单片机应用常见问题
- 格式:doc
- 大小:80.00 KB
- 文档页数:11
单片机常见故障及处理单片机是一种重要的电子元件,广泛应用于各种电子设备中。
然而,由于各种原因,单片机常常会出现故障。
本文将介绍单片机常见的故障及处理方法,以帮助读者更好地理解和解决单片机故障。
一、单片机无法正常启动当单片机无法正常启动时,首先需要检查供电电源是否正常工作。
可以通过使用示波器测量电源电压波形,或者使用数字万用表测量电压值。
如果供电电源正常,那么可能是由于单片机本身的问题导致无法启动。
这时,可以尝试重烧单片机程序,或者更换单片机芯片。
二、单片机工作异常单片机在工作过程中,有时会出现异常现象,如程序死机、卡顿、无法执行某些功能等。
这些问题通常是由于程序错误导致的。
处理方法可以分为软件和硬件两个方面。
在软件方面,可以通过调试程序代码、优化算法、增加错误处理机制等方法解决问题。
在硬件方面,可以检查电路连接是否良好,频率和波特率设置是否正确,外围器件是否与单片机正常通信等。
三、单片机无法正常通信单片机在与其他外设或传感器进行通信时,有时会出现通信失败的情况。
这可能是由于通信电路故障、通信协议设置错误、外设供电不足等原因引起的。
处理方法可以分为硬件和软件两个方面。
在硬件方面,需要检查通信电路连接是否正确、电源是否稳定、通信电缆是否损坏等。
在软件方面,需要检查通信协议设置是否正确、通信代码是否优化等。
四、单片机芯片损坏单片机芯片损坏是一种常见的故障。
这可能是由于静电击穿、电压过高、温度过高等原因引起的。
一旦单片机芯片损坏,一般无法修复,只能更换芯片。
为了避免单片机芯片损坏,应当采取防静电措施,避免过高的电压和温度对芯片造成损害。
五、单片机输入输出引脚不正常单片机的输入输出引脚在使用过程中,有时会出现信号异常、引脚失效等问题。
这可能是由于引脚连接不良、外部电路问题、程序配置错误等原因引起的。
处理方法可以通过检查引脚连接、检测外部电路、重新配置程序等解决。
六、单片机存储器故障单片机的存储器包括闪存、EEPROM等,用于存储程序和数据。
单片机使用中的错误排查与修复技巧单片机(Microcontroller)是一种集成了中央处理器、存储器和输入输出设备的微型计算机系统,常用于嵌入式系统中。
在单片机的使用过程中,由于硬件或软件问题,可能会出现各种错误。
这篇文章将介绍一些常见的错误,以及排查和修复这些错误的技巧。
一、硬件错误排查与修复技巧1. 电源问题:当单片机无法正常工作时,首先应检查电源问题。
可能的原因包括电源电压不稳定、电源连接错误或损坏的电源线。
排查方法:- 使用万用表测量电源电压,确保其在指定范围内。
- 检查电源连接是否正确,确认是否存在接触不良或松动的接线。
- 更换损坏的电源线。
修复方法:- 确保使用稳定可靠的电源。
- 确认电源线连接正确、可靠。
- 使用去噪电容或稳压电源解决电压波动问题。
2. 时钟问题:时钟信号是单片机正常工作的重要参考信号。
若时钟信号不正确或不稳定,单片机可能无法正常工作。
排查方法:- 检查时钟源选择是否正确。
- 使用示波器测量时钟信号,确认其频率和占空比是否满足要求。
- 检查时钟电路的连接是否存在接触不良或损坏。
修复方法:- 确认时钟源选择正确。
- 检查时钟电路的连接,确保其可靠性。
- 使用时钟缓冲器或外部晶振解决时钟不稳定问题。
3. 引脚问题:在单片机的使用过程中,常常会出现引脚连接错误或引脚损坏的问题。
这可能导致严重的功能故障或者不可预测的工作情况。
排查方法:- 检查引脚连接是否正确,确认是否存在接触不良或者误连的情况。
- 使用万用表或示波器测量引脚的电平,确认其是否符合预期。
- 在其他引脚上测试相同功能,以确定引脚是否损坏。
修复方法:- 修正引脚连接错误,确保连接可靠。
- 更换损坏的引脚。
- 使用外部元件(如继电器)重新分配引脚功能。
二、软件错误排查与修复技巧1. 编译错误:编译错误是开发单片机软件时常遇到的问题,通常是由于语法错误、头文件引用错误等引起的。
排查方法:- 仔细阅读编译错误信息,确定具体的错误原因。
单片机常见错误排查单片机是一种常用于嵌入式系统的微型计算机芯片,广泛应用于各种电子设备中。
然而,在单片机的开发和应用过程中,常常会遇到一些错误和问题。
本文将介绍一些常见的单片机错误,并提供排查方法,帮助大家解决问题。
一、连接错误1. 供电问题:单片机需要稳定可靠的电源供应。
如果单片机无法启动或运行不稳定,可能是供电问题导致的。
首先检查电源连接是否正确,电压是否稳定,并且确保电源满足单片机的要求。
2. 时钟问题:单片机需要外部时钟或晶振来提供时钟信号。
如果单片机没有时钟信号,可能导致无法正常工作。
检查时钟电路连接是否正确,晶振是否工作正常。
3. 引脚连接问题:单片机的引脚连接错误可能导致通信失败或功能异常。
检查引脚连接是否正确,特别注意输入输出引脚的连接。
二、程序问题1. 代码错误:单片机的程序是由开发者编写的,可能存在语法错误、逻辑错误或者算法错误。
当单片机不能按照预期运行时,检查代码是否有错误,并使用调试工具进行查找和修复。
2. 资源冲突:单片机常常需要同时使用多种资源,如定时器、串口、中断等。
如果多个资源同时使用会导致冲突,可能导致单片机无法正常运行。
检查资源的使用是否冲突,可以采用优先级调度或者合理分配资源的方法来解决冲突问题。
3. 数据存储问题:单片机的内部存储器用于存储程序代码和数据,如果存储器出现故障或者超出容量,可能导致程序无法正常执行。
检查存储器的容量是否足够,并且尽量采用合理的数据类型和存储结构来优化代码。
三、硬件问题1. 外设故障:单片机常常需要与各种外设进行通信,如传感器、LCD屏幕、键盘等。
如果外设出现故障或者连接错误,可能导致单片机无法获取正确的数据或者执行正确的操作。
检查外设的连接是否正确,并且确保外设的工作状态正常。
2. 电路设计错误:单片机所在的电路板设计可能存在问题,如布线错误、元件损坏等。
检查电路板设计是否符合规范,并且检查电路板上的元件是否正常工作。
3. 热量问题:单片机在工作过程中会产生热量,如果散热不良可能导致单片机温度过高,从而影响其正常运行。
单片机常见错误例程分析单片机是一种集成电路,对于初学者来说,由于经验不足,常会遇到一些错误。
下面我们来分析一些单片机常见的错误例程,以及解决方法。
一、看门狗定时溢出引起的复位单片机中通常都有看门狗(Watchdog)定时器,用于监控系统运行。
如果在程序中没有及时喂狗,导致看门狗定时器溢出,会引起复位。
解决方法:1.在主程序中设定喂狗的指令,以避免看门狗定时溢出。
2.在适当的位置设置看门狗使能的指令,保证看门狗定时器能正常工作。
3.尽量避免在中断服务程序中关闭看门狗定时器,以免因为中断响应过慢导致看门狗复位。
二、中断服务程序执行时间过长当中断服务程序执行时间过长时,会导致主程序无法继续正常运行。
这种情况下,单片机很可能无法响应其他外部事件。
解决方法:1.在中断服务程序中尽量减少对资源的占用,避免复杂的运算和长时间的延时操作。
2.将必要的数据交给主程序处理,减少中断服务程序的工作量。
3.合理设置中断优先级,确保重要的中断能及时响应。
三、电源噪声导致系统不稳定单片机对电源的稳定性要求较高,如果电源存在噪声,则可能导致系统不稳定,甚至崩溃。
解决方法:1.在供电线路上添加合适的滤波电容,以减小电源噪声。
2.使用稳压电源,保证电源输出的稳定性。
3.合理布线,避免电源和信号线的干扰。
四、编程错误编程错误是单片机常见的错误之一、例如,写入错误的寄存器地址、错误的命令、错误的数据等。
解决方法:1.熟悉单片机的手册,了解相关寄存器、命令和数据的使用方法。
2.仔细检查编程代码,避免拼写错误和语法错误。
3.使用调试工具,例如仿真器、逻辑分析仪等,进行实时调试。
五、外围设备连接错误单片机通常需要与外围设备进行通信,如果连接错误,可能导致通信失败或者数据传输错误。
解决方法:1.确保电路连接正确,检查信号线、电源线等的连接是否松动、接触不良。
2.根据外围设备的手册,仔细查阅相关接口的使用说明书,确保连接方式正确。
3.使用示波器、逻辑分析仪等工具,对通信信号进行监测和分析,找出错误原因。
单片机使用注意事项及常见问题解答一、注意事项在使用单片机的过程中,为了保证正常运行和提高使用寿命,需要注意以下几个方面:1. 电路设计与布线单片机的工作稳定性和可靠性与电路设计和布线密切相关。
合理的电路设计与布线可以减少电磁干扰、提高信号质量、降低功耗等。
因此,在设计电路和布线时,应尽量避免信号线与电源线、高频线等干扰源的交叉,并采用地线分区法、电源分区法、高频线与低频线分离等措施,以确保电路的稳定工作。
2. 电源稳定单片机对电源的稳定性要求较高,对于电源的电压波动、噪声干扰等都会影响单片机的正常工作。
为了保证电源的稳定,可以采用使用稳压芯片、滤波电容、电源隔离等方法,同时应避免长时间连续工作导致电源过热。
3. 静电防护单片机芯片对静电敏感,接触静电可能会造成芯片损坏。
在操作单片机时,应注意防止静电产生,如接地处理、使用防静电手套、工作环境湿度控制等。
4. 保持环境清洁单片机的安装环境应保持清洁干燥,尽量避免进水、进灰尘等情况。
灰尘或水分的进入可能会导致单片机损坏或性能下降。
5. 软件程序设计合理的软件程序设计可以提高单片机的工作效率和可靠性。
在编写程序时,应注意处理程序中可能存在的延时、死循环、内存溢出等问题,避免程序运行过程中出现异常情况。
二、常见问题解答1. 单片机运行不正常怎么办?如果单片机运行异常,首先应检查是否存在电源稳定性问题,可以通过使用稳压电源或重新连接电源等方式解决。
其次,检查电路设计与布线是否有问题,如电线是否短路、信号线与干扰源的交叉等。
同时,还需要检查软件程序是否存在错误,尝试重新编译或修改程序。
2. 单片机复位时间长怎么办?单片机复位时间长可能是由于软件程序中的复位流程存在问题。
检查程序中是否有延时等待操作,若有,可以适当减小延时时间。
同时,还需要检查硬件电路中的复位电路是否正确连接,确保复位信号能够及时生效。
3. 单片机工作时频率不稳定怎么办?频率不稳定可能与电源噪声、电磁干扰等有关。
单片机技术的使用中常见问题及解决方案集锦引言:单片机技术作为嵌入式系统开发的核心,广泛应用于各个领域。
然而,在实际使用过程中,我们常常会遇到各种问题,这不仅会影响项目的进展,还可能导致系统的稳定性和可靠性下降。
本文将针对单片机技术的使用中常见问题进行分析,并提供一些解决方案,帮助读者更好地应对这些问题。
一、电路设计问题及解决方案在单片机技术的应用中,电路设计是至关重要的,一个合理的电路设计能够提高系统的稳定性和可靠性。
以下是一些常见的电路设计问题及解决方案:1. 电源干扰问题电源干扰是导致单片机系统不稳定的常见问题之一。
解决方案是在电源输入端添加电源滤波电路,如电容滤波器和磁珠滤波器,以减小电源线上的噪声。
2. 时钟电路问题时钟电路是单片机系统中的关键部分,它提供了系统的时钟信号。
如果时钟电路设计不合理,可能会导致系统时钟不准确或者不稳定。
解决方案是使用稳定的时钟源,并在时钟信号线上添加适当的阻抗匹配电路,以降低时钟信号的反射和干扰。
3. 脉冲干扰问题脉冲干扰是由于电路中的开关动作引起的,它会导致单片机系统的工作不正常。
解决方案是在输入端添加合适的滤波电路,如RC滤波器或者磁珠滤波器,以减小脉冲干扰的影响。
二、软件编程问题及解决方案单片机技术的应用离不开软件编程,一个高效、可靠的程序是保证系统正常运行的关键。
以下是一些常见的软件编程问题及解决方案:1. 内存管理问题单片机的内存资源有限,合理地管理内存是提高程序效率的关键。
解决方案是合理地分配内存空间,避免内存碎片的产生,并使用适当的数据结构和算法来优化程序。
2. 中断处理问题中断是单片机系统中常用的一种处理方式,但不正确的中断处理可能导致系统死机或者数据丢失。
解决方案是在中断处理程序中尽量减少对全局变量的访问,避免死锁和资源竞争的问题。
3. 时序控制问题时序控制是单片机系统中的重要部分,它决定了系统各个模块的工作顺序和时序关系。
解决方案是合理地设计时序控制逻辑,并使用定时器和计数器等硬件资源来辅助实现。
单片机实验遇到的问题和解决方法1. 引言在进行单片机实验时,经常会遇到各种问题。
这些问题可能包括电路设计错误、程序编写错误、传感器连接问题等。
本文将深入探讨单片机实验中常见的问题,并提供解决方法和建议。
2. 电路设计错误在进行单片机实验时,电路设计错误是常见的问题之一。
这些错误可能包括电源电压不稳定、电阻或电容值选择错误等。
解决这些问题的方法有以下几点:2.1 检查电路图:仔细检查电路图,确保电路连接正确,各个元件符合规格要求。
2.2 检查电源电压:使用万用表或示波器测量电源电压,确保电压稳定在要求范围内。
若发现电压不稳定,可以考虑更换电源或添加稳压电路。
2.3 检查元件数值:核对电阻、电容等元件数值是否与电路图一致。
确保元件数值选择正确,以保证电路正常工作。
3. 程序编写错误在单片机实验中,程序编写错误是常见的问题。
这些错误可能包括语法错误、逻辑错误等。
解决这些问题的方法有以下几点:3.1 仔细阅读编译器报错信息:当程序编译出错时,仔细阅读编译器报错信息,根据报错信息来定位问题所在,并按照报错信息的建议进行修改。
3.2 打印调试信息:在程序的关键位置加入打印调试信息的语句,以便观察程序执行过程中的变量值、状态等。
通过观察打印信息,可以快速定位问题所在。
3.3 逐步调试:将程序分段调试,逐步排查问题。
可以使用单步执行、断点调试等工具来辅助调试。
分步调试可以帮助我们发现程序中隐藏的逻辑错误。
4. 传感器连接问题在使用传感器进行单片机实验时,传感器连接问题是常见的问题。
这些问题可能包括引脚连接错误、传感器供电不足等。
解决这些问题的方法有以下几点:4.1 核对传感器连接:核对传感器引脚连接是否正确。
可以参考传感器技术手册或相关资料来确定引脚连接方式。
4.2 检查供电电压:确保传感器供电电压符合要求。
有些传感器需要稳压电源才能正常工作,若供电电压不足可能导致传感器输出不准确或无法正常工作。
4.3 使用示波器观察信号:使用示波器观察传感器输出信号波形,以确定传感器是否正常工作。
单片机实验遇到的问题和解决方法一、前言单片机是电子工程中常用的控制器件,广泛应用于各种电子设备中。
在学习和实践单片机过程中,可能会遇到各种问题。
本文将介绍几种常见的单片机实验问题及其解决方法。
二、硬件问题1. 单片机无法正常工作若单片机无法正常工作,需要检查以下硬件方面:(1)电源是否正常:检查电源是否接好,电压是否符合要求。
(2)晶振是否正常:检查晶振是否接好,频率是否符合要求。
(3)连接线路是否正确:检查连接线路是否正确接入单片机和外部器件。
2. 单片机烧毁若单片机烧毁,需要检查以下硬件方面:(1)电源是否过压或过流:使用稳压电源并设置恰当的电流保护。
(2)晶振频率是否过高:选用合适的晶振并设置合理的频率范围。
(3)使用过程中注意静电防护:穿着防静电服进行操作或使用防静电手套等防护装备。
三、软件问题1. 编译错误编译错误通常是由于程序语法错误或库文件引用错误等原因导致的。
解决方法如下:(1)仔细检查程序语法是否正确:检查程序中是否有拼写错误、语法错误等。
(2)检查库文件引用是否正确:确定所使用的库文件是否与程序匹配,且路径设置正确。
2. 程序无法下载若程序无法下载到单片机中,需要检查以下软件方面:(1)编译器设置是否正确:确保编译器设置正确,并选择合适的单片机型号。
(2)连接方式是否正确:检查连接线路和下载方式是否正确。
(3)单片机芯片保护位是否被置位:将单片机芯片保护位清零后再进行下载操作。
3. 程序运行不正常若程序运行不正常,需要检查以下软件方面:(1)变量初始化问题:确保变量被初始化为合理的值。
(2)程序逻辑问题:仔细分析程序逻辑,寻找可能存在的问题。
(3)硬件连接问题:检查硬件连接和外设驱动程序是否正确。
四、总结以上是一些常见的单片机实验问题及其解决方法。
在实践过程中,还需注意防静电、按照规范操作等细节问题。
希望本文能够对读者在学习和实践单片机过程中有所帮助。
单片机技术常见问题及解决方法解析随着科技的不断发展,单片机技术在各个领域得到了广泛的应用。
然而,由于单片机技术的复杂性和特殊性,常常会遇到一些问题。
本文将针对单片机技术常见问题进行解析,并提供解决方法。
一、程序无法正常运行当程序无法正常运行时,首先需要检查是否存在以下问题:1. 电源问题:检查电源供应是否稳定,电压是否符合要求。
如果电源电压不稳定,可以使用稳压电源或添加电容来解决。
2. 电路连接问题:检查电路连接是否正确,是否存在虚焊、短路等问题。
可以使用万用表进行测量,找出问题所在。
3. 编程问题:检查程序是否存在错误,是否与硬件连接匹配。
可以使用调试工具进行单步调试,逐行检查程序执行情况。
如果以上问题都没有解决程序无法正常运行的情况,可能是单片机本身存在问题,可以尝试更换单片机或者联系供应商进行维修。
二、IO口无法正常工作IO口无法正常工作是单片机技术中常见的问题之一。
解决方法如下:1. IO口配置错误:检查IO口的配置是否正确,包括引脚选择、工作模式、上下拉电阻等。
可以参考单片机的手册或者开发板的原理图来确认配置是否正确。
2. 外设连接问题:检查外设是否正确连接到IO口,是否存在连接错误或者虚焊现象。
可以使用示波器或者逻辑分析仪来检查信号的波形和电平。
3. 中断配置错误:如果使用了中断功能,需要检查中断的配置是否正确。
包括中断源的选择、中断优先级的设置等。
如果以上问题都没有解决IO口无法正常工作的情况,可能是单片机本身存在问题,可以尝试更换单片机或者联系供应商进行维修。
三、程序卡死或死循环程序卡死或死循环是单片机技术中常见的问题之一。
解决方法如下:1. 死循环问题:检查程序中是否存在死循环的情况,即某个循环条件无法满足导致程序一直停留在该循环中。
可以通过添加调试信息或者使用调试工具来定位问题所在。
2. 中断问题:如果使用了中断功能,需要检查中断服务程序是否正确编写,是否存在死循环的情况。
可以通过添加调试信息或者使用调试工具来定位问题所在。
单片机开发中常见的错误与解决方案在单片机开发过程中,由于各种原因可能发生各种错误和问题。
本文将介绍一些常见的错误,并提供相应的解决方案,以帮助开发者顺利进行单片机开发。
一、编译错误与解决方案编译错误是在编写代码时常遇到的问题。
它们通常指出了源代码中的错误,可以通过观察和排查代码来解决。
(1)语法错误:语法错误是最常见的编译错误之一。
常见的语法错误包括括号不匹配、忘记分号等。
解决方案是仔细检查代码,确保语法正确。
(2)类型错误:类型错误指的是变量或函数的类型不匹配。
例如,将一个整数赋给一个字符型变量。
解决方案是检查代码中的类型定义,并确保变量和函数的类型匹配。
(3)链接错误:链接错误是指在最终生成可执行文件时出现的问题。
常见的链接错误包括找不到库文件、重复定义等。
解决方案是检查库文件路径是否正确,并确保函数和变量只被定义一次。
二、硬件问题与解决方案单片机开发中,硬件问题是不可避免的。
当出现硬件问题时,开发者需要仔细检查电路连接、电源供应等方面,以解决问题。
(1)电路连接错误:电路连接错误通常是由于接线错误或电路板设计问题引起的。
开发者应该仔细检查电路连接,确保连接正确并无短路或断路现象。
(2)电源问题:电源问题可能导致单片机不能正常工作或产生不稳定的现象。
开发者应该检查电源供应是否稳定,并合理设计供电电路。
(3)时钟设置错误:单片机的时钟设置影响其运行速度和精度。
开发者应该仔细设置单片机的时钟参数,并确保其与外部时钟源一致。
三、软件问题与解决方案在单片机开发中,软件问题是常见的。
这些问题可能涉及底层驱动程序、中断处理、算法等方面。
(1)驱动程序错误:驱动程序错误可能导致外设无法正常工作或产生异常数据。
开发者应该仔细编写和调试驱动程序,并确保其与硬件相匹配。
(2)中断处理错误:中断是单片机常用的一种机制,但不正确的中断处理可能导致系统崩溃或响应不及时。
开发者应该仔细设计和调试中断服务程序,并确保处理逻辑正确。
单片机应用常见问题(FAQ)1. C语言和汇编语言在开发单片机时各有哪些优缺点?答:汇编语言是一种用文字助记符来表示机器指令的符号语言,是最接近机器码的一种语言。
其主要优点是占用资源少、程序执行效率高。
但是不同的CPU,其汇编语言可能有所差异,所以不易移植。
C语言是一种结构化的高级语言。
其优点是可读性好,移植容易,是普遍使用的一种计算机语言。
缺点是占用资源较多,执行效率没有汇编高。
2. C或汇编语言可以用于单片机,C++能吗?答:在单片机开发中,主要是汇编和C,没有用C++的。
3. 搞单片机开发,一定要会C吗?答:汇编语言是一种用文字助记符来表示机器指令的符号语言,是最接近机器码的一种语言。
其主要优点是占用资源少、程序执行效率高。
但是不同的CPU,其汇编语言可能有所差异,所以不易移植。
对于目前普遍使用的RISC架构的8bit MCU来说,其内部ROM、RAM、S TACK等资源都有限,如果使用C语言编写,一条C语言指令编译后,会变成很多条机器码,很容易出现ROM空间不够、堆栈溢出等问题。
而且一些单片机厂家也不一定能提供C 编译器。
而汇编语言,一条指令就对应一个机器码,每一步执行什么动作都很清楚,并且程序大小和堆栈调用情况都容易控制,调试起来也比较方便。
所以在资源较少单片机开发中,我们还是建议采用汇编语言比较好。
而C语言是一种编译型程序设计语言,它兼顾了多种高级语言的特点,并具备汇编语言的功能。
C语言有功能丰富的库函数、运算速度快、编译效率高、有良好的可移植性,而且可以直接实现对系统硬件的控制。
C语言是一种结构化程序设计语言,它支持当前程序设计中广泛采用的由顶向下结构化程序设计技术。
此外,C语言程序具有完善的模块程序结构,从而为软件开发中采用模块化程序设计方法提供了有力的保障。
因此,使用C语言进行程序设计已成为软件开发的一个主流。
用C语言来编写目标系统软件,会大大缩短开发周期,且明显地增加软件的可读性,便于改进和扩充,从而研制出规模更大、性能更完备的系统。
综上所述,用C语言进行单片机程序设计是单片机开发与应用的必然趋势。
所以作为一个技术全面并涉足较大规模的软件系统开发的单片机开发人员最好能够掌握基本的C语言编程。
4. 当开发一个较复杂而又开发时间短的项目时,用C还是用汇编开发好?答:对于复杂而开发时间紧的项目时,可以采用C语言,但前提是要求对该MCU系统的C 语言和C编译器非常熟悉,特别要注意该C编译系统所能支持的数据类型和算法。
虽然C 语言是最普遍的一种高级语言,但不同的MCU厂家其C语言编译系统是有所差别的,特别是在一些特殊功能模块的操作上。
如果对这些特性不了解,那调试起来就有的烦了,到头来可能还不如用汇编来的快。
5. 在教学中要用到8088和196芯片单片机教材,请问那里可以找到关于这方面的书或资料?答:有关这方面的教材,大学里常用的一本是《IBM-PC汇编语言程序设计》清华大学出版社出版的,在网上以及书店都是可以找到的,另外网上还可以搜索到很多其他的教材如:《微机原理及汇编语言教程》(杨延双张晓冬等编著)和《16/32 位微机原理、汇编语言及接口技术》(作者:钟晓捷陈涛,机械工业出版社出版)等,可以在较大型的科技书店里查找或者直接从网上订购。
6. 初学者到底是应该先学C还是汇编?答:对于单片机的初学者来说,应该从汇编学起。
因为汇编语言是最接近机器码的一种语言,可以加深初学者对单片机各个功能模块的了解,从而打好扎实的基础。
7. 我是一名武汉大学电子科技大3的学生,学了电子线路、数字逻辑、汇编和接口、C语言,但是总是感觉很迷茫,觉好象什么都不会。
怎么办?答:大学过程是一个理论过程,实践的机会比较少,往往会造成理论与实践相脱节,这是国内大学教育系统的通病,不过对于学生来说切不可好高骛远。
一般从大三会开始接触到一些专业课程,电子相关专业会开设相关的单片机应用课程并且会有简单的实验项目,那么要充分把握实验课的机会,多多地实际上机操作练习。
平时可以多看看相关的电子技术杂志网站,看看别人的开发经验,硬件设计方案以及他人的软件设计经验。
有可能的话,还可以参加一些电子设计大赛,借此机会2--3个人合作做一个完整系统,会更有帮助。
到了大四毕业设计阶段,也可以选择相关的课题作些实际案例增长经验。
做什么事情都有个经验的积累过程,循序渐进。
8. 请问作为学生,如何学好单片机?答:学习好单片机,最主要的是实践,在实践中增长经验。
在校学生的话,实践机会的确会比较少,但是有机会的话,可以毕业实习选择相关的课题,这样就可以接触到实际的项目。
而且如果单片机微机原理是一门主课的话,相信学校会安排比较多的实践上机机会。
有能力的话,可以找一些相关兼职工作做做,会更有帮助。
而且单片机开发应用需要软硬件结合,所以不能只满足于编程技巧如何完美,平时也要注意硬件知识的积累,多上上电子论坛网站,买一些相关杂志。
可能的话,可以到电子市场去买一些小零件,自己搭一个小系统让它工作起来。
9. 如何才能才为单片机的高手啊?答:要成为单片机高手,应该多实践,时常关注单片机的发展趋势;经常上一些相关网站,从那里可以找到许多有用的资料。
10. 女性是否适合单片机软件编程这个行业?答:要根据自己的兴趣,配合自己对软件编程的耐性,男女皆适合这个行业。
11. 8位机还能延续多久!答:以现在MCU产品主力还是在8位领域,主要应用于汽车应用、消费性电子、电脑及P C周边、电信与通讯、办公室自动化、工业控制等六大市场,其中车用市场多在欧、美地区,而亚太地区则以消费性电子为主,并以量大低单价为产品主流,目前16位MCU与8位产品,还有相当幅度的价差,新的应用领域也仍在开发,业界预计,8位的MCU仍是MCU 产品的主流。
12. 学习ARM及嵌入式系统是否比学习其它一般单片机更有使用前景?对于一个初学者应当具备哪些相关知识?答:一般在8位单片机与ARM方面的嵌入式系统是有层次上的差别,ARM适用于系统复杂度较大的高级产品,如PDA、手机等应用。
而8位单片机因架构简单,硬件资源相对较少,适用于一般的工业控制、消费性家电等等。
对于一个单片机方面的软件编程初学者,应以8051等8位单片机来做入门练习。
而初学者应当具备软件编程相关知识,单片机一般软件编程是以汇编语言为主,各家有各家的语法,但大都以RISC的MCU架构为主,其中 RI SC (Reduced Instruction Set Computer) 代表MCU的所有指令。
都是利用一些简单的指令组成的,简单的指令代表 MCU 的线路可以尽量做到最佳化,而提高执行速率。
另外初学者要具备单片机I/O接口的应用知识,这在于周边应用电路及各种元器件的使用,须配合自己所学的电子学及电路学等。
13. 符合44PIN的80系列8位单片机的MCU有哪些?答:符合44PIN的80系列8位单片机有Z8674312FSC、Z86E2112FSC、Z86E2116FSC。
14. 请介绍一下MCU的测试方法。
答: MCU从生产出来到封装出货的每个不同的阶段会有不同的测试方法,其中主要会有两种:中测和成测。
所谓中测即是W AFER的测试,它会包含产品的功能验证及AC、DC的测试。
项目相当繁多,以HOLTEK产品为例最主要的几项如下: 接续性测试:检测每一根I/OPIN内接的保护用二极管是否功能无误。
 功能测试:以产品设计者所提供测试资料(TEST PATTERN)灌入IC,检查其结果是否与当时SIMULATION时状态一样。
 STANDBY电流测试:测量IC处于HALT模式时即每一个接点(PAD)在1态0态或Z态保持不变时的漏电流是否符合最低之规格。
 耗电测试:整颗IC的静态耗电与动态耗电。
 输入电压测试:测量每个输入接脚的输入电压反应特性。
 输出电压测试:测量每个输出接脚的输出电压位准。
 相关频率特性(AC)测试,也是通过外灌一定频率,从I/O口来看输出是否与之匹配。
 为了保证IC生产的长期且稳定品质,还会做产品的可靠性测试,这些测试包括ESD测试,LATCH UP测试,温度循环测试,高温贮存测试,湿度贮存测试等。
成测则是产品封装好后的测试,即PACKAGE测试。
即是所有通过中测的产品封装后的测试,方法主要是机台自动测试,但测试项目仍与W AFER TEST相同。
PACKAGE TEST 的目的是在确定IC在封装过程中是否有任何损坏。
15. 能否利用单片来检测手机电池的充放电时间及充放电时的电压电流变化,并利用一个I/O端口使检测结果在电脑上显示出来?答:目前市场上的各类智能充电器,大部分都采用MCU进行充电电流和电压的控制。
至于要在电脑上显示,好象并不实用,可能只有在一些专门的电池检测仪器中才会用到;对于一般的手机用户来说,谁会在充电时还需要用一台电脑来做显示呢?要实现单片机与电脑的连接,最简单的方式就是采用串口通讯,但需要加一颗RS-232芯片。
16. 在ARM编程中又应当如何?答:就以嵌入式系统观念为例,一般嵌入式处理器可以分为三类:嵌入式微处理器、嵌入式微控制器、嵌入式DSP(Digital Signal Processor)。
嵌入式微处理器就是和通用计算机的微处理器对应的CPU。
在应用中,一般是将微处理器装配在专门设计的电路板上,在母板上只保留和嵌入式相关的功能即可,这样可以满足嵌入式系统体积小和功耗低的要求。
目前的嵌入式处理器主要包括:PowerPC、Motorola 68 000、ARM系列等等。
嵌入式微控制器又称为单片机,它将CPU、存储器(少量的RAM、ROM或两者都有)和其它接口I/O封装在同一片集成电路里。
常见的有HOLTEK MCU系列、Microchip MCU 系列及8051等。
嵌入式DSP专门用来处理对离散时间信号进行极快的处理计算,提高编译效率和执行速度。
在数字滤波、FFT(Fast Fourier Transform)、频谱分析、图像处理的分析等领域,DSP 正在大量进入嵌入式市场。
17. MCU在射频控制时,MCU的时钟(晶振)、数据线会辐射基频或基频的倍频,被低噪放LNA放大后进入混频,出现带内的Spur,无法滤除。
除了用layout、选择低辐射MC U的方法可以减少一些以外,还有什么别的方法?答:在设计高频电路用电路板有许多注意事项,尤其是GHz等级的高频电路,更需要注意各电子组件pad与印刷pattern的长度对电路特性所造成的影响。
最近几年高频电路与数位电路共享相同电路板,构成所谓的混载电路系统似乎有增加的趋势,类似如此的设计经常会造成数位电路动作时,高频电路却发生动作不稳定等现象,其中原因之一是数位电路产生的噪讯,影响高频电路正常动作所致。