浅谈立体几何中的垂直问题
- 格式:doc
- 大小:42.50 KB
- 文档页数:2
高三数学立体几何复习:空间中的垂直关系知识精讲人教实验版(B)【本讲教育信息】一. 教学内容:立体几何复习:空间中的垂直关系二. 教学目的掌握空间中的垂直关系及其应用三. 知识分析【知识梳理】【空间中的垂直关系】1、空间任意直线互相垂直的一般定义如果两条直线相交于一点或经过平移后相交于一点,并且交角为90°,则称这两条直线互相垂直.2、直线与平面垂直(1)空间直线与平面垂直的定义:如果一条直线(AB)和一个平面(α)相交于点O,并且和这个平面内过交点(O)⊥,直线AB叫做的任何直线都垂直,我们就说这条直线和这个平面互相垂直,记作ABα平面的垂线,平面α叫做直线的垂面,交点叫做垂足.垂线上任一点到垂足间的线段,叫做这点到这个平面的垂线段.垂线段的长度叫做这点到平面的距离.(2)直线与平面垂直的判定定理:定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.推论:如果在两条平行直线中,有一条垂直于平面,那么另一条也垂直于这个平面.(3)直线与平面垂直的性质定理:定理:如果两条直线垂直于同一个平面,那么这两条直线平行.另外,一条直线垂直于一个平面,那么它就和平面内的所有直线都垂直.3、平面与平面的垂直(1)定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.平面α、β互相垂直,记作αβ⊥.(2)平面与平面垂直的判定定理:定理:如果一个平面过另一个平面的一条垂线,则两个平面互相垂直.(3)平面与平面垂直的性质定理定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.★★几点说明★★1、直线和平面垂直、平面和平面垂直是直线与平面、平面与平面相交的特殊情况,对这种特殊位置关系的认识,既可以从直线和平面、平面和平面的交角为90°的角度讨论,又可以从已有的线线垂直、线面垂直关系出发进行推理和论证,还可以利用向量把几何推理和论证过程转化为代数运算过程.2、无论是线面垂直还是面面垂直,都源自于线与线的垂直,这种转化为“低维”垂直的思想方法,在解题时非常重要,在处理实际问题的过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的垂直关系,从而架起已知与未知之间的“桥梁”。
立体几何垂直总结1、线线垂直的判断:线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。
补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。
2、线面垂直的判断:(1)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。
(2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。
(3)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(4)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。
3、面面垂直的判断:一个平面经过另一个平面的垂线,这两个平面互相垂直。
证明线线垂直的常用方法:例1、(等腰三角形三线合一)如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。
求证:(1)⊥AB 平面CDE;(2)平面CDE ⊥平面ABC 。
证明:(1)BC AC CE AB AE BE =⎫⇒⊥⎬=⎭同理,AD BD DE AB AE BE =⎫⇒⊥⎬=⎭又∵CE DE E ⋂= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE又∵AB ⊆平面ABC , ∴平面CDE ⊥平面ABC例2、(菱形的对角线互相垂直、等腰三角形三线合一)已知四棱锥P ABCD -的底面是菱形.PB PD =,E 为PA 的中点.(Ⅰ)求证:PC ∥平面BDE ;(Ⅱ)求证:平面PAC ⊥平面BDE .AEDBC例3、(线线、线面垂直相互转化)已知ABC ∆中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .证明:90ACB ∠=∵° B C A C ∴⊥ 又SA ⊥面ABC S A B C ∴⊥ BC ∴⊥面SACBC AD ∴⊥ 又,SC AD SC BC C ⊥⋂=AD ∴⊥面SBC例4、(直径所对的圆周角为直角)如图2所示,已知PA 垂直于圆O 在平面,AB 是圆O 的直径,C 是圆O 的圆周上异于A 、B 的任意一点,且PA AC =,点E 是线段PC 的中点.求证:AE ⊥平面PBC .证明:∵PA ⊥O 所在平面,BC 是O 的弦,∴BC PA ⊥.又∵AB 是O 的直径,ACB ∠是直径所对的圆周角,∴BC AC ⊥.∵,PA AC A PA =⊂平面PAC ,AC ⊂平面PAC . ∴BC ⊥平面PAC ,AE ⊂平面PAC ,∴AE BC ⊥. ∵PA AC =,点E 是线段PC 的中点.∴AE PC ⊥. ∵PCBC C =,PC ⊂平面PBC ,BC ⊂平面PBC .∴AE ⊥平面PBC .例5、(证明所成角为直角)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,AE ⊥BD ,CB =CD =CF . 求证:BD ⊥平面AED ; 证明 因为四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,所以∠ADC =∠BCD =120°. 又CB =CD ,所以∠CDB =30°, 因此∠ADB =90°,即AD ⊥BD .又AE ⊥BD ,且AE ∩AD =A ,AE ,AD ⊂平面AED ,SDCBAACBPEO图2所以BD ⊥平面AED .例6、(勾股定理的逆定理)如图7-7-5所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点. 求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .例7、(三垂线定理)证明:在正方体ABCD -A 1B 1C 1D 1中,A 1C ⊥平面BC 1D证明:连结ACB D AC ∵⊥∴ AC 为A 1C 在平面AC 上的射影∴⊥⊥⎫⎬⎭⇒⊥BD A C A C BC A C BC D11111同理可证平面练习;1、 如图在三棱锥P —ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.证明:AP ⊥BC ;AC2、直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .证明:DC 1⊥BC 。
高中立体几何垂直技巧立体几何是数学中的一个重要分支,研究物体在空间中的形状、大小、位置等问题。
其中,垂直是一个基本概念,它在解决立体几何问题时起着重要的作用。
本文将介绍一些高中立体几何中常用的垂直技巧,帮助读者更好地理解和应用这一概念。
一、垂直的概念在几何中,垂直是指两个线段、两个直线或两个平面相互垂直,即互相成直角的关系。
垂直关系是立体几何中最基本的关系之一,它决定了空间中物体的相对位置和方向。
因此,掌握垂直的概念对于解决立体几何问题至关重要。
二、垂直的性质1. 垂直线段的性质:如果两个线段相互垂直,则它们的乘积等于它们的长度之和的平方减去它们的长度之差的平方。
即若AB⊥CD,则有AB × CD = (AB + CD)(AB - CD)。
2. 垂直直线的性质:如果两条直线相互垂直,则它们的斜率的乘积等于-1。
3. 垂直平面的性质:如果两个平面相互垂直,则它们的法向量互相垂直。
三、垂直的判定方法1. 通过斜率判定垂直:对于已知直线的斜率,如果两条直线的斜率乘积为-1,则它们相互垂直。
2. 通过向量判定垂直:对于已知直线的方向向量,如果两条直线的方向向量互相垂直,则它们相互垂直。
3. 通过点和直线的关系判定垂直:如果一条直线上的两个向量分别与另一条直线上的两个向量的点积为零,则这两条直线相互垂直。
四、垂直的应用技巧1. 垂直平分线的性质:如果一条直线垂直平分另一条线段,那么这条直线一定过这条线段的中点。
2. 垂直平面与直线的关系:如果一条直线与一个平面相交,且与该平面的两个垂直线互相垂直,则该直线垂直于该平面。
3. 垂直平面的性质:如果一个平面与两个相互垂直的直线相交,则该平面与这两条直线互相垂直。
4. 垂直关系的应用:在解决立体几何问题时,可以利用垂直关系简化问题,减少计算量。
通过合理运用垂直的判定方法和性质,可以快速确定物体的位置、方向和大小。
五、垂直技巧的例题例题1:已知三棱锥ABCD的底面ABCD为矩形,AB=3,BC=4,垂直于底面的侧棱BN=5,求三棱锥ABCD的体积。
立体几何垂直证明题常见模型及方法证明空间线面垂直需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。
垂直转化:线线垂直 线面垂直 面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。
例:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面A B C D 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A . 求证:'A D EF ⊥;变式3如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 º证明:AB ⊥PC类型二:线面垂直证明方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO BDE ⊥平面变式1:在正方体1111ABCD A BC D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,BE 'ADFG2,CA CB CD BD AB AD ======求证:AO ⊥平面BCD ;变式4 如图,在底面为直角梯形的四棱锥P ABCD -中,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =,6BC =类型3:面面垂直的证明。
探索立体几何中的平行与垂直关系在立体几何中,平行与垂直是两种基本的关系。
平行是指两条直线或两个平面在空间中永远不相交,而垂直则是指两条直线或一个直线与一个平面之间的相互垂直关系。
这两种关系在几何学中有着广泛的应用和研究价值。
本文将探索立体几何中的平行与垂直关系,并讨论它们的性质和特点。
1. 平行关系在空间中,两条直线或两个平面如果永远不相交,我们就称它们为平行关系。
平行关系具有以下性质:- 平行关系是相对的:两个物体的平行关系与观察者的视角有关。
对于一个观察者来说,两条直线可能是平行的,而对于另一个观察者来说,这两条直线可能不平行。
- 平行关系保持不变:平行关系在空间中是始终保持不变的,无论两个物体在空间中如何移动、旋转或缩放,它们之间的平行关系都不会发生改变。
- 平行线的性质:如果一条直线与另外两条直线平行,那么这两条直线也是平行的。
此外,如果两条直线分别与第三条直线平行,则这两条直线也是平行的。
- 平行面的性质:如果两个平面相交于一条直线,并且与另外一个平面平行,那么这两个平面也是平行的。
同样,如果两个平面分别与第三个平面平行,则这两个平面也是平行的。
2. 垂直关系垂直关系是指在空间中,两条直线或一个直线与一个平面之间的相互垂直关系。
垂直关系具有以下性质:- 垂直关系是相对的:两个物体的垂直关系也与观察者的视角有关。
对于一个观察者来说,两条直线或一个直线与一个平面可能是垂直的,而对于另一个观察者来说,它们可能不垂直。
- 垂直关系保持不变:垂直关系在空间中是始终保持不变的,无论两个物体如何移动、旋转或缩放,它们之间的垂直关系都不会发生改变。
- 垂直线的性质:如果一条直线与另外两条直线垂直,那么这两条直线也是垂直的。
此外,如果两条直线分别与第三条直线垂直,则这两条直线也是垂直的。
- 垂直面的性质:如果一个平面与另外两个平面相交于一条直线,并且与另外一个平面垂直,那么这两个平面也是垂直的。
同样,如果两个平面分别与第三个平面垂直,则这两个平面也是垂直的。
专题20 立体几何中的平行与垂直问题一、题型选讲题型一、线面平行与垂直知识点拨:证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。
直线与平面垂直关键是找两条相交直线例1、(2019南通、泰州、扬州一调)如图,在四棱锥PABCD中,M, N分别为棱PA, PD的中点.已知侧面PAD丄底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN〃平面PBC;MD丄平面PAB.【证明】(1)在四棱锥P-ABCD中,M, N分别为棱PA, PD的中点,所以MN〃AD.(2分)又底面ABCD是矩形,所以BC〃AD.所以MN〃BC.(4分)又BC U平面PBC,MN Q平面PBC,所以MN〃平面PBC. (6分)(2)因为底面ABCD是矩形,所以AB丄AD.又侧面PAD丄底面ABCD,侧面PAD n底面ABCD=AD, AB U底面ABCD,所以AB丄侧面PAD.(8分)又MD U侧面PAD,所以AB丄MD.(10分)因为DA=DP,又M为AP的中点,从而MD丄PA. (12分)又PA,AB在平面PAB内,PA n AB=A,所以MD丄平面PAB.(14分)例2、(2019扬州期末)如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B丄平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1)求证:EF〃平面ABC;(2)求证:BB]丄AC.规范解答(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E, F分别是侧面AA1B1B, BB1C1C对角线的交点,所以E, F分别是AB1,CB1的中点,所以EF〃AC.(4分)因为EF Q平面ABC, AC U平面ABC,所以EF〃平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1丄AB.因为平面AA1B1B丄平面ABC,且平面AA1B1B n平面ABC=AB, BB1U平面AA1B1B, 所以BB1丄平面ABC.(12分)因为AC U平面ABC,所以BB1丄AC.(14分)例3、(2019南京、盐城二模)如图,在三棱柱ABCA1B1C1中,AB=AC, A1C丄BC], AB]丄BC1,D, E 分别是AB1和BC的中点.求证:(1)DE〃平面ACC1A1;(2)AE丄平面BCC1B1.A _________ c,规范解答⑴连结A1B,在三棱柱ABCA1B1C1中,AA1#BB1且AA1=BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点.(2分)在厶BA1C中,D和E分别是BA1和BC的中点,所以DE〃A]C.又因为DE G平面ACC1A1,A1C U平面ACC1A1,所以DE〃平面ACC1A1.(6分)(2)由(1)知DE〃A]C,因为A1C丄BC” 所以BC]丄DE.(8 分)又因为BC]丄AB1,AB1H DE=D,AB1,DE U平面ADE,所以BC1丄平面ADE.又因为AE U平在ADE,所以AE丄BC1.(10分)在厶ABC中,AB=AC,E是BC的中点,所以AE丄BC.(12分)因为AE丄BC1,AE丄BC,BC1H BC=B,BC1,BC U平面BCC1B1,所以AE丄平面BCC1B1. (14 分)例4、(2019苏锡常镇调研)如图,三棱锥DABC中,已知AC丄BC,AC丄DC,BC=DC,E,F 分别为BD,CD 的中点.求证:(1)EF〃平面ABC;(2)BD丄平面ACE.所以EF 〃平面ABC.(6分)(2)因为AC丄BC,AC丄DC,BC H DC = C,BC,DC U平面BCD所以AC丄平面BCD,(8分)因为BD U平面BCD,所以AC丄BD,(10分)因为DC=BC,E为BD的中点,所以CE丄BD,(12分)因为AC n CE = C, AC,CE U平面ACE,所以BD丄平面ACE.(14分)例5、(2019苏州三市、苏北四市二调)如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1 丄B1C1•设A1C与AC1交于点D, B1C与BC1交于点E.求证:(1) DE〃平面ABB1A1;(2) BC]丄平面A1B1C.规范解答(1)因为三棱柱ABCA1B1C1为直三棱柱,所以侧面ACC1A1为平行四边形.又A1C 与AC1 交于点D,所以D为AC]的中点,同理,E为BC]的中点•所以DE〃AB.(3分)又AB U平面ABB]A], DE G平面ABB]A], 所以DE〃平面ABB]A].(6分)(2)因为三棱柱ABCA]B]C]为直三棱柱,所以BB]丄平面A]B]C]. 又因为A]B]U平面A]B]C],所以BB]丄A]B i.(8分)又A]B]丄B]C], BB], B]C] U 平面BCC]B], BB]n B]C1=B1,所以A]B]丄平面BCC]B].(10 分)又因为BC]U平面BCC]B1,所以A]B丄BC].(12分)又因为侧面BCC]B1为正方形,所以BC]丄BQ.又A1B1n B1C=B1,A1B1,B1C U平面A1B1C, 所以BC1丄平面A1B1C.(14分)例6、(2017苏北四市一模)如图,在正三棱柱ABCA1B1C1中,已知D, E分别为BC, B1C1的中点,点F 在棱CC1上,且EF丄CD.求证:(1)直线A1E〃平面ADC1;⑴证法1连结ED,因为D, E分别为BC, B1C1的中点,所以B&/BD且B1E=BD, 所以四边形BBDE是平行四边形,(2分)所以BB/DE且BB1=DE. 又BB]〃AA]且BB]=AA], 所以AA/DE且AA1=DE, 所以四边形AA]ED是平行四边形,所以A]E〃AD.(4分)又因为AE G平面ADC, AD U平面ADC,所以直线AE〃平面ADC.(7分)1 1 1畀 ------ 1B证法2连结ED,连结A1C, EC分别交AC” DC1于点M, N,连结MM,则因为D, E分别为BC,B1C1的中点,所以C1E^CD且C、E=CD,所以四边形C1EDC是平行四边形,所以N是CE的中点.(2分)因为A1ACC1为平行四边形,所以M是A1C的中点,(4分)所以MN//A\E.又因为A]E G平面ADC,MN U平面ADC,,所以直线Af〃平面ADC、.(7分)(2)在正三棱柱ABCA1B1C1中,BB]丄平面ABC.又AD U平面ABC,所以AD丄BB、.又A ABC是正三角形,且D为BC的中点,所以AD丄BC.(9分)又BB,,BC U 平面BBCC,,BB1A BC=B,所以AD丄平面B,BCC,,又EF U平面BBCC,所以AD丄EF.(11分)又EF丄CD,CD,AD U平面ADC,,C,D A AD=D,所以直线EF丄平面ADC,.(14分)题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
§1立体几何中的垂直关系一知识梳理1.直线与平面垂直(1)定义一般地,如果直线l 与平面α内的任何一条直线都垂直,那么称直线l 与平面α垂直,记作l ⊥α.直线l 称为平面α的垂线,平面α称为直线l 的垂面,它们唯一的公共点称为垂足.注意:过一点有且只有一条直线与一个平面垂直,过一点有且只有一个平面与一条直线垂直.(2)判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.(3)性质定理垂直于同一个平面的两条直线平行.2.直线与平面所成的角一条直线l 与一个平面α相交,但是不与这个平面垂直,这条直线叫做这个平面的斜线,斜线与平面的交点A 叫做斜足.过斜线上斜足以外的一点P 向平面α引垂线P O ,过垂足O 和斜足A 的直线AO 叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的角,叫做这条直线与这个平面所成的角.APlαO 3.半平面一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫作半平面.4.二面角(1)定义从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面.(2)表示如图1,棱为AB ,面分别为α,β的二面角记作二面角α−AB −β.有时为了方便,也可在α,β内(棱以外的半平面部分)分别取点P ,Q ,将这个二面角记作二面角P −AB−Q .图1ABOl βα图2(3)平面角如图2,在二面角α−l −β的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角.二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.二面角的平面角θ的取值范围是0◦⩽θ⩽180◦.平面角是直角的二面角叫做直二面角.5.平面与平面垂直(1)定义两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.(2)判断定理如果一个平面经过另外一个平面的一条垂线,那么两个平面互相垂直.(3)性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.二例题精讲考点一线面垂直与面面垂直的判定定理例1.下列命题中,正确的序号是.若直线l 与平面α内的无数条直线垂直,则l ⊥α; 若直线l 与平面α内的一条直线垂直,则l ⊥α; 若直线l 不垂直于平面α,则α内没有与l 垂直的直线; 若直线l 不垂直于平面α,则α内也可以有无数条直线与l 垂直; 过一点和已知平面垂直的直线有且只有一条.例2.如果直线l ,m 与平面α,β,γ满足:β∩γ=l ,l α,m ⊆α和m ⊥γ,那么必有()A.α⊥γ且l ⊥mB.α⊥γ且mβC.mβ且l ⊥mD.αβ且α⊥γ例3.若三条直线OA ,OB ,OC 两两垂直,则直线OA 垂直于()A.平面OABB.平面OACC.平面OBCD.平面ABC例4.如图,在正方体ABCD −A 1B 1C 1D 1中.(1)求证:AC ⊥平面B 1D 1DB ;(2)求证:BD 1⊥平面ACB 1.AA 1D 1DB 1C 1BC例5.如图,在三棱锥P −ABC 中,P A ⊥平面ABC ,∠ABC =90◦.求证:BC ⊥平面P AC .PBCA 例6.如图,在三棱锥P −ABC 中,P A =PB ,△ABC 是等边三角形,O 是AB 中点.求证:AB ⊥平面P OC .PBCA O例7.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,AP =AB =2,BC =2√2,E ,F 分别是AD ,P C 的中点.证明:P C ⊥平面BEF.例8.如图所示,在四棱锥S −ABCD 中,底面四边形ABCD 是平行四边形,SC ⊥平面ABCD ,E 为SA 的中点.求证:平面EBD ⊥平面ABCD.B1C1中,侧棱垂直于底面,∠ACB=90◦,AC=例9.如图,三棱柱ABC−A1AA1,D是棱AA1的中点.求证:平面BDC1⊥平面BDC.2方法总结使用直线与平面垂直的判定定理的关键是在平面内找到两条相交直线都与已知直线垂直,即把线面垂直转化为线线垂直来解决.证明线线垂直常见的方法(1)线面垂直的定义.(2)几何体本身的垂直关系.(3)等腰三角形的三线合一.(4)勾股定理逆定理.证明线面垂直的方法(1)线面垂直的定义.(2)线面垂直的判定定理.(3)如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.(4)如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.由面面垂直的判定定理知,要证两个平面互相垂直,关键是证明其中一个平面经过另一个平面的垂线.练1.如果一条直线垂直于一个平面内的: 三角形的两边; 梯形的两边; 圆的两条直径; 正五边形的两边.能保证该直线与平面垂直的是.练2.如图,已知P A垂直于⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,求证:BC⊥平面P AC.练3.如图,Rt△ABC所在平面外有一点S,且SA=SB=SC,点D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.练4.如图,在四面体ABCD中,CB=CD,AD⊥BD,且E,F分别是AB,BD的中点.求证:平面EF C⊥平面BCD.考点二线面垂直与面面垂直的性质定理例1.给出下列说法:垂直于同一条直线的两个平面互相平行;垂直于同一个平面的两条直线互相平行;一条直线在平面内,另一条直线与这个平面垂直,则这两条直线垂直.其中正确说法的个数是()A.0B.1C.2D.3例2.已知直线l⊥平面α,直线m⊆平面β.有下列四个说法:αβ⇒l⊥m;α⊥β⇒l m;l m⇒α⊥β;l⊥m⇒αβ.其中正确的说法是()A. B. C. D.B1C1D1中,EF与异面直线AC,A1D都垂直相交.求证:EF例3.如图所示,在正方体ABCD−ABD1.例4.如图,在三棱锥P−ABC中,P A⊥平面ABC,平面P AB⊥平面P BC.求证:BC⊥AB.例5.如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC=√2,等边三角形ADB以AB为轴转动.(1)当平面ADB⊥平面ABC时,求CD;(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.例6.如图,在四棱锥P−ABCD中,底面ABCD是∠DAB=60◦且边长为a的菱形,侧面P AD为正三角形,其所在平面垂直于底面ABCD.(1)求证:AD⊥P B;(2)若E为边BC的中点,能否在棱P C上找到一点F,使得平面DEF⊥平面ABCD,并证明你的结论方法总结证明线线平行时,可以利用线面垂直的性质定理.证明线面垂直,一种方法是利用线面垂直的判定定理,另一种方法是利用面面垂直的性质定理.已知面面垂直,故可考虑面面垂直的性质定理.利用面面垂直的性质定理证明线面垂直的问题时,要注意以下三点:(1)两个平面垂直;(2)直线必须在其中一个平面内;(3)直线必须垂直于它们的交线.立体几何中的垂直关系有三类:线线垂直、线面垂直、面面垂直.处理垂直问题时,要注意三者之间的内在联系.转化思想是立体几何中解决垂直问题的重要思想.垂直关系的转化如下:练1.若平面α⊥平面β,且平面α内的一条直线α垂直于平面a内的一条直线b,则()A.直线α必垂直于平面βB.直线b必垂直于平面αC.直线a不一定垂直于平面βD.过a的平面与过b的平面垂直练2.如图,α∩β=l,P A⊥α,P B⊥β垂足分别为A,B,a⊆α,a⊥AB.求证:a l.练3.如图,四棱锥的底面是矩形,侧面V AB⊥底面ABCD,且V B⊥平面V AD.求证:平面V BC⊥平面V AC.考点三线面角与二面角例1.在长方体ABCD−A1B1C1D1中,AB=AD=1,AA1=2,直线AC1与平面ABB1A1所成角的正切值等于.例2.如图,空间四边形ABCD中,平面ABD⊥平面BCD,∠BAD=90◦,∠BCCD=90◦,且AB=AD,则AC与平面BCD所成角的等于.例3.如图,在正方体ABCD−A1B1C1D1中,求二面角B−A1C1−B1的正切值.例4.已知D,E分别是正三棱柱ABC−A1B1C1的侧棱AA1和BB1上的点,且A1D=2B1E=B1C1.求过D,E,C1的平面与棱柱的下底面A1B1C1所成的二面角的大小.方法总结求线与面的夹角时,关键是找出或作出它们的夹角,再在三角形中进行计算.求二面角的大小关键是要找出或作出平面角.再把平面角放在三角形中,利用解三角形得到平面角的大小或三角函数值,其步骤为作角,证明,计算.练1.已知正四棱锥的高为3,底面对角线的长为2√6,求侧面与底面所成的二面角.练2.在直三棱柱ABC −A 1B 1C 1中,AB =1,AC =2,AA 1=3,∠BAC =60◦,则直线B 1C 与平面AA 1B 1B 所成角的正切值为.三课后作业1.过两点与一个已知平面垂直的平面()A.有且只有一个B.有无数个C.有且只有一个或无数个D.可能不存在2.对于直线m ,n 和平面α,β,能得出α⊥β的一个条件是()A.m ⊥n ,m α,nβB.m ⊥n ,α∩β=m ,n ⊆αC.mn ,n ⊥β,m ⊆αD.mn ,m ⊥α,n ⊥β3.已知平面α⊥平面β,α∩β=l ,点P ∈l 给出下面四个结论:过P 与l 垂直的直线在α内; 过P 与β垂直的直线在α内; 过P 与l 垂直的直线必与α垂直; 过P 与β垂直的平面必与l 垂直.其中正确的命题是()A.B.C.D.4.设m,n是两条不同的直线,α,β是两个不同的平面()A.若m⊥n,nα,则m⊥αB.若mβ,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.在三棱锥P−ABC中,已知P C⊥BC,pc⊥AC,点E,F,G分别是所在棱的中点,则下面结论中错误的是()A.平面EF G平面P BCB.平面EF G平面ABCC.∠BP C是直线EF与直线P C所成的角D.∠F EG是平面P AB与平面ABC所成二面角的平面角6.如图所示,在三棱锥P−AB C中,P A⊥平面ABC,∠BAC=90◦,则二面角B−P A−C的大小为.7.如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数有.8.正四面体的侧面与底面所成的二面角的余弦值是.9.如图,在三棱锥P−ABC中,侧面P AC⊥底面ABC,且∠P AC=90◦,P A=1,AB=1,则P B=.10.已知平面α⊥平面β,在α,β的交线上取线段AB=4cm,AC,BD分别在平面α和β内,它们都垂直于AB,并且AC=3cm,BD=12cm,则CD的长为.11.如图,四边形ABCD是边长为a的菱形,P C⊥平面ABCD,E是P A的中点,求证:平面BDE⊥平面ABCD.12.如图,在四棱锥P−ABCD中,P A⊥平面ABCD,AB⊥AD,AC⊥CD,∠ABC=60◦且P A=AB=BC,E是P C的中点.求证:(1)CD⊥AE;(2)P D⊥平面ABE.。
立体几何中的平行与垂直1线面平行(1)定义直线与平面无交点.(2)判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.(3)性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.2 面面平行(1)定义α∩β=∅⟹α|| β.(2)判定定理如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行.(3)面面平行的性质(1) a⊂αα||β}⇒a||β (面面平行⇒线面平行)(2)α || βα∩γ=aβ∩ γ=b}⇒ a || b (面面平行⇒线线平行)(3) 夹在两个平行平面间的平行线段相等.3 线面垂直(1)定义若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面.符号表述:若任意a⊂α都有l⊥a,则 l⊥α.(2)判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.(3)性质定理垂直同一平面的两直线平行4 面面垂直(1) 定义若二面角α−l−β的平面角为90∘,则 α⊥β;(2) 判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(3) 性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.【例1】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线 B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1 D.A1C1∥平面AB1E练习.1.如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△PAB,△PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为()A.直线BE与直线CF共面 B.直线BE与直线AF是异面直线C.平面BCE⊥平面PAD D.面PAD与面PBC的交线与BC平行【例2】如图1,在△ABC中,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F.将△ABD沿BD折起,得到三棱锥A1﹣BCD,如图2所示.(Ⅰ)若M是A1C的中点,求证:DM∥平面A1EF;(Ⅱ)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.练习 2.如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE (Ⅰ)求证:AE⊥BE(Ⅱ)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.【例3】.如图,已知菱形AECD的对角线AC,DE交于点F,点E为的AB中点.将三角形ADE 沿线段DE折起到PDE的位置,如图2所示.(Ⅰ)求证:DE⊥平面PCF;(Ⅱ)证明:平面PBC⊥平面PCF;(Ⅲ)在线段PD,BC上是否分别存在点M,N,使得平面CFM∥平面PEN?若存在,请指出点M,N的位置,并证明;若不存在,请说明理由.练习3 .如图,直角三角形ABC中,A=60°,沿斜边AC上的高BD,将△ABD折起到△PBD的位置,点E在线段CD上.(1)求证:PE⊥BD;(2)过点D作DM⊥BC交BC于点M,点N为PB中点,若PE∥平面DMN,的值.求DEDC立体几何中的平行与垂直1线面平行(1)定义直线与平面无交点.(2)判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.(3)性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.2 面面平行(1)定义α∩β=∅⟹α|| β.(2)判定定理如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行.(3)面面平行的性质(1) a⊂αα||β}⇒a||β (面面平行⇒线面平行)(2)α || βα∩γ=aβ∩ γ=b}⇒ a || b (面面平行⇒线线平行)(3) 夹在两个平行平面间的平行线段相等.3 线面垂直(1)定义若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面.符号表述:若任意a⊂α都有l⊥a,则 l⊥α.(2)判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.(3)性质定理垂直同一平面的两直线平行4 面面垂直(1) 定义若二面角α−l−β的平面角为90∘,则 α⊥β;(2) 判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(3) 性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.【例1】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线 B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1 D.A1C1∥平面AB1E解析 A不正确,因为CC1与B1E在同一个侧面中,故不是异面直线;B不正确,由题意知,上底面ABC是一个正三角形,故不可能存在AC⊥平面ABB1A1;C正确,因为AE,B1C1为在两个平行平面中且不平行的两条直线,故它们是异面直线;D不正确,因为A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故A1C1∥平面AB1E 不正确;故选:C.练习.1.如图是一几何体的平面展开图,其中四边形ABCD为正方形,△PDC,△PBC,△PAB,△PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为()A.直线BE与直线CF共面 B.直线BE与直线AF是异面直线C.平面BCE⊥平面PAD D.面PAD与面PBC的交线与BC平行答案 C解析画出几何体的图形,如图,由题意可知,A,直线BE与直线CF共面,正确,因为E,F是PA与PD的中点,可知EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线;B,直线BE与直线AF异面;满足异面直线的定义,正确.C,因为△PAB是等腰三角形,BE与PA的关系不能确定,所以平面BCE⊥平面PAD,不正确.D,∵AD∥BC,∴AD∥平面PBC,∴面PAD与面PBC的交线与BC平行,正确.故选:C.【例2】如图1,在△ABC中,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F.将△ABD沿BD折起,得到三棱锥A1﹣BCD,如图2所示.(Ⅰ)若M是A1C的中点,求证:DM∥平面A1EF;(Ⅱ)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.证明:(Ⅰ)取FC中点N.在图1中,由D,N分别为AC,FC中点,所以DN∥EF.在图2中,由M,N分别为A1C,FC中点,所以MN∥A1F,所以平面DMN∥平面A1EF,(5分)所以DM∥平面A1EF.解:(Ⅱ)直线A1B与直线CD不可能垂直.因为平面A1BD⊥平面BCD,EF⊂平面BCD,EF⊥BD,所以EF⊥平面A1BD,(8分)所以A1B⊥EF.假设有A1B⊥CD,注意到CD与EF是平面BCD内的两条相交直线,则有A1B⊥平面BCD.(1)(10分)又因为平面A1BD⊥平面BCD,A1E⊂平面A1BD,A1E⊥BD,所以A1E⊥平面BCD.(2)而(1),(2)同时成立,这显然与“过一点和已知平面垂直的直线只有一条”相矛盾,所以直线A1B与直线CD不可能垂直.练习 2.如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE (Ⅰ)求证:AE⊥BE(Ⅱ)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.证明:(Ⅰ)∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,∵AE⊂平面ABE,∴AE⊥BC,又∵BF⊥平面ACE,AE⊂平面ACE,∴AE⊥BF,∵BC∩BF=B,∴AE⊥平面BCE,又BE⊂平面BCE,∴AE⊥BE.(6分)解:(Ⅱ)在三角形ABE中过M点作MG∥AE交BE于G点,CE,在三角形BEC中过G点作GN∥BC交EC于N点,连MN,则由比例关系得CN=13∵MG∥AE MG⊄平面ADE,AE⊂平面ADE,∴MG∥平面ADE,同理,GN∥平面ADE,∴平面MGN∥平面ADE,又MN⊂平面MGN,∴MN∥平面ADE,∴N点为线段CE上靠近C点的一个三等分点.(12分)【例3】.如图,已知菱形AECD的对角线AC,DE交于点F,点E为的AB中点.将三角形ADE 沿线段DE折起到PDE的位置,如图2所示.(Ⅰ)求证:DE ⊥平面PCF ;(Ⅱ)证明:平面PBC ⊥平面PCF ;(Ⅲ)在线段PD ,BC 上是否分别存在点M ,N ,使得平面CFM ∥平面PEN ?若存在,请指出点M ,N 的位置,并证明;若不存在,请说明理由.【解答】证明:(Ⅰ)折叠前,因为四边形AECD 为菱形,所以AC ⊥DE ;所以折叠后,DE ⊥PF ,DE ⊥CF ,又PF∩CF=F,PF ,CF ⊂平面PCF ,所以DE ⊥平面PCF(Ⅱ)因为四边形AECD 为菱形,所以DC ∥AE ,DC=AE .又点E 为AB 的中点,所以DC ∥EB ,DC=EB .所以四边形DEBC 为平行四边形.所以CB ∥DE .又由(Ⅰ)得,DE ⊥平面PCF ,所以CB ⊥平面PCF .因为CB ⊂平面PBC ,所以平面PBC ⊥平面PCF .解:(Ⅲ)存在满足条件的点M ,N ,且M ,N 分别是PD 和BC 的中点.如图,分别取PD 和BC 的中点M ,N .连接EN ,PN ,MF ,CM .因为四边形DEBC 为平行四边形,所以EF ∥CN ,EF =12BC =CN .所以四边形ENCF 为平行四边形.所以FC ∥EN .在△PDE 中,M ,F 分别为PD ,DE 中点,所以MF ∥PE .又EN ,PE ⊂平面PEN ,PE∩EN=E,MF ,CF ⊂平面CFM ,所以平面CFM ∥平面PEN .练习3 .如图,直角三角形ABC 中,A=60°,沿斜边AC 上的高BD ,将△ABD 折起到△PBD 的位置,点E 在线段CD 上.(1)求证:PE ⊥BD ;(2)过点D 作DM ⊥BC 交BC 于点M ,点N 为PB 中点,若PE ∥平面DMN ,求DE DC 的值.解析 (1)∵BD 是AC 边上的高,∴BD ⊥CD ,BD ⊥PD ,又PD∩CD=D,∴BD ⊥平面PCD ,又PE ⊂平面PCD 中,∴BD ⊥PE ,即PE ⊥BD ;(2)如图所示,连接BE ,交DM 与点F ,∵PE ∥平面DMN ,∴PE ∥NF ,又点N 为PB 中点,∴点F 为BE 的中点;∴DF=12BE=EF ;又∠BCD=90°﹣60°=30°,∴△DEF 是等边三角形,设DE=a ,则BD=√3a ,DC=√3BD=3a ;∴DE DC =a 3a =13.。
浅谈立体几何中的垂直问题
黎武兵湛江市太平中学交流QQ:306582633
关键词:立体几何,维数转化,非90度垂直,线线垂直
垂直问题在立体几何中占有重要的地位,是历年高考命题的热点.空间中的垂直关系有三种:线线垂直、线面垂直、面面垂直.而线线垂直是最基本、最重要的一种,它在三者转化过程中起着穿针引线、承前启后的作用.因此线线垂直的证明更是解决垂直问题的关键.
立体几何是平面几何的升级与综合.例如正方体的侧棱垂直形式就有45度角,90度角、135度角和异面垂直等四种形式.而学生对非90度垂直的理解,不是不透彻就是误解.因此,如何帮助学生透彻理解非90度垂直,便成了立体几何的重中之重.以下的三种可以帮助学生正确理解非90度垂直.
一是错误视觉分析.
这就要求老师从视觉角度分析和演示线、角、面的变化,教会学生理解视觉的误导性.通过实物演示,让学生明白“横看成岭侧成峰”的道理,从而达到培养学生建立发散思维习惯和锻炼空间想象力的目的.
二是维数转化思想.
从初中的平面几何到高中的立体几何,即是从二维思想过渡到三维思想,大部分学生的几何思考还停留在二维思想上,这就要求老师正确引导学生掌握用二维思想理解三维思想.让学生理解立体几何中的三维表示长、宽和高,而平面几何中的二维表示长和宽,但长、宽、高并没有确定的界限.例如把正方体的左侧面独立提取出来,它就是一个正方形,原先表示正方体的宽和高,都成了正方形的边长.再例如正方体A1B1C1D1-ABCD中的对角面A1ACC1是一个长方形,其长AC和A1C1分别为正方体上底面和下底面的对角线.
在垂直的证明过程中,常常要把立体几何拆分成几个平面图形分别证明,
再对证明结果加以综合,从二维回到三维,即可获得证明。
三是知识系统理解.
如何让学生正确理解垂直的传递性,便成了老师课堂教学的重点和难点.通过垂直传递性的理解分析,培养学生的逻辑推理能力和空间想像能力.从线线垂直到线面垂直,再到面面垂直,反之一样.这里就要求学生把其中的条件理解并熟记,在求解过程中可以信手拈来,在证明过程中可以一呼即出.在垂直传递过程中,要善于利用逆向思维思考问题.
例如,正方体A1B1C1D1-ABCD中,求证:A C⊥BD1.
分析:
显然,直线AC与BD1没有交点,是异面直线,不能利用平面几何中的勾股定理及高线性质来证明。
因此,便要以垂直的传递性为突破口,加以证明。
先证明AC与BD1所在的某一个平面垂直,再由线面垂直得到线线垂直即可.或者先证明BD1与AC所在的某一个平面垂直,再由线面垂直得到线线垂直即可.显然,前者容易后者难.
证明:
如图正方体A1B1C1D1-ABCD中,
正方形底面A1B1C1D1对角线相互垂直,
即A1C1⊥B1D1,又A1C1∥AC,故AC⊥B1D1,
而正方体侧棱BB1⊥面ABCD,故AC⊥BB1,
由线面垂直的判定定理可得:AC⊥面BB1D1,
再由线面垂直的性质定理即得:A C⊥BD1.
本题的证明过程用到了逆向思维,若要证A C⊥BD1,则需证AC⊥面BB1D1;若要证AC⊥面BB1D1,则需证AC与另外两条直线垂直.。