时,抛物线与x 轴只有一个交点。
在b 2-4ac <0时,则抛物线与x 轴没有交点。
知识点17、求二次函数的最大值常见的有两种方法:(1)直接代入顶点坐标公式(ab ac a b 44,22--)。
(2)将y =ax 2+bx +c 配方,利用非负数的性质进行数值分析。
两种方法各有所长,第一种方法过程简单,第二种方法有技巧。
例题精讲例1. 若一次函数y =2x222m m --+m -2的图象经过第一、二、三象限,求m 的值.分析:这是一道一次函数概念和性质的综合题.一次函数的一般式为y =kx +b (k ≠0).首先要考虑m 2-2m -2=1.函数图象经过第一、二、三象限的条件是k >0,b >0,而k =2,只需考虑m -2>0.由222120m m m ⎧--=⎨->⎩便可求出m 的值. 所以m =3例2. 鞋子的“鞋码”和鞋长(cm )存在一种换算关系,•下表是几组“鞋码”与鞋长的对应数值: (1)分析上表,“鞋码”与鞋长之间的关系符合你学过的哪种函数?(2)设鞋长为x ,“鞋码”为y ,求y 与x 之间的函数关系式;(3)如果你需要的鞋长为26cm ,那么应该买多大码的鞋?分析:本题是以生活实际为背景的考题.题目提供了一个与现实生活密切联系的问题情境,以考查学生对有关知识的理解和应用所学知识解决问题的能力,同时为学生构思留下了空间.解:(1)一次函数,(2)设y =kx +b ,则由题意,得2216,22819,10k b k k b b =+=⎧⎧⎨⎨=+=-⎩⎩解得,∴y =2x -10, (3)当x =26时,y =2³26-10=42.答:应该买42码的鞋.例3. 某块试验田里的农作物每天的需水量y (千克)与生长时间x (天)之间的关系如折线图所示.•这些农作物在第10•天、•第30•天的需水量分别为2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克.(1)分别求出当x ≤40和x ≥40时y 与x 之间的关系式;(2)如果这些农作物每天的需水量大于或等于4000千克时,需要进行人工灌溉,•那么应从第几天开始进行人工灌溉?分析:本题提供了一个与生产实践密切联系的问题情境,要求学生能够从已知条件和函数图象中获取有价值的信息,判断函数类型.建立函数关系.为学生解决实际问题留下了思维空间.解:(1)当x ≤40时,设y =kx +b .根据题意,得20001050300030,1500.k b k k b b =+=⎧⎧⎨⎨=+=⎩⎩解这个方程组,得, ∴当x •≤40时,y 与x 之间的关系式是y =50x +1500,∴当x =40时,y =50³40+1500=3500,当x ≥40•时,根据题意得,y =100(x -40)+3500,即y =100x -500. ∴当x ≥40时,y 与x 之间的关系式是y =100x -500.(2)当y ≥4000时,y 与x 之间的关系式是y =100x -500, 解不等式100x -500≥4000,得x ≥45, ∴应从第45天开始进行人工灌溉. 例4. 若函数y =(m 2-1)x 235m m +-为反比例函数,则m =________.分析:在反比例函数y =k x中,其解析式也可以写为y =k ²x -1,故需满足两点,一是m 2-1≠0,二是3m 2+m -5=-1 解:m =43- 点评:函数y =kx为反比例函数,需满足k ≠0,且x 的指数是-1,两者缺一不可. 例5. 已知P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)是反比例函数y =•2x的图象上的三点,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( ) A. y 3<y 2<y 1 B. y 1<y 2<y 3C. y 2<y 1<y 3D. y 2<y 3<y 1解析:反比例函数y =2x的图象是双曲线、由k =2>0•知双曲线两个分支分别位于第一、三象限内,且在每一个象限内,y 的值随着x 值的增大而减小的,点P 1,P 2,P 3•的横坐标均为负数,故点P 1,P 2均在第三象限内,而P 3在第一象限.故y >0.•此题也可以将P 1,P 2,P 3三点的横坐标取特殊值分别代入y =2x中,求出y 1,y 2,y 3的值,再比较大小.解:C例6. 如图,一次函数y =kx +b 的图象与反比例函数y =mx图象交于A (-2,1),B (1,n )两点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.解析:(1)求反比例函数解析式需要求出m 的值.把A (-2,1)代入y =mx中便可求出m =-2.把B (1,n )代入y =2x-中得n =-2.由待定系数法不难求出一次函数解析式.(2)认真观察图象,结合图象性质,便可求出x 的取值范围.解:(1)y =-2x,y =-x -1 (2)x <-2或0<x <1 例7. (1)二次函数y =ax 2+bx +c 的图像如图(1),则点M (b ,ca)在(D ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 (2)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图(2)所示,•则下列结论:①a 、b 同号;②当x =1和x =3时,函数值相等;③4a +b =0;④当y =-2时,x 的值只能取0.其中正确的个数是( B )A. 1个B. 2个C. 3个D. 4个(1) (2)点评:弄清抛物线的位置与系数a ,b ,c 之间的关系,是解决问题的关键. 例8. 已知抛物线y =12x 2+x -52.(1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.点评:本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一元二次方程的关系.解:(1)顶点(-1,-3),对称轴x =-1,(2)例9. 已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF =2,BF =1.试在AB 上求一点P ,使矩形PNDM 有最大面积.分析:本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好地考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.解:设矩形PNDM 的边为DN =x ,NP =y ,则矩形PNDM 的面积S =xy (2≤x ≤4)易知CN =4-x ,EM =4-y .且有NP BC BF CN AF -=(作辅助线构造相似三角形),即34y x --=12,∴y =-12x +5,S =xy =-12x 2+5x (2≤x ≤4), 此二次函数的图象开口向下,对称轴为x =5, ∴当x ≤5时,•函数的值是随x 的增大而增大, 对2≤x ≤4来说,当x =4时,S 有最大值S 最大=-12³42+5³4=12. 例10. 某产品每件成本10元,试销阶段每件产品的销售价x (元)•与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x (1)求出日销售量y (件)与销售价x (元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?•此时每日销售利润是多少元? 解:(1)设此一次函数表达式为y =kx +b .则⎩⎨⎧=+=+20202515b k b k ,解得k =-1,b =40,•即一次函数表达式为y =-x +40.(2)设每件产品的销售价应定为x 元,所获销售利润为w 元w =(x -10)(40-x )=-x 2+50x -400=-(x -25)2+225. 产品的销售价应定为25元,此时每日获得最大销售利润为225元.点评:解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点:(1)设未知数在“当某某为何值时,什么最大(或最小、最省)”的设问中,•“某某”要设为自变量,“什么”要设为函数;(2)问的求解依靠配方法或最值公式,而不是解方程.例11. 已知点A (0,-6),B (-3,0),C (m ,2)三点在同一直线上,试求出图象经过其中一点的反比例函数的解析式并画出其图象.(要求标出必要的点,可不写画法).点评:本题是一道一次函数和反比例函数图象和性质的小综合题,题目设计新颖、巧妙、难度不大,但能很好地考查学生的基本功.解:设直线AB 的解析式为y =k 1x +b ,则130,6,k b b -+=⎧⎨=-⎩解得k 1=-2,b =-6.•所以直线AB 的解析式为y =-2x -6.∵点C (m ,2)在直线y =-2x -6上,∴-2m -6=2, ∴m =-4,即点C 的坐标为C (-4,2), 由于A (0,6),B (-3,0)都在坐标轴上,反比例函数的图象只能经过点C (-4,2),设经过点C 的反比例函数的解析式为y =2k x .则2=24k-, ∴k 2=-8.即经过点C •的反比例函数的解析式为y =-8x.例12. 某校九年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a 元.经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其他费用780元,其中,纯净水的销售价(元/桶)与年购买总量y (桶)之间满足如图所示关系. (1)求y 与x 的函数关系式;(2)若该班每年需要纯净水380桶,且a 为120时,请你根据提供的信息分析一下:•该班学生集体改饮桶装纯净水与个人买饮料,哪一种花钱更少?(3)当a 至少为多少时,该班学生集体改饮桶装纯净水一定合算?从计算结果看,•你有何感想(不超过30字)?点评:这是一道与学生生活实际紧密联系的试题,由图象可知,一次函数图象经过点(4,400)、(5,320)可确定y 与x 的关系式,同时这也是一道确定最优方案的题,可利用函数知识分别比较学生个人购买饮料与改饮桶装纯净水的费用,分析优劣.解:(1)设y =kx +b ,∵x =4时,y =400;x =5时,y =320,∴400480,:3205720k b k k b b =+=-⎧⎧⎨⎨=+=⎩⎩解之得 ∴y 与x 的函数关系式为y =-80x +720.(2)该班学生买饮料每年总费用为50³120=6000(元), 当y =380时,380=-80x +720,得x =4.25.该班学生集体饮用桶装纯净水的每年总费用为380³4.25+780=2395(元), 显然,从经济上看饮用桶装纯净水花钱少. (3)设该班每年购买纯净水的费用为W 元, 则W =xy =x (-80x +720)=-80(x -92)2+•1620. ∴当x =92时,W 最大值=1620.要使饮用桶装纯净水对学生一定合算, 则50a ≥W 最大值+780,•即50a •≥1620+780.解之得,a ≥48. 所以a 至少为48元时班级饮用桶装纯净水对学生一定合算,由此看出,饮用桶装纯净水不仅能省钱,而且能养成勤俭节约的好习惯.例13. 一蔬菜基地种植的某种绿色蔬菜,根据今年的市场行情,预计从5月1•日起的50天内,它的市场售价y 1与上市时间x 的关系可用图(a )的一条线段表示;•它的种植成本y 2与上市时间x 的关系可用图(b )中的抛物线的一部分来表示.(1)求出图(a )中表示的市场售价y 1与上市时间x 的函数关系式. (2)求出图(b )中表示的种植成本y 2与上市时间x 的函数关系式.(3)假定市场售价减去种植成本为纯利润,问哪天上市的这种绿色蔬菜既不赔本也不赚钱?(市场售价和种植成本的单位:元/千克,时间单位:天)点评:本题是一道函数与图象信息有关的综合题.学生通过读题、读图.从题目已知和图象中获取有价值的信息,是问题求解的关键.解:(1)设y 1=mx +n ,因为函数图象过点(0,5.1),(50,2.1),∴0 5.150 2.1n m n +=⎧⎨+=⎩ 解得:m =-350,n =5.1,∴y 1=-350x +5.1(0≤x ≤50). (2)又由题目已知条件可设y 2=a (x -25)2+2.因其图象过点(15,3),∴3=a (15-25)2+2,∴a =1100, ∴y 2=1100x 2-12x +334(或y =1100(x -25)2+2)(0≤x ≤50)(3)设第x 天上市的这种绿色蔬菜的纯利润为:y 1-y 2=-1100(x 2-44x +315)(0≤x ≤55).依题意:y 1-y 2=0,即x 2-44x +315=0,∴(x -9)(x -35)=0,解得:x 1=9,x 2=35. 所以从5月1日起的第9天或第35天出售的这种绿色蔬菜,既不赔本也不赚钱.一. 选择题1. 如图,一次函数y =kx +b 的图象经过A 、B 两点,则kx +b >0的解集是( ) A. x >0 B. x >2 C. x >-3 D. -3<x <22. 如图,直线y =kx +b 与x 轴交于点(-4,0),则y >0时,x 的取值范围是( ) A. x >-4 B. x >0 C. x <-4 D. x <0课后练习3. 已知矩形的面积为10,则它的长y 与宽x 之间的关系用图象大致可表示为( )4. 某闭合电路中,电源的电压为定值,电流I (A )与电阻R (Ω)成反比例.如图表示的是该电路中电流I与电阻R 之间关系的图像,则用电阻R 表示电流I 的函数解析式为( )A. I =2366...B I C I D I RRRR===-5. 如图,过原点的一条直线与反比例函数y =k x(k <0)的图像分别交于A 、B 两点,若A 点坐标为(a ,b ),则B 点的坐标为( )A. (a ,b )B. (b ,a )C. (-b ,-a )D. (-a ,-b )6. 反比例函数y =kx与正比例函数y =2x 图象的一个交点的横坐标为1,则反比例函数的图像大致为( )7. 函数y =kx(k ≠0)的图象如图所示,那么函数y =kx -k 的图象大致是( )8. 已知点P 是反比例函数y =kx(k ≠0)的图像上的任一点,过P •点分别作x 轴,y 轴的平行线,若两平行线与坐标轴围成矩形的面积为2,则k 的值为( ) A. 2 B. -2 C. ±2 D. 49. 如图,梯形AOBC 的顶点A 、C 在反比例函数图象上,OA ∥BC ,上底边OA 在直线y =x 上,下底边BC 交x 轴于E (2,0),则四边形AOEC 的面积为( )A. 3B.C.1D.110. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论:①a >0;②c >0;•③b 2-4ac >0,其中正确的个数是( )A. 0个B. 1个C. 2个D. 3个11. 根据下列表格中二次函数y =ax 2+bx +c 的自变量x 与函数值y •的对应值,判断方程ax 2+bx +c =0(a ≠0,a ,b ,cA. 6<x <6.17B. 6.17<x <6.18C. 6.18<x <6.19D. 6.19<x <6.20 二. 填空题1. 函数y 1=x +1与y 2=ax +b 的图象如图所示,•这两个函数的交点在y 轴上,那么y 1、y 2的值都大于零的x 的取值范围是_ ______.2. 经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是______ .3. 如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (-203,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么该函数的解析式是________.4. 将抛物线y =x 2向左平移4个单位后,再向下平移2个单位,•则此时抛物线的解析式是_____________5. 如图,在平面直角坐标系中,二次函数y =ax 2+c (a ≠0)的图象过正方形ABOC •的三个顶点A ,B ,C ,则ac 的值是___ _____.三. 解答题1. 地表以下岩层的温度t (℃)随着所处的深度h (千米)的变化而变化.t 与h 之间在一定范围内近似地成一次函数关系.(1)根据下表,求t (℃)与h (千米)之间的函数关系式; (2)求当岩层温度达到2. 甲、乙两车从A 地出发,沿同一条高速公路行驶至距A •地400千米的B 地.L 1、L 2分别表示甲、乙两车行驶路程y (千米)与时间x (时)之间的关系(•如图所示),根据图象提供的信息,解答下列问题:(1)求L 2的函数表达式(不要求写出x 的取值范围);(2)甲、乙两车哪一辆先到达B 地?该车比另一辆车早多长时间到达B 地? 3. 在平面直角坐标系XOY 中,直线y =-x 绕点O 顺时针旋转90°得到直线L ,直线L 与反比例函数y =kx的图象的一个交点为A (a ,3),试确定反比例函数的解析式.4. 某校科技小组进行野外考察,途中遇到一片十几米宽的湿地.为了完全、迅速通过这片湿地,他们沿着前进路线铺了若干块木块,•构筑成一条临时通道,木板对地面的压强P (Pa )是木板面积S (m 2)的反比例函数,其图象如下图所示.(1)请直接写出反比例函数表达式和自变量的取值范围; (2)当木板面积为0.2m 2时,压强是多少?(3)如果要求压强不超过6000Pa ,木板的面积至少要多大?5. 如图,已知反比例函数y 1=mx(m ≠0)的图象经过点A (-2,1),一次函数y 2=kx +b (k ≠0)的图象经过点C (0,3)与点A ,且与反比例函数的图象相交于另一点B .(1)分别求出反比例函数与一次函数的解析式;(2)求点B的坐标.6. 如图,一次函数y=ax+b的图象与反比例函数y=mx的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA tan∠AOC=12,点B的坐标为(12,-4).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.7. 观察下面的表格:(1)求a,b,c的值,并在表格内的空格中填上正确的数;(2)求二次函数y=ax2+bx+c图象的顶点坐标与对称轴.8. 如图,P为抛物线y=34x2-32x+14上对称轴右侧的一点,且点P在x轴上方,过点P作PA垂直x轴于点A,PB垂直y轴于点B,得到矩形PAOB.若AP=1,求矩形PAOB的面积.9. 在平面直角坐标系中,已知二次函数y=a(x-1)2+k•的图像与x轴相交于点A、B,顶点为C,点D 在这个二次函数图像的对称轴上,若四边形ABCD•是一个边长为2且有一个内角为60°的菱形,求此二次函数的表达式.10. 近几年,连云港市先后获得“中国优秀旅游城市”和“全国生态建设示范城市”等十多个殊荣.到连云港观光旅游的客人越来越多,花果山景点每天都吸引大量游客前来观光.事实表明,如果游客过多,不利于保护珍贵文物,为了实施可持续发展,兼顾社会效益和经济效益,该景点拟采用浮动门票价格的方法来控制游览人数.已知每张门票原价40元,现设浮动票价为x元,且40≤x≤70,经市场调研发现一天游览人数y与票价x之间存在着如图所示的一次函数关系.(1)根据图象,求y与x之间的函数关系式;(2)设该景点一天的门票收入为w元①试用x的代数式表示w;②试问:当票价定为多少时,该景点一天的门票收入最高?最高门票收入是多少?11. 某环保器材公司销售一种市场需求量较大的新型产品.已知每件产品的进价为40元.经销过程中测出销售量y(万件)与销售单价x(元),存在如图所示的一次函数关系.每年销售该种产品的总开支z(万元)(不含进价)与年销售量y(万件)存在函数关系z=10y+42.5.(1)求y关于x的函数关系式.(2)试写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式(年获利=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价为x为何值的,年获利最大?最大值是多少?(3)若公司希望该种产品一年的销售获利不低于57.5万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下使产品的销售量最大,你认为销售单价应为多少元?一. 选择题1. C2. A3. A4. C5. D6. B7. C8. C9. D 10. B 11. C 二. 填空题1. -1<x <22. y =x -2或y =-x +23. y =-12x4. y =(x +4)2-2(y =x 2+8x +14)5. -2 三. 解答题 1. 解:(1)t 与h 的函数关系式为t =35h +20.(2)当t =1770℃时,有1770=35h +20,解得:h =50千米.2. 解:(1)设L 2的函数表达式是y =k 2x +b ,则2230,419400.4k b k b ⎧=+⎪⎪⎨⎪=+⎪⎩解之,得k 2=100,b =-75,∴L 2的函数表达式为y =100x -75. (2)乙车先到达B 地,∵300=100x -75,∴x =154. 设L 1的函数表达式是y =k 1x ,∵图象过点(154,300), ∴k 1=80.即y =80x .当y =400时,400=80x , ∴x =5,∴5-194=14(小时),∴乙车比甲车早14小时到达B 地. 3. 解:依题意得,直线L 的解析式为y =x .因为A (a ,3)在直线y =x 上,则a =3,即A (3,3),又因为(3,3)在y =k x 的图象上,可求得k =9,所以反比例函数的解析式为y =9x4. 解:(1)P =600S (S >0),(2)当S =0.2时,P =6000.2=3000.即压强是3000Pa .(3)由题意知,600S≤6000,∴S ≥0.1.即木板面积至少要有0.1m 2.5. 解:(1)反比例函数的解析式为y =-2x ,一次函数的解析式为y =x +3.(2)点B 的坐标为B (-1,2)6. 解:1)反比例函数的解析式为y =-2x ,一次函数的解析式为y =-2x -3.(2)S △AOB =154个平方单位.7. 解:(1)a =2,b =-3,c =4,0,8,3 (2)顶点坐标为(34,238),对称轴是直线x =348. 解.∵PA ⊥x 轴,AP =1,∴点P 的纵坐标为1.当y =1时,34x 2-32x +14=1,即x 2-2x -1=0,•解得x 1=1x 2=1∵抛物线的对称轴为x =1,点P 在对称轴的右侧,∴x =1PAOB 的面积为(19. 解:本题共四种情况,设二次函数的图像的对称轴与x 轴相交于点E ,(1)如图①,练习答案当∠CAD =60°时,因为ABCD 为菱形,一边长为2,所以DE =1,BEB 的坐标为(10),点C 的坐标为(1,-1), 解得k =-1,a =13,所以y =13(x -1)2-1. (2)如图②,当∠ACB =•60°时,由菱形性质知点A 的坐标为(0,0),点C 的坐标为(1,解得kay =x -1)2同理可得:y =-13(x -1)2+1,yx -1)2所以符合条件的二次函数的表达式有: y =13(x -1)2-1,yx -1)2y =-13(x -1)2+1,yx -1)210. 解:(1)设函数解析式为y =kx +b ,由图象知:直线经过(50,3500)(60,3000)两点. 则50350050,6030006000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解得,∴函数解析式为y =6000-50x . (2)①w =xy =x (6000-50x ),即w =-50x 2+6000x .②w =-50x 2+6000x =-50(x 2-120x )=-50(x -60)2+180000, ∴当票价定为60元时,•该景点门票收入最高,此时门票收入为180000元 11. 解.(1)由题意,设y =kx +b ,图象过点(70,5),(90,3),∴1570,1039012k b k k b b ⎧=+=-⎧⎪⎨⎨=+⎩⎪=⎩解得 ∴y =-110x +12.(2)由题意,得w =y (x -40)-z =y (x -40)-(10y +42.5)=(-110x +12)(x -40)-10³(-110x +12)-42.5 =-0.1x 2+17x -642.5=-110(x -85)2+80.当x =85时,年获利的最大值为80万元.(3)令w =57.5,得-0.1x 2+17x -642.5=57.5,整理,得x 2-170x +7000=0.解得x 1=70,x 2=100.由图象可知,要使年获利不低于57.5万元,销售单价为70元到100元之间. 又因为销售单位越低,销售量越大,所以要使销售量最大,又使年获利不低于57.5万元,销售单价应定为70元.。