2014天津教师招聘考试:初中数学优秀说课稿《一次函数的图像》》
- 格式:doc
- 大小:50.50 KB
- 文档页数:4
《一次函数的图象》说课稿范文《一次函数的图象》说课稿范文作为一位杰出的教职工,可能需要进行说课稿编写工作,说课稿有助于提高教师理论素养和驾驭教材的能力。
写说课稿需要注意哪些格式呢?以下是小编为大家整理的《一次函数的图象》说课稿范文,欢迎阅读与收藏。
一、说教材1、教材所处的地位和作用《一次函数的图象》是人教版九年义务教育三年制初级中学教科书初中八年级(上册)第三节内容,在此之前,学生已学习了如何画一次函数的图象基础上,这为过渡到本节的学习起着铺垫作用。
本节内容可以强化学生对前面所学知识的理解,使学生对研究函数的图象和性质的基本方法有一个初步的认识与了解,为今后讨论二次函数和反比例函数的有关问题奠定基础。
一次函数的图象加强了代数与几何的联系。
2、教育教学目标根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)知识目标:1)了解正比例函数y=kx的图象的特点。
2)会作正比例函数的图象。
3)理解一次函数及其图象的有关性质。
4)能熟练地作出一次函数的图象。
(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,从函数解析式到图像,从图像到解析式的探索,向学生渗透数形结合的思想方法和数学能力,同时也培养学生从特殊到一般,再从一般到特殊的辨证认识能力。
(3)情感目标:通过对一次函数图象的教学,引导学生从实际出发,在课堂教学过程中,营造轻松愉快的气氛,充分调动学生的学习积极性参与到课堂中,体验探索、发现的乐趣,从而增强学生的`参与意识,团结合作的精神和学习数学的.兴趣。
使学生了解数学知识的功能与价值,形成主动学习的态度。
3、说教学重点、难点1)从知识的联系来说,一次函数的性质是有关一次函数这一部分内容的重点,也是本章的重点内容之一,因此把一次函数的性质的探索作为本课时的教学重点。
2)由图像归纳性质是学生首次接触,没有明确的思路,而且学生思维的全面性和深刻性也不够,对有图像归纳性质还存在相当大的困难,因此由图像探索性质是本课时的教学难点。
北师大版八年级数学上册:4.3《一次函数的图象》说课稿一. 教材分析《一次函数的图象》是北师大版八年级数学上册第4章第3节的内容。
本节课主要介绍了一次函数的图象特点,以及如何通过图象来分析一次函数的性质。
教材通过生动的实例,引导学生探究一次函数图象的规律,培养学生的观察能力、思考能力和实践能力。
二. 学情分析八年级的学生已经掌握了函数的基本概念,一次函数的解析式也有一定的了解。
但在实际操作中,对一次函数图象的认识和分析还相对薄弱。
因此,在教学过程中,要注重引导学生通过观察、实践来理解一次函数图象的特点,提高学生对一次函数图象的分析能力。
三. 说教学目标1.知识与技能目标:让学生掌握一次函数图象的性质,能够通过图象来分析一次函数的特点。
2.过程与方法目标:通过观察、实践,培养学生的观察能力、思考能力和实践能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队协作精神,使学生在探究过程中体验到数学的乐趣。
四. 说教学重难点1.教学重点:一次函数图象的性质及其应用。
2.教学难点:如何引导学生通过观察、实践来理解一次函数图象的特点。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、实物模型、黑板等辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过展示实际生活中的图片,引导学生关注一次函数图象在现实生活中的应用,激发学生的学习兴趣。
2.探究一次函数图象的性质:让学生观察、分析实例,引导学生发现一次函数图象的规律,总结一次函数图象的特点。
3.小组讨论:让学生分小组讨论一次函数图象在实际问题中的应用,培养学生解决问题的能力。
4.巩固提高:通过练习题,让学生运用所学知识分析一次函数图象,提高学生的实践能力。
5.总结:对本节课的内容进行总结,强调一次函数图象的性质及其在实际问题中的应用。
七. 说板书设计板书设计要清晰、简洁,突出一次函数图象的性质。
一次函数的图像说课稿朱昌二中陈春梅《一次函数的图像》说课稿朱昌二中陈春梅大家好!我说的课是北师大版数学教材八年级上册第四章《函数》的第三节《一次函数的图像》的第1课时。
我将从教学任务、方法、手段、过程、预期和板书这六大板块的设计进行挑重点的阐述。
一、教学任务设计先看学情——在七年级下册的《变量之间的关系》里,学生对用图像表示变量之间的关系已积累了丰富的经验;在本章第一节《函数》里,学生又明确了作函数图像的一般步骤。
所以,学生作一次函数的图像并不困难。
然而,学生在这章刚刚接触函数,一次函数又是学生学习的第一种函数,所以,学生对如何研究函数,如何研究函数的性质,如何把函数的解析式和图像有机地结合起来,都会感到陌生和困难。
再看内容——所有老师在讲函数时,都会花大量的时间和精力。
一是因为函数重要,重要到它是初中数学、高中数学、大学数学,乃至整个庞大数学体系的一个重要核心;二是因为函数难,它抽象难懂、错综复杂。
所以,一次函数作为学生接触的第一类基本函数,需要浓墨重彩,这就不难理解《教参》规定这节课用2课时完成的原因了。
第一节应先从简单的、特殊的一次函数(即正比例函数)着手。
基于以上分析,我对教学任务设计如下——首先是教学目标。
我们重点看一下第二维和第三维目标,它们是专门针对数学学科设定的。
其中,数学思考方面——在利用正比例函数图像探究性质的过程中,发展合情推理能力;在利用解析式反思正比例函数性质的过程中,发展演绎推理能力。
问题解决方面——经历一系列探究过程,领会“从特殊到一般”、“数形结合”和“分类讨论”等思想方法;通过类比k>0类型的正比例函数,合作探究k<0类型的正比例函数的图像和性质,培养类比学习的能力。
一次函数的图像和正比例函数的性质,自然就是本节课的教学重点;探究正比例函数的性质,则是难点。
我将通过层层递进的梯度设计、几何画板的直观演示、让学生亲历探究过程、给学生充分思考和交流的时间,使学生在知识发生和思维发展的过程中水到渠成地解决这一难点。
教师招聘考试:初中数学优秀说课稿《一次函数的图像》今天我说课的题目是《一次函数的图像》,所选用的教材为华师大版义务教育阶段初中数学实验教材第四册。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析,教学目标分析,教学方法分析,教学过程分析,教学评价六个方面加以说明。
一.教材分析1.教材的地位和作用本节教材是初中数学 8年级(下)第18章第3节第二课时的内容,函数是数学中重要的基本概念之一,也是初中数学的重要内容之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。
第18章,既是学生函数的入门,也是进一步学习的基础。
作为本节内容,一方面,这是在学习了《变量与函数》、《函数的图像》的基础上,对函数意义的进一步深入和拓展;另一方面,又为学习《一次函数的性质》等知识奠定了基础,是进一步研究现实世界中数量关系的工具性内容。
鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2.教学重难点根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:一次函数与正比例函数概念、图像的理解;难点确定为:k、b的取值与一次函数图像位置的关系。
二.学情分析从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的关注或表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
从认知状况来说,学生在此之前已经学习了《变量与函数》、《函数的图像》,对函数的意义已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于函数图像的理解,由于其抽象程度较高,学生可能会产生一定的困难,所以教学中应注意发展学生数形结合的思想。
《一次函数的图象和性质》说课稿一、教材分析1、教材的地位与作用本节课的教学内容是一次函数的图象和性质。
一次函数的图象和性质是正比例函数图象与性质的推广,在许多方面与正比例函数的图象与性质有紧密联系,是本章的重点之一。
学本节课之前,学生已学习了变量与函数、平面直角坐标系、以及一次函数的概念等有关的知识。
本节是继续学习反比例函数、二次函数的图象和性质的重要基础,也是学习高中代数、解析几何及其他数学分支的重要基础。
数形结合的思想、化归思想及解析法思想是本节内容所包含的主要数学思想。
根据《数学课程标准》的要求,结合以上分析从而确定教学目标。
2、教学目标①认知目标:掌握一次函数图象的画法;结合图象,使学生初步理解一次函数的性质;②技能目标:渗透数形结合的思想和函数的思想,培养学生抽象思维能力,形成良好的思维品质;并利用一次函数的性质解决有关的实际问题。
③情感目标:通过多媒体演示画面,培养学生初步的辩证唯物主义“运动变化”的观点和浓厚的学习兴趣。
3、重点与难点重点:一次函数的图象和性质难点:一次函数定义的导出与性质的理解二、教法:1、授课时抓住学生已有的知识点,在学生主动参与,教师引导下,使学生更好掌握新知识,对学生进行分类不同程度的学生采取不要求。
2、采用直观教具和多媒体演示,使学生获得直观印象便于学生理解新知。
三、学法:通过一系列不同问题,使不同学生都能积极参与,提高学生分析问题,解决问题的能力。
激发学生学习兴趣。
(一)复习引入提问:(1)一次函数的解析式是什么,当b为0时是什么函数?(2)正比例函数的图象与性质怎样?(学生回答后,教师点明课题通过对旧知识的复习,为讲授新知识作准备。
)(二)讲授新课1、一次函数的图象屏幕显示:表格与坐标系考察正比例函数y=2x与一次函数y=2x+1在如表中x取值时,y的取值情况,并在同一坐标系中描出图象。
引导学生观察:相同的横坐标,一次函数y=2x+1图象的点的纵坐标与y=2x图象1。
6.3一次函数的图像(第二课时)一.说教材:(一)、教材所处的地位和作用:《一次函数的图象》是北师大版八年级上册第六章第三节第二课时内容。
学本节课之前,上一课时我们已经学习了画函数图象,并且知道了直线与坐标轴的交点坐标,会熟练的在平面直角坐标系中画出一次函数的图象。
这节课要通过观察不同的图象来总结函数图象的性质。
也是函数学习的一个完整过程,为以后的反比例函数和二次函数做好范例的铺垫,数形结合的思想、化归思想及解析法思想是本节内容所包含的主要数学思想。
根据《数学新课程标准》的要求,结合以上分析从而确定教学目标。
(二)、教育教学目标:(1).知识目标①了解正比例函数y=kx的图象的特点。
②会作正比例函数的图象。
③理解一次函数及其图象的有关性质。
④能熟练地作出一次函数的图象。
(2).能力目标:①进一步培养学生数形结合的意识和能力。
②通过议一议,培养学生的探索精神和合作交流意识。
(3).情感目标:①在观察、总结、归纳过程中,培养学生的合作意识和大胆猜想、乐于探索的学习意志。
②体验“数”与“形”的转化过程,让学生感受函数图像的美妙,激发学生学数学的兴趣。
(三)、教学重难点:重点:①正比例函数的图象的特点。
②一次函数的图象的性质。
难点: 理解k、b对一次函数的影响。
二.说学法教法:1、教法:数形结合和类比、总结归纳等方法是本节课的主要教学方法,同时还利用黑板的图例更直观的把知识点展示给学生。
2、学法:本节课主要是学生观察图像来合作探究,最终总结出图像的性质,以及k、b对一次函数图像的影响。
所以学生还是以合作探究和总结归纳为主要的学法,同时还要注意学生的数学语言的表达等能力的提高。
三、说教学过程:(1)、复习引入:①画一次函数图像的步骤。
②在同一坐标系中画出一下几个函数图像,(既复习了上节课的内容,又引入了本节课的重点内容。
)y=21x ,y=x ,y=3x ,y=-2x 。
(2)、新课:观察我们刚刚做的图像来分组讨论并回答下列问题①正比例函数y=kx 的图象有什么特点?(都经过原点)②你作正比例函数y=kx 的图象时描了几个点?(至少两点)③直线y=21x ,y=x ,y=3x y=-2x 中,哪一个与x 轴正方向所成的锐角最大?哪一与x 轴正方向所 成的锐角最小?④几条直线中,因变量是怎么随自变量变化而变化的?注:在这里强调一点,什么是倾斜方向,什么是上升线和下降线。
《一次函数的图象与性质》说课稿一、说教材:1、教材所处的地位和作用:《一次函数的图象》是人教版九年义务教育三年制初级中学教科书初中八年级(上册)第三节内容,在此之前,学生已学习了如何画一次函数的图象基础上,这为过渡到本节的学习起着铺垫作用。
本节内容可以强化学生对前面所学知识的理解,使学生对研究函数的图象和性质的基本方法有一个初步的认识与了解,为今后讨论二次函数和反比例函数的有关问题奠定基础。
一次函数的图象加强了代数与几何的联系。
2、教育教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)、知识目标:1)了解正比例函数y=kx的图象的特点。
2)会作正比例函数的图象。
3)理解一次函数及其图象的有关性质。
4)能熟练地作出一次函数的图象。
(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,从函数解析式到图像,从图像到解析式的探索,向学生渗透数形结合的思想方法和数学能力,同时也培养学生从特殊到一般,再从一般到特殊的辨证认识能力。
(3)情感目标:通过对一次函数图象的教学,引导学生从实际出发,在课堂教学过程中,营造轻松愉快的气氛,充分调动学生的学习积极性参与到课堂中,体验探索、发现的乐趣,从而增强学生的参与意识,团结合作的精神和学习数学的兴趣。
使学生了解数学知识的功能与价值,形成主动学习的态度。
3. 说教学重点、难点:1、从知识的联系来说,一次函数的性质是有关一次函数这一部分内容的重点,也是本章的重点内容之一,因此把一次函数的性质的探索作为本课时的教学重点。
2、由图像归纳性质是学生首次接触,没有明确的思路,而且学生思维的全面性和深刻性也不够,对有图像归纳性质还存在相当大的困难,因此由图像探索性质是本课时的教学难点。
二、说教法数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。
2014天津教师招聘考试:初中数学优秀说课稿《一次函数的图像》
今天我说课的题目是《一次函数的图像》,所选用的教材为华师大版义务教育阶段初中数学实验教材第四册。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析,教学目标分析,教学方法分析,教学过程分析,教学评价六个方面加以说明。
一.教材分析
1.教材的地位和作用
本节教材是初中数学 8年级(下)第18章第3节第二课时的内容,函数是数学中重要的基本概念之一,也是初中数学的重要内容之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。
第18章,既是学生函数的入门,也是进一步学习的基础。
作为本节内容,一方面,这是在学习了《变量与函数》、《函数的图像》的基础上,对函数意义的进一步深入和拓展;另一方面,又为学习《一次函数的性质》等知识奠定了基础,是进一步研究现实世界中数量关系的工具性内容。
鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2.教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:一次函数与正比例函数概念、图像的理解;难点确定为:k、b的取值与一次函数图像位置的关系。
二.学情分析
从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的关注或表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
从认知状况来说,学生在此之前已经学习了《变量与函数》、《函数的图像》,对函数的意义已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于函数图像的理解,由于其抽象程度较高,学生可能会产生一定的困难,所以教学中应注意发展学生数形结合的思想。
三.教学目标分析
新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感、态度、价值观目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,学生学会知识与技能的
过程同时也是学生学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把这两者充分体现在过程与方法中。
1.知识与技能
理解一次函数和正比例函数的图象是一条直线,熟练地作出一次函数和正比例函数的图象,掌握 k与b的取值对直线位置的影响。
2.过程与方法
经历一次函数的作图过程,探索某些一次函数图象的异同点;
3.情感态度与价值观
体会用类比的思想研究一次函数,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂.
四.教学方法分析
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。
根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的知道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
五.教学过程分析
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。
为有序、有效地进行教学,本节课我主要安排以下教学环节:
(一)创设情境
前面我们学习了用描点法画函数的图象的方法,下面请同学们根据画图象的步骤:列表、描点、连线,在同一平面直角坐标系中画出下列函数的图象。
(1)y=-1/2x ;(2)y=-1/2x+2; (3) y=3x; (4) y=3x+2。
教学说明:
第一步、对于函数(1)应结合以前函数图像的作法详细讲解。
特别注意学生在列表取值,平面直角坐标系的正方向、单位长度,描点的正确性等学生作图的易错点。
第二步、学生自主完成函数(2)的图像。
第三步、同学们观察并互相讨论,并回答:你所画出的图象是什么形状?
一次函数y=kx+b(k≠0)的图象是一条直线,这条直线通常又称为直线y=kx+b(k≠0).又因为两点可以确定一条直线,所以今后画一次函数图象时只要取两点,过两点画一条直线就可以了。
第四步、学生用两点法作出函数(3)(4)的图像。
观察上面四个函数的图象,发现它们都是直线.请同学举例对他们的发现作出验证。
设计意图:教学应从学生已有的知识体系出发,作函数图像是本节课深入研究一次函数y=kx+b(k≠0)的图象的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(二)探究归纳
再观察上面四个函数的图象,也就是k、b的取值与一次函数图像位置的关系:
(1) y=-1/2x+2是由直线y=-1/2x向上移动2个单位得到的;而直线y=3x+2是由直线y=3x分别向上移动2个单位得到的。
(2) y=-1/2x+2与y=3x+2的交点在同一点,是因为两条直线的b相同;即直线与y轴的交点纵坐标取决于b。
由此得出结论,两个一次函数,当k一样,b不一样时有共同点:直线平行,都是由直线y=kx(k≠0)向上或向下移动得到;
不同点:它们与y轴的交点不同。
而当两个一次函数,b一样,k不一样时,有共同点:它们与y轴交于同一点(0,b);不同点:直线不平行。
补充说明:由于上述函数只有b>0的情况,不能体现将正比例函数向下平移,因此我在教学中让学生自主完成了b<0时的图像以利于学生理解图像向下平移的情况。
设计意图:现代数学教学理论认为:教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳使学生有一个完整的知识形成过程。
(三)实践应用
1.完成课本例1
注意引导让学生讨论、交流,及时反馈知识在实际中的应用。
2.完成课后练习
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,体现新课标提出的让更多的学生在数学上得到不同发展的教学理念。
这一环节总的设计意图是反馈教学,内化知识。
(四) 小结归纳,拓展深化
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,应从学习的知识、方法、体验几个方面进行归纳,我设计了这么三个问题:
①通过本节课的学习,你学会了哪些知识;
②通过本节课的学习,你最大的体验是什么;
③通过本节课的学习,你掌握了哪些学习数学的方法?
(五)布置作业,提高升华
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。
总的设计意图是反馈教学,巩固提高。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。
六.教学评价
本课教学注意挖掘教材,体现学生的主体地位;同时以问题为载体,探究为主线,有意识地留给学生适度的思维空间,从不同视角上展示不同层次学生的学习水平,使传授知识与培养能力融为一体。