矩阵分析homework01答案
- 格式:pdf
- 大小:29.16 KB
- 文档页数:2
第一章线性空间与线性变换(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)(此处注意线性变换的核空间与矩阵核空间的区别)1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。
1.10.证明同1.9。
1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)1.13.提示:设),)(-⨯==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行),代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故A A T -=,即A 为反对称阵。
若X 是n 维复列向量,同样有0=ii a ,0=+ji ij a a ,再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(1.15.存在性:令2,2HH A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,唯一性:假设11C B A +=,1111,C C B B HH -==,且C C B B ≠≠11,,由1111C B C B A H H H -=+=,得C A A C B A A B HH =-==+=2,211(矛盾)第二章酉空间和酉变换(注意实空间与复空间部分性质的区别)2.8 法二:设~2121),,()0,0,1,0,0)(,,(X e e e e e e e n T n i ==(1在第i 行);~2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T n j ==(1在第j 行) 根据此题内积定义⎩⎨⎧≠===j i j i X Y e e H j i 01),~~( 故n e e e ,,21是V 的一个标准正交基。
2005级电路与系统矩阵分析作业3-1已知)(ij a A =是n 阶正定Hermite 矩阵,在n 维线性空间nC 中向量[]n x x x ,,,21 =α ,[]n y y y ,,,21 =β定义内积*),(βαβαA =。
(1)证明在上述定义下,nC 是酉空间;(2)写出nC 中的Canchy -Schwarz 不等式。
(1)证明:),(αβ=H A αβ=H H A )(βα=H A βα ,(βα,k )=),(βαβαk A k H =),(),()(),(γβγαγβγαγβαγβα+=+=+=+H H H A A AH A αααα=),(,因为A 为正定H 矩阵,所以0),(≥αα,当且仅当0),(0==ααα时,由上可知cn是酉空间。
証毕。
(2)解: ∑∑==n jnij ij i Hy a x A |||),(|βαβα∑∑==n jnij ijix ax ),(||||ααα,∑∑==n jnij ijiy ay ),(||||βββ由Cauchy-Schwarz 不等式有:∑∑∑∑∑∑≤n jnij ijin jnin jnij ijij ijiy ay x ax y ax *3-3(1)已知.A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡502613803---,试求酉矩阵U,使得U*AU 是上三角矩阵 解:由|λE-A| = (λ+1)3得 λ= -1是A 的特征值,当λ=-1时,可得|λE-A|=000000201于是ε1=(0,1,0)T是A 的特征向量。
选择与ε1正交,并且互相也正交两个向量组成酉阵:U 1= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010则U 1*A U 1= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---520830631 取A 1= ⎥⎦⎤⎢⎣⎡--5283,|λE- A 1| = (λ+1)2λ= -1是A 1的特征值。
当λ=-1时,可得|λE- A 1|=0021,于是,α1 =( --52,51)T是A 的特征向量,选择与α1正交的向量组成酉阵U 2 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡52515152 -,U 2*A 1U 2 = 51⎥⎦⎤⎢⎣⎡-2112⎥⎦⎤⎢⎣⎡--5283⎥⎦⎤⎢⎣⎡-2112 =⎥⎦⎤⎢⎣⎡---10101 3-9若S ,T 分别是实对称矩阵和反实对称矩阵,且0)det(≠--iS T E ,试证:1))((---++iS T E iS T E 是酉矩阵,。
矩阵分析课后习题答案第二章 内积空间14 . 设A , B 均为厄米特矩阵, 证明: AB 为厄米特矩阵的充要条件是AB = BA .证明: H A A =,H B B =()HH H AB AB B A AB =⇔=即 AB BA =17 . 证明:两个正规矩阵相似( 酉等价) 的充要条件是特征多项式相同.证明:设A , B 是两个n 阶的正规矩阵,如果A 与B 是酉等价的,则存在酉矩阵Q ,使得1H B Q AQ Q AQ -==()11E B E Q AQ Q E A Q E A λλλλ--⇒-=-=-=-即A , B 有相同的特征多项式反之,A , B 有相同的特征多项式,因而有相同的特征值集合{}12,,,n λλλA ,B 是正规矩阵,则存在酉矩阵1Q 及2Q ,使得1111122n Q AQ Q BQ λλλ2--⎡⎤⎢⎥⎢⎥==⎢⎥ ⎢⎥ ⎣⎦ 则有 ()()11111121121212B Q Q A Q Q Q QA Q QP A P------=== 易知,112p Q Q -=是酉矩阵,即A , B 是酉相似的。
第三章 矩阵的标准形6 . 在复数域上, 求下列矩阵的约当标准形:()11 -1 2 3 7 -3 3 0 8 4 5 -2⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ 3 -3 6 ; (2) -2 -5 2; (3) 3 -1 6; (4) -⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥2 -2 4-4 -10 3-2 0 -5⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥2 -2 1 ⎢⎥⎢⎥-1 -1 1⎣⎦解 (1) 特征矩阵为λλλ-1 1 -2⎡⎤⎢⎥-3 +3 - 6⎢⎥⎢⎥-2 2 -4⎣⎦所以行列式因子为()()121D D λλλ==,,()()232D λλλ=-不变因子为()()()()()()()()()231123121,D D d D d d D D λλλλλλλλλλλ== ==, ==-2全部初级因子为()2,,λλλ-故约当标准型为 2J 0 0⎡⎤⎢⎥=0 0 0⎢⎥⎢⎥0 0 0⎣⎦(2) 特征矩阵为λλλ -3 - 7 3⎡⎤⎢⎥ 2 +5 -2⎢⎥⎢⎥ 4 10 - 3⎣⎦所以行列式因子为()()211D D λλ==,()()31()()D i i λλλλ=--+不变因子为()()()()()()()()()231123121,1()()D D d D d d i i D D λλλλλλλλλλλ== ==1, ==--+全部初级因子为1,,i i λλλ- - +故约当标准型为 J i i 1 0 0⎡⎤⎢⎥=0 0⎢⎥⎢⎥0 0 -⎣⎦(3) 特征矩阵为5λλλ -3 0 -8⎡⎤⎢⎥ -3 +1 -6⎢⎥⎢⎥ 2 0 +⎣⎦所以行列式因子为()()()()1231,1,1D D D λλλλλ3= =+ =+不变因子为()()()()()()()()()2231123121,1D D d D d d D D λλλλλλλλλλ== ==+1, ==+全部初级因子为21,1)λλ+ (+故约当标准型为 J -1 0 0⎡⎤⎢⎥= 0 -1 0⎢⎥⎢⎥ 0 1 -1⎣⎦(4) 特征矩阵为λλλ -4 - 5 2⎡⎤⎢⎥ 2 +2 -1⎢⎥⎢⎥ 1 1 - 1⎣⎦所以行列式因子为()()211D D λλ==,()()331D λλ=-不变因子为()()()()()()()()()3231123121,D D d D d d D D λλλλλλλλλ== ==1, ==-1全部初级因子为()31λ-故约当标准型为 J 1 0 0⎡⎤⎢⎥=1 1 0⎢⎥⎢⎥0 1 1⎣⎦8 . 证明: ( 1)方阵A 的特征值全是零的充要条件是存在自然数m ,使得A m = 0; ( 2) 若A m = 0 , 则1A E +=.证明:(1) 如λ为A 的任一特征值,A 为n 阶方阵,则m λ为m A 的特征值,若0m A =则m n E A E λλλ-==,即A 的特征值为0。
第一章线性空间与线性变换(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)(此处注意线性变换的核空间与矩阵核空间的区别)1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。
1.10.证明同1.9。
1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)1.13.提示:设),)(-⨯==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行),代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故A A T -=,即A 为反对称阵。
若X 是n 维复列向量,同样有0=ii a ,0=+ji ij a a ,再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(1.15.存在性:令2,2HH A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,唯一性:假设11C B A +=,1111,C C B B HH -==,且C C B B ≠≠11,,由1111C B C B A H H H -=+=,得C A A C B A A B HH =-==+=2,211(矛盾)第二章酉空间和酉变换(注意实空间与复空间部分性质的区别)2.8 法二:设~2121),,()0,0,1,0,0)(,,(X e e e e e e e n T n i ==(1在第i 行);~2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T n j ==(1在第j 行) 根据此题内积定义⎩⎨⎧≠===j i j i X Y e e H j i 01),~~( 故n e e e ,,21是V 的一个标准正交基。
第 1 章线性空间和线性变换(详解)1-1证:用 E ii表示n阶矩阵中除第i行,第i列的元素为 1外,其余元素全为 0 的矩阵 . 用E ij(i j , i1,2,, n1) 表示n阶矩阵中除第 i 行,第 j 列元素与第 j 行第 i 列元素为1 外,其余元素全为0的矩阵.显然, E ii,E ij都是对称矩阵, E ii有 n( n1)个.不难证明E ii,E ij是线性无关的,2且任何一个对称矩阵都可用这n+ n( n1)= n( n 1)个矩阵线性表示,此即对称矩阵组成n(n 1)维线性空间 .222同样可证所有n 阶反对称矩阵组成的线性空间的维数为n(n 1).2评注 : 欲证一个集合在加法与数乘两种运算下是一个n(n 1)维线性空间,只需找出n(n 1)个向量线性无关,并且集合中任何一个向量都可以用这2n(n 1)个向量线性表示即22可.1-2 解:令x1 1 x2 2x3 3x4 4解出 x1 , x2 , x3, x4即可.1-3解:方法一设A x1E1x2E2x3E3x4E4即12111111100 3x1 1 1x2 1 0x3 0 0x4 00故1 2x1x2x3x4x1x2x303x1x2x1于是x1x2x3x41, x1x2x3 2x1x20, x13解之得x1 3, x23, x32, x41A E,E,E,E(3, 3,2,1)T方法二应用同构的概念,R2 2是一个四维空间,并且可将矩阵 A 看做(1,2,0,3)T,E1,E2, E3, E4可看做(1,1,1,1)T,(1,1,1,0)T,(1,1,0,0)T,(1,0,0,0)T.于是有1111110003111020100311000001021000300011因此 A 在E1,E2,E3,E4下的坐标为(3,3,2,1)T.1-4 解:证:设k1 1k22k33k440即11111110k1 1 1k2 0 1k3 1 0k4 1 1k1k2 k3k4k1k2k3k1k3k4k1k2k4于是k1k2k3k40,k1k2k30k1k3k40, k1k2k40解之得k1k2k3k40故α,α,α,α 线性无关.1234设a b11x211x31110c d x110110x41 11x1x2x3x4x1x2x3x1x3x4x1x2x4于是x1x2x3x40, x1x2x30x1x3x40, x1x2x40解之得x1b c d2a, x2a cx3 a d , x4a bx1, x2 , x3 , x4即为所求坐标.1-5 解:方法一(用线性空间理论计算)1p( x) 1 2x31,x, x2, x302y123y 21,x 1,( x 1) ,( x1)y3y4又由于1,x1,( x1)2 ,( x1)311111,x, x2 , x30123 0013 0001于是 p( x) 在基1, x1,( x1)2 ,( x1)3下的坐标为y11111113y2012306y3001306y4000122方法二将 p(x) 12x3根据幂级数公式按x 1 展开可得p( x) 1 2x3p(1)p (1)(x1)p (1) (x1)2p (1)( x1)32!3!36(x1)6(x1)22(x1)3因此 p( x) 在基1, x1,( x1)2 ,( xT 1)3下的坐标为3,6,6, 2.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些.1-6 解:①设β,β,β,βα,α,α,αP将 α1,α2 ,α3, α4 与 β1, β2, β3,β4 代入上式得2 0 5 6 1 0 0 1 13 3 6 1 1 0 01 12 1 0 1 1 P0 1 01 30 1 1故过渡矩阵10 01 10 5 62 P1 1 0 0 1 3 3 61 10 1 1 2 10 0 1 1 10 1 3121 22231 5 42 211 9 52 232 11 82 2②设1y 1ξ0 β β β β y 21 ( 1, 2, 3 , 4 )y 3y 4将 β1, β2, β3, β4 坐标代入上式后整理得719 y 1 2 0 5 6 1 8 y 2 1 3 3 6 0 27 y 3 1 1 2 1 1 1 y 411 33 227评注 :只需将iβ1,β2 ,β3, β41,2,3,4P计算出, β代入过渡矩阵的定义α α α α P .1-7 解:因为span{ α1, α2}span{ β1,β2}span{ α1, α2, β1,β2}由于秩 span{ α1,α2 , β1, β2}3 ,且α1, α2, β1是向量α1, α2, β1,β2的一个极大线性无关组,所以和空间的维数是3,基为α1,α2,β1.方法一设ξ span{α1,α2}span{ β1, β2} ,于是由交空间定义可知112121k31k41k1k210130117解之得k1l2 , k24l2 ,l13l2 (l2为任意数)于是ξ k1α1k2α2l 2[5,2,3,4] T( 很显然ξl1 1l2 2 )所以交空间的维数为 1,基为[5,2,3,4] T.方法二不难知span{ α1,α2}span{ α1,α2}, span{ β1,β2} span{ β1, β2}其中α[ 2, 2,0,1] T, β[13,2,1,0] T.又span{ α1,α2 }也是线性方程组223x1x32x4x22x3x4的解空间 . span{β1,β2}是线性方程组x113x32x4 3x22x3x4的解空间,所以所求的交空间就是线性方程组x 1 x 3 2x 4x 2 2x 3 x 4x 1 13x 3 2x 4x 2 32x 3x 4的解空间,容易求出其基础解系为[ 5,2,3,4] T ,所以交空间的维数为1,基为[ 5,2,3,4] T .评注:本题有几个知识点是很重要的.(1)span{ α1,α2 , , αn } 的 基 底 就 是α1, α2, , αn 的极大线性无关组. 维数等于秩{ α1,α2 ,,αn } . (2) span{α1, α2} span{ β1, β2} span{ α1,α2 , β1, β2} . (3) 方法一的思路,求交span{ α,α} span{ β, β} 就是求向量 ,既可由 α, α 线性表121 2ξ1 2示,又可由 β, β线性表示的那部分向量 . (4) 方法二是借用“两个齐次线性方程1 2组解空间的交空间就是联立方程组的解空间” ,将本题已知条件改造为齐次线性方程组来求解 .1-8 解:(1):解出方程组 (Ⅰ)x 1 2x 2 x 3 x 45x 1 10x 2 6x 3的基础解系 ,即是 V 1 的基 ,4 x 4 0解出方程组 (Ⅱ) x 1x 2 x 3 2 x 4 0 的基础解系 ,即是 V 2 的基 ;x 12x 2 x 3x 4 0(2): 解出方程组5x 1 10 x 2 6x 3 4 x 4 0 的基础解系 ,即为 V 1V 2的基 ;x 1 x 2x 32x 4 0(3): 设 V 1 span 1,,k,V 2 span1 ,, l ,则1 ,, k ,1 ,, l 的极大无关组即是V 1 V 2 的基 . 1-9 解 : 仿上题解 .1-10 解 : 仿上题解 . 1-11 证:设l 0ξ l 1A (ξ) l 2A2(ξ)l k 1Ak 1(ξ) 0①用 A k 1 从左侧成 ① 式两端,由 A k (ξ) 0 可得l 0A k 1 (ξ) 0因为 A k 1 (ξ) 0 ,所以 l 00,代入 ①可得l 1A (ξ) l 2A 2 (ξ)l k 1A k 1 (ξ) 0②用k 2kA从左侧乘②式两端,由Aξ0可 得 l0 0,继续下去,可得( )l 2l k 1 0 ,于是 ξ,A (ξ), A 2 (ξ), ,A k 1(ξ) 线性无关 .1-12解:由 1-11可知, n 个向量 ξ 0,A ( ),A2(ξ),,An 1 (ξ)线性无关,它是 V 的ξ一个基 . 又由ξξ2ξ,An 1ξA [,A( ),A( ),( )][A (ξ),A 2(ξ), ,A n 1(ξ)][A (ξ),A2(ξ),,An 1(ξ),0]0 0 0 010 0 ξξ2ξ ,An 1ξ 0 1[,A (),A( ),( )]0 0 0 010 n n所以 A在, (ξ),A 2(ξ), ,An 1(ξ)下矩阵表示为 n 阶矩阵ξA0 0 0 01 0 0 00 10 00 0 0 0 n0 01V 中任何一组 n个线性无关的向量组都可以构成V 的一个基,评注 : 维线性空间 因此 ξ,(ξ), A 2(ξ), ,A n1(ξ)是 V 的一个基 .A1-13 证: 设 1, , r , , s1 , , m A, A 1, , r , , s设 1 , , r 是 1,, r ,, s 的极大无关组,则可以证明1,, r 是 1, , r,,s 的极大无关组 .1-14 解: (1) 由题意知A [α1, α2,α3 ] [ α1,α2 ,α3] A1 1 1[β, β, β] [ α,α , α ] 0 1 11 231 230 0 1设 A在基 β1, β2, β3下的矩阵表示是 B ,则1 1 112 3 1 1 11BP 1AP 01 11 0 3 0 1 10 0 1 2 1 5 0 0 12 4 434 6238(2) 由于 A0 ,故 AX 0 只有零解,所以 A的核是零空间 . 由维数定理可知A 的值域是线性空间 R 3 .1-15 解 :已知 A1,2,31,2,3A(1) 求得式 1 , 2 , 3 1 ,2 ,3 P 中的过渡矩阵 P ,则BP 1AP 即为所求 ; (2) 仿教材例 1.5.1.(见<矩阵分析 >史荣昌编著 .北京理工大学出版社 .)1-16 解 :设 A1 ,2 ,3 , 则 R( A)span1 ,2 ,3 ; N ( A) 就是齐次方程组 Ax的解空间 .1-17 证 :由矩阵的乘法定义知AB 与 BA 的主对角线上元素相等 , 故知 AB 与 BA 的迹相等 ; 再由 1-18题可证 .1-18 证 :对 k 用数学归纳法证。