力学6(被动力的分析技巧)—2021届高三物理一轮复习讲义
- 格式:pdf
- 大小:153.87 KB
- 文档页数:5
第2节力的合成与分解知识点1力的合成1.合力与分力(1)定义:如果几个力共同作用产生的效果与一个力的作用效果一样,这一个力就叫作那几个力的合力,那几个力叫作这一个力的分力.(2)关系:合力与分力是等效替代关系.2.共点力作用在一个物体上,作用线或作用线的延长线交于一点的几个力.如图2-2-1所示均是共点力.图2-2-13.力的合成(1)定义:求几个力的合力的过程.(2)运算法那么:①平行四边形定那么:求两个互成角度的共点力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向.②三角形定那么:把两个矢量的首尾顺次连接起来,第一个矢量的首到第二个矢量的尾的有向线段为合矢量.知识点2力的分解1.定义求一个力的分力的过程.力的分解是力的合成的逆运算.2.遵循的原那么(1)平行四边形定那么.(2)三角形定那么.3.分解方法(1)力的效果分解法.(2)正交分解法.知识点3矢量和标量1.矢量既有大小又有方向的量.相加时遵从平行四边形定那么.2.标量只有大小没有方向的量.求和时按代数法那么相加.1.正误判断(1)两个力的合力一定大于任一个分力.(×)(2)合力和分力是等效替代的关系.(√)(3)1 N和2 N的力的合力一定等于3 N.(×)(4)两个分力大小一定,夹角越大,合力越大.(×)(5)8 N的力能够分解成5 N和3 N的两个分力.(√)(6)力的分解必须按效果分解.(×)(7)位移、速度、加速度、力和时间都是矢量.(×)2.(合力与分力的关系)如图2-2-2所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲),然后身体下移,双臂缓慢张开到图乙位置,那么在此过程中,吊环的两根绳的拉力F T(两个拉力大小相等)及它们的合力F的大小变化情况为() 【导学号:96622027】甲乙图2-2-2A.F T减小,F不变B.F T增大,F不变C.F T增大,F减小D.F T增大,F增大【答案】 B3.(对矢量运算法那么的理解)在以下选项中,F1、F2、F3恰好构成封闭的直角三角形,这三个力的合力最大的是()【答案】 C4.(正交分解法或合成法)如图2-2-3所示,用一样的弹簧秤将同一个重物m,分别按甲、乙、丙三种方式悬挂起来,读数分别是F1、F2、F3、F4,θ=30°,那么有()【导学号:96622028】图2-2-3A.F4最大B.F3=F2C.F2最大D.F1比其他各读数都小【答案】 C[核心精讲]1.共点力合成的常用方法(1)作图法:从力的作用点起,按同一标度作出两个分力F 1和F 2的图示,再以F 1和F 2的图示为邻边作平行四边形,画出过作用点的对角线,量出对角线的长度,计算出合力的大小,量出对角线与某一力的夹角确定合力的方向(如图2-2-4所示).图2-2-4(2)计算法:几种特殊情况的共点力的合成.类型作图合力的计算①互相垂直F =F 21+F 22tan θ=F 1F 2②两力等大,夹角θF =2F 1cos θ2 F 与F 1夹角为θ2③两力等大且夹角120°合力与分力等大首尾相接,从第一个力的作用点,到第二个力的箭头的有向线段为合力.如图2-2-5甲、乙所示.图2-2-52.合力大小的范围(1)两个共点力的合成:|F1-F2|≤F合≤F1+F2即两个力大小不变时,其合力随夹角的增大而减小,当两力反向时,合力最小,为|F1-F2|,当两力同向时,合力最大,为F1+F2.(2)三个共点力的合成①三个力共线且同向时,其合力最大,为F1+F2+F3.②任取两个力,求出其合力的范围,如果第三个力在这个范围之内,那么三个力的合力的最小值为零;如果第三个力不在这个范围内,那么合力的最小值为最大的一个力减去另外两个较小的力的和的绝对值.[题组通关]1.如图2-2-6所示,F1、F2为有一定夹角的两个力,L为过O点的一条直线,当L取什么方向时,F1、F2在L上分力之和为最大?()图2-2-6A.F1、F2合力的方向B.F1、F2中较大力的方向C.F1、F2中较小力的方向D.以上说法都不正确A要想使F1、F2在L上分力之和最大,也就是F1、F2的合力在L上的分力最大,那么L的方向应该沿F1、F2的合力方向.2.三个共点力大小分别是F1、F2、F3,关于它们的合力F的大小,以下说法中正确的选项是() 【导学号:96622029】A.F大小的取值范围一定是0≤F≤F1+F2+F3B.F至少比F1、F2、F3中的某一个大C.假设F1∶F2∶F3=3∶6∶8,只要适当调整它们之间的夹角,一定能使合力为零D .假设F 1∶F 2∶F 3=3∶6∶2,只要适当调整它们之间的夹角,一定能使合力为零C 合力不一定大于分力,B 错;三个共点力的合力的最小值能否为零,取决于任何一个力是否都在其余两个力的合力范围内,由于三个力大小未知,所以三个力的合力的最小值不一定为零,A 错;当三个力的大小分别为3a 、6a 、8a ,其中任何一个力都在其余两个力的合力范围内,故C 正确;当三个力的大小分别为3a 、6a 、2a 时,不满足上述情况,故D 错.[名师微博] 两点提醒:1.三个共点力大小一定,方向不确定时,假设三个力同向那么合力最大,为三个力大小之和,但其合力最小值不一定为零.2.计算法求合力,只需作出力的示意图,对平行四边形的作图要求也不太严格,重点是利用数学方法求解,往往适用于两力的夹角是特殊角的情况.[核心精讲] 1.按力的效果分解(1)根据力的实际作用效果――→确定两个实际分力的方向. (2)再根据两个实际分力方向――→画出平行四边形. (3)最后由三角形知识――→求出两分力的大小. 2.正交分解法(1)定义:将力按互相垂直的两个方向进展分解的方法.(2)建立坐标轴的原那么:一般选共点力的作用点为原点,在静力学中,以少分解力和容易分解力为原那么(即尽量多的力在坐标轴上);在动力学中,常以加速度方向和垂直加速度方向为坐标轴建立坐标系.(3)方法:物体受到多个力作用F 1、F 2、F 3、…,求合力F 时,可把各力沿相互垂直的x 轴、y 轴分解(如图2-2-7所示).图2-2-7 x轴上的合力:F x=F x1+F x2+F x3+…y轴上的合力:F y=F y1+F y2+F y3+…合力大小:F=F2x+F2y合力方向:与x轴夹角为θ,那么tan θ=F y F x.[师生共研]●考向1力的效果分解法压榨机的构造示意图如图2-2-8所示,其中B点为固定铰链,假设在A铰链处作用一垂直于壁的力F,那么由于力F的作用,使滑块C压紧物体D,设C与D光滑接触,杆的重力及滑块C的重力不计,l=0.5 m,b=0.05 m.求物体D所受压力的大小是F的多少倍?图2-2-8【合作探讨】(1)力F产生哪两个作用效果?提示:力F产生两个作用效果:使轻杆压紧铰链B、使轻杆压紧滑块C.(2)轻杆AC对滑块C的作用力又产生哪两个作用效果?提示:轻杆AC对滑块C的作用效果:使滑块C产生对物体D的竖直压力、使滑块C产生对壁的水平压力.【标准解答】按力F的作用效果沿AC、AB方向分解为F1、F2,如图甲所示,那么F 1=F 2=F2cos θ,甲 乙由几何知识得tan θ=lb =10.按力F 1的作用效果沿水平向左和竖直向下分解为N ′、N ,如图乙所示,那么N =F 1sin θ,联立以上各式解得N =5F ,所以物体D 所受压力的大小是F 的5倍. 【答案】 5倍●考向2 力的正交分解法如图2-2-9,墙上有两个钉子a 和b ,它们的连线与水平方向的夹角为45°,两者的高度差为l .一条不可伸长的轻质细绳一端固定于a 点,另一端跨过光滑钉子b 悬挂一质量为m 1的重物.在绳上距a 端l2的c 点有一固定绳圈.假设绳圈上悬挂质量为m 2的钩码,平衡后绳的ac 段正好水平,那么重物和钩码的质量比m 1m 2为( )图2-2-9A.5 B .2 C.52 D. 2【解题关键】关键信息信息解读光滑钉子b bc段绳子的拉力等于m1gc 点有一固定绳圈c点左、右两段绳的拉力大小不同ab连线与水平方向的夹角为45°,距a端l2的c点、平衡后绳ac段正好水平可以确定平衡后cb与竖直方向的夹角α.cos α=ll2+⎝⎛⎭⎪⎫l22.C对于结点c,受三个拉力的作用,如下图,其中F1=m2g,F2=m1g,平衡时,F2、F3的合力F大小等于F1,即F=m2g.由图可知,FF2=cos α,而cos α=ll2+⎝⎛⎭⎪⎫l22=25,所以m2gm1g=25,即m1m2=52,故C正确.关于力的分解的两点说明1.在实际问题中进展力的分解时,有实际意义的分解方法是按力的实际效果进展分解,其他的分解方法都是为解题方便而设的;2.力的正交分解是在物体受三个或三个以上的共点力作用下求合力的一种方法,分解的目的是更方便地求合力,将矢量运算转化为代数运算.[题组通关]3.如图2-2-10所示为斧头劈柴的剖面图,图中BC边为斧头背,AB、AC 边为斧头的刃面.要使斧头容易劈开木柴,需要()图2-2-10A.BC边短些,AB边也短些B.BC边长一些,AB边短一些C.BC边短一些,AB边长一些D.BC边长一些,AB边也长一些C如下图,设劈柴的力为F,按效果可分解为两个垂直于斜边的力F1和F2,由图可知,F1=F2=F2sin θ,要使斧头容易劈开木柴,那么F1和F2应越大,即θ应越小,故要求BC边短一些、AB边长一些.4.(多项选择)如图2-2-11所示,轻质光滑滑轮两侧用细绳连着两个物体A 与B,物体B放在水平地面上,A、B均静止.A和B的质量分别为m A、m B,绳与水平方向的夹角为θ,那么()图2-2-11A.物体B受到的摩擦力可能为零B.物体B受到的摩擦力为m A g cos θC.物体B对地面的压力可能为零D.物体B对地面的压力为m B g-m A g sin θBD对B受力分析如下图,那么水平方向上f=T cos θ,又T=m A g,所以f=m A g cos θ,A错误、B正确;竖直方向上N B+T sin θ=m B g,所以N B=m B g-T sin θ=m B g-m A g sin θ,C错误、D正确.[典题例如]如图2-2-12所示的四脚支架经常使用在架设高压线路、通信的基站塔台等领域.现有一质量为m的四脚支架置于水平地面上,其四根铁质支架等长,与竖直方向均成θ角,重力加速度为g,那么每根支架对地面的作用大小为().下载后可自行编辑修改,页脚下载后可删除。
章末专题复习物理方法|计算变力做功的五种方法1.利用动能定理求变力做功动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力做功也适用于求变力做功.因使用动能定理可由动能的变化来求功,所以动能定理是求变力做功的首选.2.利用微元法求变力做功将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数多个无穷小的位移上的恒力所做元功的代数和.此法在中学阶段,常应用于求解大小不变、方向改变的变力做功问题.3.化变力为恒力求变力做功变力做功直接求解时,通常都比拟复杂,但假设通过转换研究对象,有时可化为恒力做功,用W=Fl cos α求解.此法常常应用于轻绳通过定滑轮拉物体的问题中.4.利用平均力求变力做功在求解变力做功时,假设物体受到的力方向不变,而大小随位移呈线性变化,即力均匀变化时,那么可以认为物体受到一大小为F=F1+F22的恒力作用,F1、F2分别为物体初、末态所受到的力,然后用公式W=F l cos α求此力所做的功.5.利用F-x图象求变力做功在F-x图象中,图线与x轴所围“面积〞的代数和就表示力F在这段位移所做的功,且位于x轴上方的“面积〞为正,位于x轴下方的“面积〞为负,但此方法只适用于便于求图线所围面积的情况(如三角形、矩形、圆等规那么的几何图形).用铁锤将一铁钉击入墙壁,设墙壁对铁钉的阻力与铁钉进入墙壁内的深度成正比.在铁锤击打铁钉第一次时,能把铁钉击入墙壁内1 cm.问铁锤击打铁钉第二次时,能将铁钉击入的深度为多少?(设铁锤每次做功相等) 【解析】解法一:平均力法铁锤每次做的功都用来克制摩擦阻力,但摩擦阻力不是恒力,其大小与铁钉的击入深度成正比,即F =kx ,而摩擦阻力可用平均阻力来代替.如图甲所示,第一次铁钉击入深度为x 1,平均阻力 F 1=12kx 1,做功为W 1=F 1x 1=12kx 21甲第二次铁钉击入深度为x 1到x 2,平均阻力F 2=12k (x 2+x 1),位移为x 2-x 1,做功为W 2=F 2(x 2-x 1)=12k (x 22-x 21).两次做功相等,那么W 1=W 2,解得x 2=2x 1=1.41 cm ,故Δx =x 2-x 1=0.41 cm.解法二:图象法 因为阻力F =kx ,以F 为纵坐标,F 方向上的位移x 为横坐标,作出F -x 图象,如图乙所示.图线与横坐标轴所围面积的值等于阻力F 对铁钉做的功.乙由于两次做功相等,故有:S 1=S 2(面积),即12kx 21=12k (x 2+x 1)(x 2-x 1),解得x 2=2x 1=1.41 cm ,故Δx =x 2-x 1=0.41 cm.【答案】 0.41 cm[突破训练]1.如图5-1所示,光滑水平平台上有一个质量为m 的物块,站在地面上的人用跨过定滑轮的绳子向右拉动物块,不计绳和滑轮的质量及滑轮的摩擦,且平台边缘离人手作用点竖直高度始终为h .当人以速度v 从平台的边缘处向右匀速前进位移x时,那么()【导学号:92492252】图5-1A.在该过程中,物块的运动可能是匀速的B.在该过程中,人对物块做的功为m v2x2 2(h2+x2)C.在该过程中,人对物块做的功为12m v2D.人前进x时,物块的运动速率为v hh2+x2B[设绳子与水平方向的夹角为θ,那么物块运动的速度v物=v cos θ,而cosθ=xh2+x2,故v物=v xh2+x2,可见物块的速度随x的增大而增大,A、D均错误;人对物块的拉力为变力,变力的功可应用动能定理求解,即W=12m v2物=m v2x22(h2+x2),B正确,C错误.]物理模型|轻杆模型中的机械能守恒1.模型构建轻杆两端(或两处)各固定一个物体,整个系统一起沿斜面运动或绕某点转动,该系统即为机械能守恒中的轻杆模型.2.轻杆模型的四个特点(1)忽略空气阻力和各种摩擦.(2)平动时两物体线速度相等,转动时两物体角速度相等.(3)杆对物体的作用力并不总是指向杆的方向,杆能对物体做功,单个物体机械能不守恒.(4)对于杆和物体组成的系统,没有外力对系统做功,因此系统的总机械能守恒.3.解决轻杆模型应注意的三个问题(1)明确轻杆转轴的位置,从而确定两物体的线速度是否相等.(2)杆对物体的作用力方向不再沿着杆,故单个物体的机械能不守恒.(3)杆对物体做正功,使其机械能增加,同时杆对另一物体做负功,使其机械能减少,系统的机械能守恒.如图5-2所示,在长为L 的轻杆中点A 和端点B 处各固定一质量为m的球,杆可绕轴O 无摩擦的转动,使杆从水平位置无初速度释放摆下.求当杆转到竖直位置时,轻杆对A 、B 两球分别做了多少功?图5-2【思路导引】 关键信息—⎪⎪⎪⎪ →长为L 的轻杆中点A 和端点B 处各固定一质量为m 的球→杆从水平位置无初速度释放⇓ 解题依据—⎪⎪⎪⎪ →v B =2v A →A 、B 两球初速度为零→A 、B 和杆组成的系统机械能守恒【解析】 A 、B 和杆组成的系统机械能守恒,以B 的最低点为零重力势能参考平面,可得2mgL =12m v 2A +12m v 2B +12mgL .又因A 球与B 球在各个时刻对应的角速度一样,故v B =2v A由以上两式得 v A =3gL5,v B =12gL5根据动能定理,对于A 球有W A +mg L 2=12m v 2A -0,所以W A mgL对于B 球有W B +mgL =12m v 2B -0,所以W B mgL.【答案】mgLmgL[突破训练]2.(多项选择)(2021·连云港模拟)如图5-3所示,A、B两个小球(均视为质点)用轻杆连接,A球只能沿内壁光滑的竖直滑槽运动,B球处于光滑水平地面上.开场时,在外力作用下A、B球均静止,连接轻杆可视为竖直.现撤去外力,B球开场沿水平面向右运动.A、B两球的质量均为m,杆长为L,以水平地面为零势能面,那么以下说法正确的选项是()图5-3A.A球下滑到地面的过程中,轻杆对B球先做正功后做负功B.A球着地时的速度大小为gLC.A球着地时A、B两球的速度大小一样D.A球下滑到地面的过程中两球和杆组成的系统机械能守恒AD[A球下滑到地面的过程中,对两球和杆组成的系统,槽对A球的弹力与其速度方向垂直,弹力不做功,水平地面对B球的弹力与其速度方向垂直,也不做功,只有A球的重力做功,系统机械能守恒,选项D正确;由于A球着地时受到滑槽的限制,B球速度为零,根据机械能守恒定律有mgL=12m v2A,A球着地时的速度大小v A=2gL,选项B、C错误;开场时,B球的速率为零,A球着地时B球的速率也为零,可见B球先加速后减速,动能先增大后减小,根据动能定理知,杆对B球做的功等于B球动能的变化量,轻杆对B球先做正功后做负功,选项A正确.]高考热点|用动力学和能量的观点解决多过程问题多过程问题在高考中常以压轴题的形式出现,涉及的模型主要有:木板滑块模型、传送带模型、弹簧模型等,涉及的运动主要有直线运动、圆周运动和平抛运动等.如图5-4所示,长l =1 m 、厚度h =0.2 m 的木板A 静止在水平面上,固定在水平面上、半径r =1.6 m 的四分之一光滑圆弧轨道PQ 的底端与木板A 相切于P 点,木板与圆弧轨道紧靠在一起但不粘连.现将小物块B 从圆弧上距P 点高度H =0.8 m 处由静止释放,A 、B 质量均为m =1 kg ,A 与B 间的动摩擦因数μ1=0.4,A 与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求:图5-4(1)小物块刚滑到圆弧轨道最低点P 处时对圆弧轨道的压力大小;(2)小物块从刚滑上木板至滑到木板左端过程中对木板所做的功;(3)小物块刚落地时距木板左端的距离.【解析】 (1)对B 下滑的过程由机械能守恒定律有mgH =12m v 2,解得v =2gH =4 m/s小物块滑到最低点P 处时,由牛顿第二定律有F N -mg =m v 2r解得F N =mg +m v 2r =20 N由牛顿第三定律得F N ′=20 N.(2)从小物块刚滑上木板至滑到木板左端过程中.对B 受力分析,由牛顿第二定律有a 1=μ1mg m =μ1g =4 m/s 2小物块B 做匀减速直线运动对A 受力分析,由牛顿第二定律有a 2=μ1mg -μ2·2mg m =2 m/s 2木板A 做匀加速直线运动又由l =x B -x Ax B =v t -12a 1t 2 x A =12a 2t 2代入数据解得t =13 s(t =1 s 舍去)对A 由动能定理得W =μ1mg ·12a 2t 2=49 J.(3)B 离开木板后以v 1=v -a 1t =83 m/s 的初速度做平抛运动,至落地所需时间由h =12gt ′2,得t ′=2hg =0.2 s木板A 将以v 2=a 2t =23 m/s 、加速度a 3=μ2mg m =μ2g =1 m/s 2做匀减速运动,物块B 落地时,两者相距Δx =v 1t ′-(v 2t ′-12a 3t ′2)代入数据得Δx =0.42 m.【答案】 (1)20 N (2)49 J (3)0.42 m[突破训练]3.(2021·全国甲卷)轻质弹簧原长为2l ,将弹簧竖直放置在地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l .现将该弹簧水平放置,一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5l 的水平轨道,B 端与半径为l 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,如图5-5所示.物块P 与AB 间的动摩擦因数μP ,将弹簧压缩至长度l ,然后放开,P 开场沿轨道运动.重力加速度大小为g .图5-5(1)假设P 的质量为m ,求P 到达B 点时速度的大小,以及它离开圆轨道后落回到AB 上的位置与B 点之间的距离;(2)假设P 能滑上圆轨道,且仍能沿圆轨道滑下,求P 的质量的取值范围.【导学号:92492253】【解析】 (1)依题意,当弹簧竖直放置,长度被压缩至l 时,质量为5m 的物体的动能为零,其重力势能转化为弹簧的弹性势能.由机械能守恒定律,弹簧长度为l 时的弹性势能为E p =5mgl ①设P 的质量为M ,到达B 点时的速度大小为v B ,由能量守恒定律得E p =12M v 2B +μMg ·4l ②联立①②式,取M =m 并代入题给数据得v B =6gl ③假设P 能沿圆轨道运动到D 点,其到达D 点时的向心力不能小于重力,即P 此时的速度大小v 应满足m v 2l -mg ≥0 ④设P 滑到D 点时的速度为v D ,由机械能守恒定律得12m v 2B =12m v 2D +mg ·2l ⑤联立③⑤式得v D =2gl ⑥ v D 满足④式要求,故P 能运动到D 点,并从D 点以速度v D 水平射出.设P 落回到轨道AB 所需的时间为t ,由运动学公式得2l =12gt 2 ⑦P 落回到AB 上的位置与B 点之间的距离为s =v D t⑧联立⑥⑦⑧式得s =22l . ⑨ (2)为使P 能滑上圆轨道,它到达B 点时的速度不能小于零.由①②式可知 5mgl >μMg ·4l ⑩要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C .由机械能守恒定律有12M v 2B ≤Mgl⑪联立①②⑩⑪式得53m ≤M <52m . ⑫ 【答案】 (1)6gl 22l (2)53m ≤M <52m。
~高考 -高中物理力学受力分析专题口溜:准象画重力,物一周找力;判断有无摩擦力,施力不画画受力;多漏假要分清,作真要仔。
〔一〕受力分析物体之所以于不同的运状,是由于它的受力情况不同.要研究物体的运,必分析物体的受力情况.正确分析物体的受力情况,是研究力学的关,是必掌握的根本功.如何分析物体的受力情况呢?主要依据力的概念、从物体所的境(有多少个物体接触)和运状着手,分析它与所境的其它物体的相互系;一般采取以下的步分析:1.确定所研究的物体,然后找出周有哪些物体它生作用.采用隔离法分析其他物体研究象的作用力,不要找物体施于其它物体的力,譬如所研究的物体叫A,那么就找出“甲 A 〞和“乙 A 〞及“丙 A 〞的力⋯⋯而“ A 甲〞或“ A 乙〞等的力就不是 A 所受的力.也不要把作用在其它物体上的力地通“力的〞作用在研究象上.2.要养成按步分析的.先画重力:作用点画在物体的重心.次画接触力 (力和摩擦力 ):研究象逆(或 )察一周,看象跟其他物体有几个接触点(面 ),每个接触点 (面 )假设有,画出力,假设有相运或,画出摩擦力.要熟:力的方向一定与接触面或接触点的切面垂直,摩擦力的方向一定沿着接触面与物体相运〔或〕方向相反。
分析完一个接触点 (面 )后再依次分析其他的接触点 (面 ).再画其他力:看是否有、磁力作用,如有画出力.口溜:一重、二、三摩擦、再其它。
3.受力分析的注意事:初学者物体行受力分析,往往不是“少力〞就是“多力〞,因此在行受力分析注意以下几点:(1)只分析研究象所受的力,不分析研究象其他物体所施加的力。
(2)每分析一个力,都找到施力物体,假设没有施力物体,力一定不存在.是防止“多力〞的有效措施之一。
一下画出的每个力能否找出它的施力物体,特是一下分析的果,能否使象与目所的运状 (静止或加速 ) 相一致,否,必然生了多力或漏力象.(3)合力和分力不能同作物体受到的力。
(4)只分析根据力的性命名的力〔如重力、力、摩擦力〕,不分析根据效果命名的力〔如下滑力、上升力等〕。
第2节牛顿第二定律、两类动力学问题一、牛顿第二定律、单位制1.牛顿第二定律(1)内容物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比。
加速度的方向与作用力的方向相同。
(2)表达式a=Fm或F=ma。
(3)适用范围①只适用于惯性参考系(相对地面静止或做匀速直线运动的参考系)。
②只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况。
2.单位制(1)单位制由基本单位和导出单位组成。
(2)基本单位基本量的单位。
力学中的基本量有三个,它们分别是质量、时间、长度,它们的国际单位分别是千克、秒、米。
(3)导出单位由基本量根据物理关系推导出的其他物理量的单位。
二、超重与失重1.实重和视重(1)实重:物体实际所受的重力,与物体的运动状态无关,在地球上的同一位置是不变的。
(2)视重①当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的示数称为视重。
②视重大小等于弹簧测力计所受物体的拉力或台秤所受物体的压力。
2.超重、失重和完全失重的比较1.两类动力学问题(1)已知物体的受力情况求物体的运动情况。
(2)已知物体的运动情况求物体的受力情况。
2.解决两类基本问题的方法以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如下:1.思考辨析(正确的画“√”,错误的画“×”)(1)牛顿第二定律的表达式F=ma在任何情况下都适用。
(×)(2)物体只有在受力的前提下才会产生加速度,因此,加速度的产生要滞后于力的作用。
(×)(3)物理公式不仅确定了物理量之间的数量关系,同时也确定了物理量间的单位关系。
(√)(4)失重说明物体的重力减小了。
(×)(5)物体超重时,加速度向上,速度也一定向上。
(×)(6)研究动力学两类问题时,做好受力分析和运动分析是关键。
(√) 2.(鲁科版必修1P134T3)在粗糙的水平面上,物体在水平推力作用下由静止开始做匀加速直线运动。
学习必备欢迎下载高考物理第一轮复习资料(知识点梳理)学好物理要记住:最基本的知识、方法才是最重要的。
学好物理重在理解(概念、规律的确切含义,能用不同的形式进行表达,理解其适用条件)(最基础的概念、公式、定理、定律最重要)每一题弄清楚(对象、条件、状态、过程)是解题关健力的种类 : ( 13 个性质力)说明:凡矢量式中用“重力:G = mg弹力: F= Kx滑动摩擦力: F 滑 = N静摩擦力:O f 静f m浮力: F 浮 = gV 排压力 : F= PS =ghs+”号都为合成符号“受力分析的基础”万有引力:m 1 m 2电场力: F 电 =q E =qu q1 q2(真空中、点电荷 ) F 引=G2库仑力: F=Kr 2r d磁场力: (1) 、安培力:磁场对电流的作用力。
公式: F= BIL( B I )方向 :左手定则(2) 、洛仑兹力:磁场对运动电荷的作用力。
公式:f=BqV (B V) 方向 : 左手定则分子力:分子间的引力和斥力同时存在,都随距离的增大而减小,随距离的减小而增大 ,但斥力变化得快。
核力:只有相邻的核子之间才有核力,是一种短程强力。
运动分类:(各种运动产生的力学和运动学条件、及运动规律)重点难点高考中常出现多种运动形式的组合匀速直线运动 F 合=0V0≠0静止匀变速直线运动:初速为零,初速不为零,匀变速直曲线运动(决于 F 合与 V0的方向关系 ) 但 F 合=恒力只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等圆周运动:竖直平面内的圆周运动(最低点和最高点 );匀速圆周运动 (是什么力提供作向心力)简谐运动;单摆运动;波动及共振;分子热运动;类平抛运动;带电粒子在f洛作用下的匀速圆周运动物理解题的依据:力的公式各物理量的定义各种运动规律的公式物理中的定理定律及数学几何关系FF12F222F1 F2COS F1- F2F∣ F1 +F 2∣、三力平衡: F3=F1 +F2非平行的三个力作用于物体而平衡,则这三个力一定共点,按比例可平移为一个封闭的矢量三角形多个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力的合力一定等值反向匀变速直线运动:基本规律:V t = V 0 + a t S = v o t + a t2几个重要推论:(1)推论: V t2- V 02 = 2as (匀加速直线运动: a 为正值匀减速直线运动: a 为正值)(2) A B 段中间时刻的即时速度:(3) AB段位移中点的即时速度 :V t/ 2 = V =S N 1S NV s/2 = = == VN2T(4) S 第 t 秒 = St-S t-1= (v o t + a t2) - [ v o( t- 1) + a (t- 1)2]= V 0 + a (t -)(5)初速为零的匀加速直线运动规律①在 1s 末、 2s 末、 3s 末⋯⋯ ns 末的速度比为1: 2: 3⋯⋯ n;②在 1s 、 2s、 3s⋯⋯ ns 内的位移之比为12: 22: 32⋯⋯ n2;③在第 1s 内、第2s 内、第 3s 内⋯⋯第ns 内的位移之比为1: 3: 5⋯⋯ (2n-1);④从静止开始通过连续相等位移所用时间之比为1::⋯⋯(⑤通过连续相等位移末速度比为1: 2 : 3 ⋯⋯n(6) 匀减速直线运动至停可等效认为反方向初速为零的匀加速直线运动.(7)通过打点计时器在纸带上打点(或照像法记录在底片上)来研究物体的运动规律初速无论是否为零 ,匀变速直线运动的质点 ,在连续相邻的相等的时间间隔内的位移之差为一常数;匀变速直线运动的物体中时刻的即时速度等于这段的平均速度⑴是判断物体是否作匀变速直线运动的方法。
赠送以下资料考试知识点技巧大全真要仔细。
(一)受力分析物体之所以处于不同的运动状态,是由于它们的受力情况不同.要研究物体的运动,必须分析物体的受力情如何分析物体的受力情况呢?主要依据力的概念、从物体所处的环境(有多少个物体接触)和运动状态着手,分析它与所处环境的其它物体的相互联系;一般采取以下的步骤分析:1.确定所研究的物体,然后找出周围有哪些物体对它产生作用.采用隔离法分析其他物体对研究对象的作用力,不要找该物体施于其它物体的力,譬如所研究的物体叫A ,那么就应该找出“甲对A ”和“乙对A ”及“丙对A ”的力……而“A 对甲”或“A 对乙”等的力就不是A 所受的力.也不要把作用在其它物体上的力错误地认为通过“力的传递”作用在研究对象上. 2.要养成按步骤分析的习惯.先画重力:作用点画在物体的重心.触点(面)后再依次分析其他的接触点(面).再画其他场力:看是否有电、磁场力作用,如有则画出场力. 一重、二弹、三摩擦、再其它。
3.受力分析的注意事项:初学者对物体进行受力分析时,往往不是“少力”就是“多力”,因此在进行受力分析时应注意以下几点: (1)(2)施之一。
检查一下画出的每个力能否找出它的施力物体,特别是检查一下分析的结果,能否使对象与题目所给的运动状态(静止或加速)相一致,否则,必然发生了多力或漏力现象.(4)只分析根据力的性质命名的力(如重力、弹力、摩擦力)等)。
(二)受力分析练习:1。
画出物体A受到的弹力:(并指出弹力的施力物)2。
画出物体A受到的摩擦力,并写出施力物:BAA沿着斜面向上运动3:对下面物体受力分析:1)重新对1、2两题各物体进行受力分析(在图的右侧画)2)对物体A进行受力分析(并写出各力的施力物)A沿着水平面向左运动A沿着墙向上运动A沿着水平面向右运动A相对斜面静止A沿着斜面向下运动A匀速下滑A3)对水平面上物体A 和B 进行受力分析,并写出施力物(水平面粗糙)4) 分析A 和B 物体受的力 分析A 和C 受力(并写出施力物)思路点拨1、如图所示,质量为m=2kg 的物体在水平力F=80N 作用下静止在竖直墙上,物体与墙面之间的动摩擦因数为0.5,用二力平衡知识可知物体受到的摩擦力大小为______N ,弹力大小为________N 。