第二讲 溶液及胶体——拉乌尔定律、亨利定律
- 格式:ppt
- 大小:354.00 KB
- 文档页数:7
拉乌尔定律和亨利定律的区别拉乌尔定律和亨利定律都是热力学中的重要定律,它们分别描述了气体和液体中溶解度与温度、压力之间的关系。
在研究物质的溶解度时,这两个定律都具有重要作用,但它们之间存在着一些明显的区别。
拉乌尔定律是描述气体溶解度与温度之间关系的定律。
它的基本表述是:在一定的压力下,气体的溶解度随着温度的升高而降低。
这个定律主要适用于理想气体,即气体分子之间不存在相互作用力的情况。
在实际情况下,气体分子之间会存在一定的相互作用力,因此拉乌尔定律只能作为近似计算的基础。
亨利定律则是描述气体或液体在溶剂中的溶解度与压力之间关系的定律。
它的基本表述是:在一定的温度下,气体或液体的溶解度随着压力的升高而增加。
这个定律适用于气体和液体的溶解度,但是在气体的溶解度计算中,由于气体分子之间的相互作用力较小,因此亨利定律通常更为准确。
在实际应用中,拉乌尔定律和亨利定律经常被用来计算化学反应中气体的溶解度。
例如,在某些化学反应中,气体的溶解度是反应速率的重要影响因素。
通过应用拉乌尔定律和亨利定律,我们可以计算出在不同温度和压力下气体的溶解度,从而更好地理解反应的动力学过程。
另一方面,拉乌尔定律和亨利定律在环境科学中也具有非常重要的应用。
例如,在海洋环境中,气体的溶解度对海洋生态系统和海洋化学循环过程具有重要影响。
通过应用这些定律,我们可以更好地理解海洋生态系统和化学循环的过程,预测海洋环境的变化和响应措施。
总之,拉乌尔定律和亨利定律都是热力学中非常重要的定律,它们分别描述了气体和液体中溶解度与温度、压力之间的关系。
尽管它们之间存在着一些区别,但在应用中它们经常被一起使用,以便更好地理解物质的溶解过程。
亨利定律与拉乌尔定律的区别和联系
亨利定律和拉乌尔定律都是物理化学的基本定律,二者区别和联系如下:
区别:
适用范围:亨利定律适用于气体在溶液中的溶解度,而拉乌尔定律适用于难挥发非电解质稀溶液的蒸气压。
定律形式:亨利定律形式为p=kX(A),其中p为气体分压,k为亨利常数,X(A)为气体A在溶液中的摩尔分数。
拉乌尔定律形式为p(B)=p X(B)=p(1-X(A)),其中p为溶剂饱和蒸气压,X(B)为溶剂在溶液中的摩尔分数,X(A)为溶质在溶液中的摩尔分数。
应用领域:亨利定律主要用于气体在液体中的溶解度计算,而拉乌尔定律主要用于蒸馏和吸收等过程的计算。
联系:
亨利定律和拉乌尔定律都是溶液热力学的基本定律,对相平衡和溶液热力学函数的研究起指导作用。
在一定温度下,气体在溶液中的溶解度与该气体溶在溶液内的摩尔浓度成正比,这是亨利定律的核心内容,也是拉乌尔定律的一个重要应用。
总之,亨利定律和拉乌尔定律虽然有不同的适用范围和形式,但都是溶液热力学的基本定律,对相平衡和溶液热力学函数的研究起指导作用。
§ 3⋅7 稀溶液拉乌尔定律和亨利定律的适用范围为稀溶液,只要浓度足够稀(但确有某些溶液在相当浓的范围),溶剂符合拉乌尔定律,溶质符合亨利定律的溶液称为稀溶液。
一、各组分的化学势溶剂服从拉乌尔定律,气液平衡时液相中溶剂A 的化学势μA 与气相中A 的化学势μA g相等,此时气相中A 的分压p A 为溶剂的蒸汽压,有μμμμθθθθA A gA A A A A T RT p p T RT p x p ==+=+()ln /()ln /*=+μA A T p RT x *(.)ln (3—78)其中μμθθA A A T p T RTp p **(.)()/=+稀溶液中的溶剂与理想溶液中各组分有相同的化学势的表示式。
μA T p *(.)是T.p 时纯液体A 的化学势。
通常选择标准态的压力为p θ(101.325kPa),标准态化学势μθA T p *(.)与μA T p *(.)偏离不会很大。
稀溶液的溶质符合亨利定律,亨利定律有三种不同的表示式,稀溶液的溶质化学势亦有三种不同的表示式。
溶质在气液两相达到平衡,有μμμμθθθθB B gB B B x B T RT p p T RT k x p ==+=+()ln /()ln /=+μB B T p RT x *(.)ln (3—79)式中μμθθB B x T p T RT k p *(.)()ln /=+由式(3-79),当x B =1,即纯液体B 时,μμB B T p =*(,)。
但式中的μB T p *(,)并不是纯液体B 的化学势,因为当x B =1时,亨利定律已不适用,式(3-79)不能扩展应用在X B 接近于1的浓度范围。
μB T p *(.)是x B =1,满足亨利定律p B =k x x B 的假想态的化学势,即图(3.5)中R 点表示的状态。
x B =1,溶质已不服从亨利定律,故R 点是假设服从亨利定律,外推得到的假想态,此时溶质所处真实的状态在W 点处。
§ 3⋅7 稀溶液拉乌尔定律和亨利定律的适用范围为稀溶液,只要浓度足够稀(但确有某些溶液在相当浓的范围),溶剂符合拉乌尔定律,溶质符合亨利定律的溶液称为稀溶液。
一、各组分的化学势溶剂服从拉乌尔定律,气液平衡时液相中溶剂A 的化学势μA 与气相中A 的化学势μA g 相等,此时气相中A 的分压p A 为溶剂的蒸汽压,有μμμμθθθθA A g A A A A A T RT p p T RT p x p ==+=+()ln /()ln /*=+μA A T p RT x *(.)ln (3—78)其中μμθθA A A T p T RTp p **(.)()/=+稀溶液中的溶剂与理想溶液中各组分有相同的化学势的表示式。
μA T p *(.)是T.p 时纯液体A 的化学势。
通常选择标准态的压力为p θ(101.325kPa),标准态化学势μθA T p *(.)与μA T p *(.)偏离不会很大。
稀溶液的溶质符合亨利定律,亨利定律有三种不同的表示式,稀溶液的溶质化学势亦有三种不同的表示式。
溶质在气液两相达到平衡,有μμμμθθθθB B g B B B x B T RT p p T RT k x p ==+=+()ln /()ln /=+μB B T p RT x *(.)ln (3—79)式中μμθθB B x T p T RT k p *(.)()ln /=+由式(3-79),当x B =1,即纯液体B 时,μμB B T p =*(,)。
但式中的μB T p *(,)并不是纯液体B 的化学势,因为当x B =1时,亨利定律 已不适用,式(3-79)不能扩展应用在X B 接近于 1的浓度范围。
μB T p *(.)是x B =1,满足亨利 定律p B =k x x B 的假想态的化学势,即图(3.5) 中R 点表示的状态。
x B =1,溶质已不服从 亨利定律,故R 点是假设服从亨利定律,外 推得到的假想态,此时溶质所处真实的状态 在W 点处。
高中化学奥林匹克竞赛辅导讲座第2讲溶液【竞赛要求】分散系。
胶体。
溶解度。
亨利定律。
稀溶液通性。
溶液浓度。
溶剂(包括混合溶剂)。
【知识梳理】一、分散系的基本概念及分类一种或几种物质以细小的粒子分散在另一种物质中所形成的体系称分散系。
被分散的物质称分散质,把分散质分开的物质称分散剂。
按照分散质粒子的大小,常把分散系分为三类,见表2-1。
*在体系中物理性质和化学性质完全相同的一部分称相。
分子分散系又称溶液,因此溶液是指分散质分子、离子或原子均匀地分散在分散剂中所得的分散系。
溶液可分为固态溶液(如某些合金)、气态溶液(如空气)和液态溶液。
最常见也是最重要的是液态溶液,特别是以水为溶剂的水溶液。
二、溶解度和饱和溶液1、溶解度在一定温度下的饱和溶液中,在一定量溶剂中溶解溶质的质量,叫做该物质在该温度下的溶解度。
易溶于水的固体的溶解度用100 g水中溶解溶质的质量(g)表示;一定温度下,难溶物质饱和溶液的“物质的量”浓度也常用来表示难溶物质的溶解度。
例如298 K氯化银的溶解度为1×10-5 mol·L-1。
2、饱和溶液在一定温度下,未溶解的溶质跟已溶解的溶质达到溶解平衡状态时的溶液称为饱和溶液。
在饱和溶液中,存在着下列量的关系:溶质的质量= 常数溶液的质量溶质的质量= 常数溶剂的质量3、溶解度与温度溶解平衡是一个动态平衡,其平衡移动的方向服从勒沙特列原理。
一个已经饱和的溶液,如果它的继续溶解过程是吸热的,升高温度时溶解度增大;如果它的继续溶解过程是放热的,升高温度时溶解度减小。
大多数固体物质的溶解度随温度的升高而增大。
气体物质的溶解度随着温度的升高而减小。
4、溶解度与压强固体或液体溶质的溶解度受压力的影响很小。
气体溶质的溶解度受压力影响很大。
对于溶解度很小,又不与水发生化学反应的气体,“在温度不变时,气体的溶解度和它的分压在一定范围内成正比”,这个定律叫亨利(Henry)定律。
其数学表达式是:C g = K g·p g (2-1)式中p g为液面上该气体的分压,C g为某气体在液体中的溶解度(其单位可用g·L-1、L(气)·L1 (水)、mol·L-1表示),K g称为亨利常数。
拉乌尔定律和亨利定律--溶液的蒸气压我们知道,液体可以蒸发成气体,气体也可以凝结为液体。
在一定的温度下,二者可以达成平衡,即液体的蒸发速度等于蒸气的凝结速度。
达到这种平衡时,蒸气有一定的压力,这个压力就叫做此液体的饱和蒸气压(简称蒸气压)。
蒸气压与温度有关,温度越高,分子具有的动能越大,蒸发速度越快,因而蒸气压越大。
溶液的蒸气压除与温度有关外,还与浓度有关。
拉乌尔定律和亨利定律所描述的就是溶液蒸气压和浓度之间的关系。
3.3.1 拉乌尔定律1887年法国物理学家拉乌尔(Raoult)在溶液蒸气压实验中总结出著名的拉乌尔定律。
拉乌尔定律指出:如果溶质是不挥发性的,即它的蒸气压极小,与溶剂相比可以忽略不计,则在一定的温度下,稀溶液的蒸气压等于纯溶剂的蒸气压与其克分子分数的乘积。
即式中p1--溶剂的蒸气压,溶质是不挥发性时,即为溶液的蒸气压;x1 ──溶液中溶剂的克分分数。
拉乌尔定律还可以表述为:在一定的温度下,当不挥发物质溶解在溶剂中时,溶液的蒸气压相对下降等于溶质的克分子分数。
即式中△p——溶液的蒸气压下降值;x2——溶质的克分子分数。
对于溶质是挥发性物质,它的蒸气压不能忽略时,拉乌尔定律仍然适用,但要注意此时p1是溶液中溶剂的蒸气压。
3.3.2 亨利定律亨利定律是1803年由亨利在对气体在液体中溶解度的实验研究中得出的。
亨利定律指出:在一定的温度下,气体在液体中的溶解度和该气体的平衡分压成正比。
即p2=k x x2 (3.22)式中x2 ──气体溶质在溶液中的克分子分数;p2──该气体的平衡分压;k x──常数。
亨利定律中的浓度单位除可用克分子分数外,也可用其他浓度单位表示,但是采用不同的单位时,常数k不同。
亨利定律可以推广到具有挥发性溶质溶于液体的稀溶液。
但是需要特别注意的是,亨利定律的应用是有条件的:只有当溶质在液相和在气相里都以相同的质点存在时亨利定律才适用。
由于气体在金属中往往以原子状态存在,因此气体在金属中的溶解往往不服从亨利定律。
拉乌尔定律和亨利定律的区别
拉乌尔定律和亨利定律是热力学中两个重要的定律,它们都与气体的性质有关,但是它们的研究对象和研究内容有所不同。
拉乌尔定律是指在一定温度下,气体的体积与压强成反比。
也就是说,当气体的压强增加时,它的体积会减小,反之亦然。
这个定律是由法国物理学家拉乌尔在19世纪初发现的,它适用于理想气体和实际气体。
理想气体是指分子之间没有相互作用力的气体,而实际气体则是指分子之间存在相互作用力的气体。
虽然实际气体的体积与压强的关系不是完全符合拉乌尔定律,但是在一定范围内,它仍然是适用的。
亨利定律则是指在一定温度下,气体溶解在液体中的浓度与气体的压强成正比。
也就是说,当气体的压强增加时,它在液体中的溶解度也会增加,反之亦然。
这个定律是由英国化学家亨利在18世纪末发现的,它适用于气体在液体中的溶解。
亨利定律的应用非常广泛,例如在饮料工业中,二氧化碳的溶解度与压强的关系就是根据亨利定律来计算的。
从以上的介绍可以看出,拉乌尔定律和亨利定律的研究对象和研究内容有所不同。
拉乌尔定律研究的是气体的体积与压强的关系,而亨利定律研究的是气体在液体中的溶解度与压强的关系。
虽然它们的研究对象不同,但是它们都是热力学中非常重要的定律,对于我们理解气体的性质和应用气体有很大的帮助。
1偏差的情况拉乌尔定律:在等温等压下,对溶液中组元i ,当其组元的浓度1i X →时,该组元在气相中的蒸气压i P 与其在溶液中的浓度i X 成线性关系。
数学描述为:其中,i P ----组元i 在气相中的蒸气压;;i P *----纯组元i 的蒸气压;i X ----组元i 在液相中的摩尔分数;"1i i X X ≤≤----组元i 服从拉乌尔定律的定义域。
亨利定律: 在等温等压下,对溶液中的组元i ,当其组元的浓度0(%0)i X or i →→时,该组元在气相中的蒸气压i P 与其在溶液中的浓度(%)i X or i 成线性关系。
数学描述为:或 其中,i P ----组元i 在气相中的蒸气压;,%,,H i i k k ----组元i 的浓度等于1或1%时,服从亨利定理的蒸气压;i X ,[]%i ----组元i 在液相中的摩尔分数或质量百分浓度;'0i i X X ≤≤,'0%%i i ≤≤----组元i 服从亨利定律的定义域。
2)掌握拉乌尔定律和亨利定律的区别与联系拉乌尔定律与亨利定律在以下方面有区别关于拉乌尔定律:● 是描述溶剂组元i 在液相中浓度与其在气相中的蒸气压的线性关系;在1i X −−→时,在定义域"1i i X X ≤≤成立;● 线性关系的斜率是纯溶剂i 的蒸气压;● 组元i 的浓度必须用摩尔分数。
而亨利定律:● 是描述溶质组元i 在液相中浓度与其在气相中的蒸气压的线性关系;在0i X −−→或%0i −−→时,在定义域'0i i X X ≤≤或'0%%i i ≤≤成立; ● 线性关系的斜率是从服从亨利定律的线性关系延长到1i X =的蒸气压(当浓度用摩尔分数,实际上是假想纯溶质i 的蒸气压)或从服从亨利定律的线性关系延长到%1i =的蒸气压(当浓度用质量百分浓度,实际上是假想%i 的蒸气压);● 组元i 的浓度可以用摩尔分数,也可以用质量百分浓度。