巧设极坐标方程 妙解圆锥曲线问题
- 格式:pdf
- 大小:109.53 KB
- 文档页数:2
圆锥曲线解题技巧归纳圆锥曲线是数学中的重要主题之一、它涉及到许多重要的概念和技巧,可以用于解决各种问题。
本文将归纳总结圆锥曲线解题的一些常用技巧,帮助读者更好地理解和应用这一主题。
1.判别式法:对于给定的二次方程,可以根据判别式的符号来判断它表示的曲线类型。
当判别式大于零时,曲线是一个椭圆;当判别式小于零时,曲线是一个双曲线;当判别式等于零时,曲线是一个抛物线。
2.参数方程法:对于给定的圆锥曲线,可以使用参数方程来表示。
通过选取合适的参数,可以将曲线表示为一系列点的集合。
这种方法可以简化问题,使得求解过程更加直观和方便。
3.极坐标方程法:对于给定的圆锥曲线,可以使用极坐标方程来表示。
通过将直角坐标系转换为极坐标系,可以更好地描述和分析曲线的特性。
这种方法在求解对称性等问题时非常有用。
4.曲线拟合法:对于给定的一组数据点,可以使用曲线拟合的方法来找到一个最适合的圆锥曲线。
通过将数据点与曲线进行比较,可以得出曲线的参数和特性。
这种方法在实际应用中非常常见,例如地图估算、经济预测等领域。
5.曲线平移法:对于给定的圆锥曲线,可以通过平移坐标系来使其简化。
通过选取合适的平移距离,可以将曲线的对称轴对准到坐标原点,从而更方便地进行分析和求解。
6.曲线旋转法:对于给定的圆锥曲线,可以通过旋转坐标系来改变其方向和形状。
通过选取合适的旋转角度,可以使曲线变得更简单和易于处理。
这种方法在求解对称性、求交点等问题时非常有用。
7.曲线对称性法:对于给定的圆锥曲线,可以通过研究其对称性来简化问题。
根据曲线的对称轴、对称中心等特性,可以快速得到曲线的一些重要参数和结论。
8.曲线的几何性质法:对于给定的圆锥曲线,可以通过研究其几何性质来解决问题。
例如,对于椭圆可以利用焦点、半长轴、半短轴等参数来求解问题;对于双曲线可以利用渐近线、渐近点等参数来求解问题。
9.曲线的微积分法:对于给定的圆锥曲线,可以通过微积分的方法来求解其一些重要特性。
极坐标秒杀圆锥曲线问题一、适用题型二、基本理论:(一)极坐标系、在平面内取一定点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向),如图对于平面内任意一点M,用ρ叫做点M 的极径,θ叫做点M 的极角,有序数对(,)ρθ叫做点M 的极坐标,这样建立的坐标系叫做极坐标系。
极坐标为ρ,θ的点M,可表示为M (,)ρθ。
(二)圆锥曲线的统一极坐标方程椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点F)的距离和一条定直线(准线L)的距离的比等于常数e 的点的轨迹。
建立以焦点F 为极点,x 轴正方向为极轴的极坐标系,其统一的极坐标方程为:θρcos 1e ep-=(成为标准极坐标方程)。
(1)当0<e<1时,方程表示椭圆;定点F 是椭圆的左焦点,定直线L 是它的左准线。
(2)e=1时,方程表示开口向右的抛物线.(3)e>1时,方程只表示双曲线的右支,定点F 是它的右焦点,定直线L 是它的右准线。
(若允许ρ<0,方程就表示整个双曲线)其中:(i)ρ是动点到极点的距离(ρ>0),θ表示极径与极轴正方向的夹角。
(ii)e 表示圆锥曲线的离心率,c e a=。
(iii)p 表示焦点到准线的距离。
由焦点与准线的不同位置关系,从而建立不同的极坐标,利用圆锥曲线定义可得其统一极坐标方程为:推广1:1+cos epe ρθ=(1)0<e<1当时,方程表示极点在右焦点上的椭圆(2)e=1时时,方程表示开口向左的抛物线(3)e>1方程表示极点在左焦点上的双曲线推广2:1-sin ep e ρθ=(1)0<e<1时,方程表示极点在下焦点的椭圆(2)e=1时,方程表示开口向上的抛物线(3)e>1时!方程表示极点在上焦点的双曲线推广3:1+sin ep e ρθ=(1)0<e<1时,方程表示极点在上焦点的椭圆(2)e=1时,方程表示开口向下的抛物线(3)e>1时!方程表示极点在下焦点的双曲线(三)常用性质(1)对于圆锥曲线的标准极坐标方程θρcos 1e ep-=,则与之对应的直角坐标方程为:()22221x c y a b++=,当(0<e<1时);()22221x c y a b++=,当(e>1时,R ρ∈);22()y p x c =+(当e=1时)(2)记圆锥曲线的统一方程1-sin epe ρθ=,有公式1:2(0)()a ρρπ=+公式2:2(0)()c ρρπ=-公式3:22(0)()b ρρπ= 其中2a 表示椭圆长轴与双曲线实轴长,2b 表示椭圆短轴与双曲线虚轴长,2c 表示焦距。
圆锥曲线求解技巧圆锥曲线是数学中重要的一个分支,包括圆、椭圆、抛物线和双曲线。
它们都具有各自独特的性质和方程形式。
在求解圆锥曲线的问题时,有一些常见的技巧和方法可以帮助我们简化计算和理解问题。
下面是一些圆锥曲线求解技巧的介绍。
1. 几何特征:首先,了解每种圆锥曲线的几何特征是非常重要的。
圆是所有圆锥曲线中最简单的一种,其方程形式为x²+ y²= r²,其中r是圆的半径。
椭圆具有中心点和两个焦点,其方程形式为(x - h)²/a² + (y - k)²/b² = 1,其中(h, k)是中心点的坐标,a和b是椭圆在x轴和y轴上的半径。
抛物线则有焦点和直线的焦点形式,其方程形式为y²= 4ax或x²= 4ay,其中a是抛物线的焦距。
双曲线也有焦点和直线的形式,其方程形式为(x - h)²/a² - (y - k)²/b² = 1或者(y - k)²/b² - (x - h)²/a² = 1,其中(h, k)是中心点的坐标,a和b 是双曲线在x轴和y轴上的半径。
2. 参数化表示:参数化是一种将一个曲线表示为参数的函数的方法。
通过引入新的参数,我们可以简化对曲线的表示和求解。
例如,对于椭圆,我们可以引入参数化坐标x = a cosθ和y = b sinθ,其中a和b是椭圆的半径。
这样,我们可以将椭圆的方程简化为极坐标形式r = a(1 - e²)/(1 + e cosθ),其中e是椭圆的离心率。
同样地,对于抛物线,我们可以引入参数化坐标x = at²和y = 2at。
通过参数化,我们可以更容易地计算和理解曲线的性质。
3. 极坐标表示:极坐标是一种将点表示为距离和角度的方式。
对于圆锥曲线,极坐标表示是很有用的,特别是当涉及到对称性和角度的问题时。
专题13 极坐标秒解圆锥曲线微点2 极坐标秒
解圆锥曲线综合训练
12.如图,中心在原点O 的椭圆的右焦点为(1)求椭圆的方程;
(2)在椭圆上任取三个不同点123,,P P P ,使∠
(1)求椭圆的方程;
(2)如图,点A为椭圆上一动点(非长轴端点)长线与椭圆交于点C.
①当直线AB的斜率存在时,求证:直线
②求△ABC面积的最大值,并求此时直线
参考答案:
(2)设椭圆的左焦点(13,0F -即12MP MF MP MF +=-+()()
22
1310117PF =
--+-=
(3)椭圆的右准线25
3x =
,设椭圆上的点35MF d =, 5||||3
MP MF +=离,即
2522
133
-=
所以5||||3MP MF +的最小值是223所以5
||||3MP MF +的值最小时点M 【点睛】本题考查椭圆内的最值问题,重点考查转化与变形,数形结合分析问题,属于中档题型.
)
记椭圆的右顶点为A ,并设i i AFP α∠=(i =1,假设1203απ
≤≤
,且2123ααπ=+,3143
ααπ=+又设点i P 在l 上的射影为i Q ,因椭圆的离心率e 2cos i i i i i a FP PQ e c FP e c α⎛⎫==-- ⎪⎝⎭ 1
(92FP =
-
答案第17页,共17页。
极坐标与直角坐标的互化圆锥曲线方程在数学中,坐标系是研究和描述点在平面或空间中位置的方法。
坐标系分为直角坐标系和极坐标系两种类型。
在二维平面上,直角坐标系以直角为基础,使用直角坐标(x,y)来表示点的位置。
而极坐标系则使用极径r和极角 $\\theta$ 来描述点的位置。
直角坐标系和极坐标系在表达方式上有所不同,但它们可以互相转换。
本文将重点探讨极坐标与直角坐标之间的转换方法,以及如何通过这些转换得到圆锥曲线的方程。
极坐标与直角坐标之间的转换极坐标与直角坐标之间的转换涉及从一个坐标系到另一个坐标系的点的位置转换。
我们可以通过以下公式将极坐标转换为直角坐标:$$ \\begin{aligned} x &= r \\cos(\\theta) \\\\ y &= r \\sin(\\theta)\\end{aligned} $$这里,x和y是直角坐标,r是极径,$\\theta$ 是极角。
同样地,我们可以使用以下公式将直角坐标转换为极坐标:$$ \\begin{aligned} r &= \\sqrt{x^2 + y^2} \\\\ \\theta &=\\arctan\\left(\\frac{y}{x}\\right) \\end{aligned} $$这些转换公式可以帮助我们在不同的坐标系中进行方便的计算和描述。
圆锥曲线的方程圆锥曲线是二维平面上的一类重要的曲线。
它包括四种类型:圆、椭圆、双曲线和抛物线。
我们可以使用极坐标或直角坐标来描述这些曲线。
圆的方程在直角坐标系中,圆的方程可以表示为:(x−ℎ)2+(y−k)2=r2其中(ℎ,k)是圆心的坐标,r是半径的长度。
通过将直角坐标转换为极坐标,圆的方程可以改写为:r=a这里a是圆的半径长度。
椭圆的方程在直角坐标系中,椭圆的方程可以表示为:$$\\frac{(x - h)^2}{a^2} + \\frac{(y - k)^2}{b^2} = 1$$其中(ℎ,k)是椭圆中心的坐标,a和b分别是椭圆在x和y轴上的半轴长度。
极坐标方程在圆锥曲线中的应用作者:周震来源:《中学生数理化·学习研究》2017年第08期在圆锥曲线问题中,常出现的长度问题主要有两大类:一是与焦点有关,主要体现在过焦点的弦长、直线的倾斜角、焦准距等相关的问题;二是与原点有关的长度和角度问题。
这两类问题利用圆锥曲线常规解法往往运算量较大,学生通常比较害怕。
如果我们转换思路,合理利用曲线的极坐标方程来解,可以将繁琐复杂的计算简单化,提高解题速度和正确率。
下面通过具体例题来阐述圆锥曲线的极坐标解法。
在极坐标系中,以圆锥曲线的焦点F(椭圆为左焦点,双曲线为右焦点)为极点,对称轴为极轴建立极坐标系,离心率为e,焦点到准线的距离为p。
则圆锥曲线的极坐标方程为ρ=ep1-ecosθ。
当以原点为极点,Ox轴为极轴时,椭圆x2a2+y2b2=1(a>b>0)的极坐标方程ρ2=a2b2b2cos2θ+a2sin2θ。
双曲线x2a2-y2b2=1的极坐标方程为ρ2=a2b2b2cos2θ-a2sin2θ。
抛物线y2=2px的极坐标方程为ρsin2θ=2pcosθ。
圆心为(a,0),半径为a的圆的极坐标方程为ρ=2acosθ。
一、与焦点有关的问题例1已知椭圆x2a2+y2b2=1(a>b>0)过椭圆的左焦点F作倾斜角为π3的直线交椭圆于A、B两点,且AF∶BF=2∶1,求椭圆的离心率。
分析:在极坐标系中,由于椭圆的极坐标方程是以左焦点为极点,x轴的正半轴为极轴建立的坐标系,极径的长即为椭圆上的点到焦点的距离,所以可以利用极坐标方程来解决。
解:以椭圆的左焦点F为极点,Fx轴为极轴建立极坐标系,则椭圆的极坐标方程为ρ=ep1-ecosθ。
则AF=ep1-12e,BF=ep1+12e。
因为AF∶BF=2∶1,所以ep1-12e∶ep1+12e=2∶1。
化简得e=23。
故所求椭圆的离心率为e=23。
运用极坐标方程解决与焦点弦长有关的问题可以简化计算量,提高解题速度和效率。
圆锥曲线问题解题方法圆锥曲线中的知识综合性较强,因而解题时就需要运用多种基础知识、采用多种数学手段来处理问题。
熟记各种定义、基本公式、法则固然重要,但要做到迅速、准确解题,还须掌握一些方法和技巧。
一. 紧扣定义,灵活解题灵活运用定义,方法往往直接又明了。
例1. 已知点A (3,2),F (2,0),双曲线x y 2231-=,P 为双曲线上一点。
求||||P A P F +12的最小值。
三. 数形结合,直观显示将“数”与“形”两者结合起来,充分发挥“数”的严密性和“形”的直观性,以数促形,用形助数,结合使用,能使复杂问题简单化,抽象问题形象化。
熟练的使用它,常能巧妙地解决许多貌似困难和麻烦的问题。
例3. 已知x y R,∈,且满足方程x y y 2230+=≥(),又m y x =++33,求m 范围。
四. 应用平几,一目了然用代数研究几何问题是解析几何的本质特征,因此,很多“解几”题中的一些图形性质就和“平几”知识相关联,要抓住关键,适时引用,问题就会迎刃而解。
例4. 已知圆()x y -+=3422和直线y m x=的交点为P 、Q ,则||||O P O Q ⋅的值为________。
五. 应用平面向量,简化解题向量的坐标形式与解析几何有机融为一体,因此,平面向量成为解决解析几何知识的有力工具。
例5. 已知椭圆:x y 2224161+=,直线l :x y 1281+=,P 是l 上一点,射线OP 交椭圆于一点R ,点Q 在OP 上且满足||||||O Q O P O R ⋅=2,当点P 在l 上移动时,求点Q 的轨迹方程。
分析:考生见到此题基本上用的都是解析几何法,给解题带来了很大的难度,而如果用向量共线的条件便可简便地解出。
六. 应用曲线系,事半功倍利用曲线系解题,往往简捷明快,收到事半功倍之效。
所以灵活运用曲线系是解析几何中重要的解题方法和技巧之一。
例 6. 求经过两圆x y x 22640++-=和x y y 226280++-=的交点,且圆心在直线x y --=40上的圆的方程。
高中数学:求解圆锥曲线问题的方法和技巧圆锥曲线中的知识综合性较强,因而解题时就需要运用多种基础知识、采用多种数学手段来处理问题。
熟记各种定义、基本公式、法则固然重要,但要做到迅速、准确解题,还须掌握一些方法和技巧。
一. 紧扣定义,灵活解题灵活运用定义,方法往往直接又明了。
例1. 已知点A(3,2),F(2,0),双曲线,P为双曲线上一点。
求的最小值。
解析:如图所示,双曲线离心率为2,F为右焦点,由第二定律知即点P到准线距离。
二. 引入参数,简捷明快参数的引入,尤如化学中的催化剂,能简化和加快问题的解决。
例2. 求共焦点F、共准线的椭圆短轴端点的轨迹方程。
解:取如图所示的坐标系,设点F到准线的距离为p(定值),椭圆中心坐标为M(t,0)(t为参数),而再设椭圆短轴端点坐标为P(x,y),则消去t,得轨迹方程三. 数形结合,直观显示将“数”与“形”两者结合起来,充分发挥“数”的严密性和“形”的直观性,以数促形,用形助数,结合使用,能使复杂问题简单化,抽象问题形象化。
熟练的使用它,常能巧妙地解决许多貌似困难和麻烦的问题。
例3. 已知,且满足方程,又,求m范围。
解析:的几何意义为,曲线上的点与点(-3,-3)连线的斜率,如图所示四. 应用平几,一目了然用代数研究几何问题是解析几何的本质特征,因此,很多“解几”题中的一些图形性质就和“平几”知识相关联,要抓住关键,适时引用,问题就会迎刃而解。
例4. 已知圆和直线的交点为P、Q,则的值为________。
解:五. 应用平面向量,简化解题向量的坐标形式与解析几何有机融为一体,因此,平面向量成为解决解析几何知识的有力工具。
例5. 已知椭圆:,直线:,P是上一点,射线OP交椭圆于一点R,点Q在OP上且满足,当点P在上移动时,求点Q的轨迹方程。
分析:考生见到此题基本上用的都是解析几何法,给解题带来了很大的难度,而如果用向量共线的条件便可简便地解出。
解:如图,共线,设,,,则,点R在椭圆上,P点在直线上,即化简整理得点Q的轨迹方程为:(直线上方部分)六. 应用曲线系,事半功倍利用曲线系解题,往往简捷明快,收到事半功倍之效。
圆锥曲线问题解题方法圆锥曲线中的知识综合性较强,因而解题时就需要运用多种基础知识、采用多种数学手段来处理问题。
熟记各种定义、基本公式、法则固然重要,但要做到迅速、准确解题,还须掌握一些方法和技巧。
一. 紧扣定义,灵活解题灵活运用定义,方法往往直接又明了。
例1. 已知点A (3,2),F (2,0),双曲线x y 2231-=,P 为双曲线上一点。
求||||PA PF +12的最小值。
解析:如图所示,双曲线离心率为2,F 为右焦点,由第二定律知12||PF 即点P 到准线距离。
∴+=+≥=||||||||PA PF PA PE AM 1252二. 引入参数,简捷明快参数的引入,尤如化学中的催化剂,能简化和加快问题的解决。
例2. 求共焦点F 、共准线l 的椭圆短轴端点的轨迹方程。
解:取如图所示的坐标系,设点F 到准线l 的距离为p (定值),椭圆中心坐标为M (t ,0)(t 为参数)p b c =2,而c t = ∴==b pc pt 2 再设椭圆短轴端点坐标为P (x ,y ),则x c t y b pt ====⎧⎨⎪⎩⎪消去t ,得轨迹方程y px 2=三. 数形结合,直观显示将“数”与“形”两者结合起来,充分发挥“数”的严密性和“形”的直观性,以数促形,用形助数,结合使用,能使复杂问题简单化,抽象问题形象化。
熟练的使用它,常能巧妙地解决许多貌似困难和麻烦的问题。
例3. 已知x y R ,∈,且满足方程x y y 2230+=≥(),又m y x =++33,求m 范围。
解析: m y x =++33的几何意义为,曲线x y y 2230+=≥()上的点与点(-3,-3)连线的斜率,如图所示k m k PA PB ≤≤ ∴-≤≤+332352m四. 应用平几,一目了然用代数研究几何问题是解析几何的本质特征,因此,很多“解几”题中的一些图形性质就和“平几”知识相关联,要抓住关键,适时引用,问题就会迎刃而解。