2020潍坊市三模考试数学答案
- 格式:pdf
- 大小:425.05 KB
- 文档页数:3
2020年山东潍坊高三三模理科数学试卷-学生用卷一、单项选择题(本大题共8小题,每小题5分,共40分)1、【来源】 2020年山东潍坊高三三模理科第1题5分2020年山东潍坊高三三模第1题5分已知集合P={x|1⩽x⩽10},Q={x|x2+x−6=0},则P∩Q等于().A. {1,2,3}B. {2,3}C. {1,2}D. {2}2、【来源】 2020年山东潍坊高三三模理科第2题5分2020年山东潍坊高三三模第2题5分2019~2020学年四川成都锦江区成都市田家炳中学高一下学期期末理科第6题5分将一直角三角形绕其一直角边旋转一周后所形成的几何体的三视图如右图所示,则该几何体的侧面积是().πA. 23B. 2πC. √5πD. 3π3、【来源】 2020年山东潍坊高三三模理科第3题5分2020年山东潍坊高三三模第3题5分2020~2021学年2月陕西西安雁塔区西北大学附属中学高三下学期月考理科(七模)第4题5分 某学校共有教职工120人,对他们进行年龄结构和受教育程度的调查,其结果如下表所示,现从该校教职工中任取1人,则下列结论正确的是( ).A. 该教职工具有本科学历的概率低于60%B. 该教职工具有研究生学历的概率超过50%C. 该教职工的年龄在50岁以上的概率超过10%D. 该教职工的年龄在35岁及以上且具有研究生学历的概率超过10%4、【来源】 2020年山东潍坊高三三模理科第4题5分2020年山东潍坊高三三模第4题5分已知向量a →=(−1,3),b →=(λ,√33),若a →⊥b →,则a →+√3b →与a →的夹角为().A. π6B. π4C. π3D. 23π5、【来源】 2020年山东潍坊高三三模理科第5题5分2020年山东潍坊高三三模第5题5分函数f (x )=(3x −1)lnx 23x +1的部分图象大致为( ).A.B.C.D.6、【来源】 2020年山东潍坊高三三模理科第6题5分2020年山东潍坊高三三模第6题5分⩾a恒成立的一个充分条件是().若x>0,则x+2020xA. a>80B. a<80C. a>100D. a<1007、【来源】 2020年山东潍坊高三三模理科第7题5分2020年山东潍坊高三三模第7题5分在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问相逢时良马比驽马多行几里?A. 540B. 426C. 963D. 1148、【来源】 2020年山东潍坊高三三模理科第8题5分2020年山东潍坊高三三模第8题5分已知函数f(x)的导函数f′(x)=x4(x−1)3(x−2)2(x−3),则下列结论正确的是().A. f(x)在x=0处有极大值B. f(x)在x=2处有极小值C. f(x)在[1,3]上单调递减D. f(x)至少有3个零点二、多项选择题(本大题共4小题,每小题5分,共20分)9、【来源】 2020年山东潍坊高三三模理科第9题5分2020年山东潍坊高三三模第9题5分设复数z=−12+√32i(i为虚数单位),则以下结论正确的是().A. z2⩾0B. z2=zC. z3=1D. z2020=z10、【来源】 2020年山东潍坊高三三模理科第10题5分2020年山东潍坊高三三模第10题5分已知m ,n 是两条不重合的直线,α,β,γ是三个两两不重合的平面,则下列命题正确的是( ).A. 若m ⊥α,n ⊥β,α//β,则m//nB. 若α⊥γ,β⊥γ,则α//βC. 若m//β,n//β,m ,n ⊂α,则α//βD. 若n ⊂α,n ⊥β,则α⊥β11、【来源】 2020年山东潍坊高三三模理科第11题5分2020年山东潍坊高三三模第11题5分在现代社会中,信号处理是非常关键的技术,我们通过每天都在使用的电话或者互联网就能感受到.而信号处理背后的“功臣”就是正弦型函数!函数f (x )=∑sin [(2i−1)x ]2i−17i=1的图象就可以近似地模拟某种信号的波形,则下列说法正确的是( ).A. 函数f (x )为周期函数,且最小正周期为πB. 函数f (x )为奇函数C. 函数y =f (x )的图象关于直线x =π2对称D. 函数f (x )的导函数f ′(x )的最大值为712、【来源】 2020年山东潍坊高三三模理科第12题5分2020年山东潍坊高三三模第12题5分2020~2021学年9月湖北武汉江岸区武汉市第六中学高二上学期月考第10题5分2020~2021学年10月山东青岛李沧区青岛第五十八中学高三上学期月考第12题5分2020~2021学年4月重庆九龙坡区重庆外国语学校高三下学期周测A 卷第7题已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2,点P(1,1)在椭圆内部,点Q 在椭圆上,则以下说法正确的是( ).A. |QF 1|+|QP|的最小值为2a −1B. 椭圆C 的短轴长可能为2C. 椭圆C 的离心率的取值范围为(0,√5−12)D. 若PF 1→=F 1Q →,则椭圆C 的长轴长为√5+√17三、填空题(本大题共4小题,每小题5分,共20分)13、【来源】 2020年山东潍坊高三三模理科第13题5分2020年山东潍坊高三三模第13题5分若函数f(x)={lnx,x >0(12)x ,x ⩽0,则f (f (1e ))= .14、【来源】 2020年山东潍坊高三三模理科第14题5分2020年山东潍坊高三三模第14题5分已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的渐近线与圆F:(x −2)2+y 2=3相切,且双曲线C 的一个焦点与圆F 的圆心重合,则双曲线C 的方程为 .15、【来源】 2020年山东潍坊高三三模理科第15题5分2020年山东潍坊高三三模第15题5分在△ABC 中,∠A =π2,点D 在线段AC 上,且满足AD =2CD ,cosC =35,则sin∠CBD = .16、【来源】 2020年山东潍坊高三三模理科第16题5分2020年山东潍坊高三三模第16题5分如图1,四边形ABCD 是边长为10的菱形,其对角线AC =12,现将△ABC 沿对角线AC 折起,连接BD ,形成如图2的四面体ABCD ,则异面直线AC 与BD 所成角的大小为 ;在图2中,设棱AC 的中点为M ,BD 的中点为N ,若四面体ABCD 的外接球的球心在四面体的内部,则线段MN 长度的取值范围为 .四、解答题(本大题共6小题,共70分)17、【来源】 2020年山东潍坊高三三模理科第17题10分2020年山东潍坊高三三模第17题10分2020~2021学年陕西西安高新区高新第三中学高一上学期期末第20题12分)的图象如图所示.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2(1) 求f(x)的解析式.(2) 将函数f(x)的图象向右平移π个单位长度,得到函数y=g(x),设ℎ(x)=g(x)+f(x),求函6]上的最大值.数ℎ(x)在[0,π218、【来源】 2020年山东潍坊高三三模理科第18题12分2020年山东潍坊高三三模第18题12分如图,点C是以AB为直径的圆上的动点(异于A,B),已知AB=2,AE=√7,EB⊥平面ABC,四边形BEDC为平行四边形.(1) 求证:BC⊥平面ACD.(2) 当三棱锥A−BCE的体积最大时,求平面ADE与平面ABC所成的锐二面角的余弦值.19、【来源】 2020年山东潍坊高三三模理科第19题12分2020年山东潍坊高三三模第19题12分为了严格监控某种零件的一条生产线的生产过程,某企业每天从该生产线上随机抽取10000个零件,并测量其内径(单位:cm).根据长期生产经验,认为这条生产线正常状态下生产的零件的内径X服从正态分布N(μ,σ2).如果加工的零件内径小于μ−3σ或大于μ+3σ均为不合格品,其余为合格品.(1) 假设生产状态正常,请估计一天内抽取的10000个零件中不合格品的个数约为多少.(2) 若生产的某件产品为合格品则该件产品盈利;若生产的某件产品为不合格品则该件产品亏损.已知每件产品的利润L(单位:元)与零件的内径X有如下关系:L={−5,X<μ−3σ4,μ−3σ⩽X<μ−σ6,μ−σ⩽X⩽μ+3σ−5,X>μ+3σ,求该企业一天从生产线上随机抽取10000个零件的平均利润.附:若随机变量X服从正态分布N(μ,σ2),有P(μ−σ<X⩽μ+σ)=0.6826,P(μ−2σ<X⩽μ+2σ)=0.9544,P(μ−3σ<X⩽μ+3σ)=0.9974.20、【来源】 2020年山东潍坊高三三模理科第20题12分2020年山东潍坊高三三模第20题12分设抛物线E:x2=2py(p>0)的焦点为F,点A是E上一点,且线段AF的中点坐标为(1,1).(1) 求抛物线E的标准方程.(2) 若B,C为抛物线E上的两个动点(异于点A),且BA⊥BC,求点C的横坐标的取值范围.21、【来源】 2020年山东潍坊高三三模理科第21题12分2020年山东潍坊高三三模第21题12分已知函数f (x )=xlnx −12mx 2(m ∈R ),g (x )=−x+1e x −2e x +e−1e. (1) 若函数f (x )在(1,f (1))处的切线与直线x −y +1=0平行,求m .(2) 证明:在(1)的条件下,对任意x 1,x 2∈(0,+∞),f (x 1)>g (x 2)成立.22、【来源】 2020年山东潍坊高三三模理科第22题12分2020年山东潍坊高三三模第22题12分设f n (x )是数列1,(1+x ),(1+x )2,⋯,(1+x )n 的各项和,n ⩾2,n ∈N .(1) 设g n (x )=f n (x )−2,证明:g n (x )在(−12,0)内有且只有一个零点.(2) 当x >−1时,设存在一个与上述数列的首项、项数、末项都相同的等差数列,其各项和为ℎn (x ),比较f n (x )与ℎn (x )的大小,并说明理由.(3) 给出由公式sin2x =2sinxcosx 推导公式cos2x =cos 2x −sin 2x 的一种方法如下:在公式sin2x =2sinxcosx 中两边求导得:2cos2x =2cosx ⋅cosx −2sinx ⋅sinx ,所以cos2x =cos 2x −sin 2x 成立.请类比该方法,利用上述数列的末项(1+x )n 的二项展开式证明:n ⩾2时,∑(−1)k kC nk nk=1=0(其中C n k 表示组合数)1 、【答案】 D;2 、【答案】 C;3 、【答案】 D;4 、【答案】 B;5 、【答案】 B;6 、【答案】 B;7 、【答案】 A;8 、【答案】 C;9 、【答案】 B;C;D;10 、【答案】 A;D;11 、【答案】 B;C;D;12 、【答案】 A;C;D;13 、【答案】2;=1;14 、【答案】x2−y2315 、【答案】2√5;25;(√14,8);16 、【答案】π2).17 、【答案】 (1) f(x)=2sin(2x+π3;(2) 2√3.;18 、【答案】 (1) 证明见解析.;(2) √10.5;19 、【答案】 (1) 26.;(2) 56566元.;20 、【答案】 (1) x2=4y.;(2) x⩾10或x<−6.;21 、【答案】 (1) m=0.;(2) 证明见解析.;22 、【答案】 (1) 见解析.;(2) x=0时,f n(x)=ℎn(x);x>−1且x≠0时,f n(x)<ℎn(x),理由见解析.;(3) 证明见解析.;第11页,共11页。
2020届山东省潍坊市青州市高三第三次高考模拟考试数学(理)试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,若全集,,则()A. B. C. D.2. 设是虚数单位,若复数是纯虚数,则()A. B. C. D.3. 若,,则的值为()A. B. C. D.4. 设平面向量,,,则下列说法正确的是()A. 是的充分不必要条件B. 与的夹角为C. D. 与的夹角为5. 已知双曲线的离心率为,且经过点,则双曲线的实轴长为()A. B. C. D.6. 若,则二项式的展开式中的常数项为()A. B. C. D.7. 如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为,则输出的()A. B. C. D.8. 某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.9. 已知,,,当时,均有则实数的取值范围是()A. B.C. D.10. 某旅行社租用两种型号的客车安排名客人旅行,两种车辆的载客量分别为人和人,租金分别为元/辆和元/辆,旅行社要求租车总数不超过辆,且型车不多于型车辆,则租金最少为()A. 元B. 元C. 元D. 元11. 已知函数的图象经过点,在区间上为单调函数,且的图象向左平移个单位后与原来的图象重合,当,且时,,则()A. B. C. D.12. 已知点是曲线上任意一点,记直线(为坐标原点)的斜率为,则()A. 存在点使得B. 对于任意点都有C. 对于任意点都有D. 至少存在两个点使得二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知平面向量,则事件“”的概率为__________.14. 已知抛物线的焦点为,准线与轴的交点为,为抛物线上任意一点,且满足,则__________.15. 如图所示,在平面四边形中,,,,,,则__________.16. 在三棱锥中,底面为,且,斜边上的高为,三棱锥的外接球的直径是,若该外接球的表面积为,则三棱锥的体积的最大值为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列的前项和为,(1)求的通项公式;(2)记,数列的前项和为,求证:.18. 如图,在四棱锥中,底面为矩形,平面平面,,,为的中点..(1)求证:平面平面;(2),在线段上是否存在一点,使得二面角的余弦值为.请说明理由.19. 某房产中介公司2017年9月1日正式开业,现对2017年9月1日到2018年5月1日前个月的二手房成交量进行统计,表示开业第个月的二手房成交量,得到统计表格如下:(1)统计中常用相关系数来衡量两个变量之间线性关系的强弱,统计学认为,对于变量,如果,那么相关性很强;如果,那么相关性一般;如果,那么相关性很弱,通过散点图初步分析可用线性回归模型拟合与的关系,计算得相关系数,并回答是否可以认为两个变量具有很强的线性相关关系(计算结果精确到)(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程(计算结果精确到),并预测该房地产中介公司2018年6月份的二手房成交量(计算结果四舍五入取整数).(3)该房地产中介为增加业绩,决定针对二手房成交客户开展抽奖活动,若抽中“一等奖”获千元奖金;抽中“二等奖”获千元奖金;抽中“祝您平安”,则没有奖金.已知一次抽奖活动中获得“一等奖”的概率为,获得“二等奖”的概率为,现有甲、乙两个客户参与抽奖活动,假设他们是否中奖相互独立,求此二人所获奖金总额(千元)的分布列及数学期望.参考数据:,,,,,参考公式:,,20. 设椭圆的右焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为 .(1)求椭圆的方程;(2)若上存在两点,椭圆上存在两个点满足:三点共线,三点共线,且,求四边形的面积的最小值.22. 在平面直角坐标系中,曲线的参数方程为(为参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点(1)求曲线、的直角坐标方程;(2)若点在曲线上的两个点且,求的值.23. 已知函数.(1)求的解集;(2)设函数,若对成立,求实数的取值范围2020届山东省潍坊市青州市高三第三次高考模拟考试数学(理)试题参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,若全集,,则()A. B. C. D.【答案】B【解析】分析:根据对数函数的性质,求解,即,再根据集合补集的运算,即可求解.详解:由集合,即,又因为,所以,故选B.点睛:本题主要考查了集合的运算,其中正确求解集合,得到集合,再根据集合的补集运算是解答的关键,着重考查了推理与运算能力.2. 设是虚数单位,若复数是纯虚数,则()A. B. C. D.【答案】D【解析】解:,由纯虚数的定义可得: .本题选择D选项.3. 若,,则的值为()A. B. C. D.【答案】C【解析】分析:根据三角函数的诱导公式和三角函数的基本关系式,得,进而求得,即可求解答案.详解:由诱导公式得,平方得,则,所以,又因为,所以,所以,故选C.点睛:本题主要考查了三角函数的化简求值,其中解答中涉及到三角的诱导公式和三角函数的基本关系的灵活应用是解答的关键,着重考查了推理与运算能力.4. 设平面向量,,,则下列说法正确的是()A. 是的充分不必要条件B. 与的夹角为C. D. 与的夹角为【答案】D【解析】分析:由平面向量,且,解得,此时,进而可判断选项,得到答案.详解:由题意,平面向量,且,所以,解得,此时所以是垂直的充要条件,所以选项A不正确;,所以C不正确;由,则,所以向量与的夹角为,则,所以,故选D.点睛:本题主要考查了向量的坐标运算、向量垂直的条件,以及向量的模和向量的夹角公式等知识点,其中熟记向量的基本概念和基本的运算公式是解答的关键,着重考查了分析问题和解答问题的能力.5. 已知双曲线的离心率为,且经过点,则双曲线的实轴长为()A. B. C. D.【答案】C【解析】分析:由题意双曲线的离心率为,得,把点,代入双曲线的方程,解得,即可得到答案.详解:由题意双曲线的离心率为,即,又由,即,所以双曲线的方程为,又因为双曲线过点,代入双曲线的方程,得,解得,所以双曲线的实轴长为,故选C.点睛:本题主要考查了双曲线的标准方程及其简单的几何性质,其中熟记双曲线的几何性质是解答的关键,着重考查了推理与运算能力.6. 若,则二项式的展开式中的常数项为()A. B. C. D.【答案】A【解析】分析:由题意,得到二项式的展开式的通项,即可求解展开式的常数项.学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...详解:由题意,即二项式为,则展开式的通项为,当时,得到常数项为,故选A.点睛:本题主要考查了二项式定理的应用,其中数据二项展开式的通项公式是解答此类试题的关键,着重考查了推理与运算能力.7. 如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为,则输出的()A. B. C. D.【答案】D【解析】分析:模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的的值.详解:由程序框图可知:输入,第一次循环,;第二次循环,;第三次循环,;,退出循环输出,输出因此输出的为,故选D.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8. 某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【答案】B【解析】分析:由给定的三视图得该几何体表示左侧是一个以边长为的正方形为底面,高为的四棱锥,右侧为一个值三棱柱,其底面如俯视图所示,高为的直三棱柱,即可求解其体积.详解:由给定的三视图可知,该几何体表示左侧是一个以边长为的正方形为底面,高为的四棱锥,其体积为;右侧为一个值三棱柱,其底面如俯视图所示,高为的直三棱柱,其体积为,所以该几何体的体积为,故选B.点睛:在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.9. 已知,,,当时,均有则实数的取值范围是()A. B.C. D.【答案】C【解析】分析:由题意知在上恒成立,令,结合图形,列出不等式组,即可求解实数的取值范围.详解:由题意,若当时,都有,即在上恒成立,令,由图象可知,若时,,即,此时;若时,,即,此时,所以,综上所述,实数的取值范围是,故选C.点睛:本题主要考查了指数函数的图象与性质的应用,其中将不等式转化为函数的图象之间的关系是解答的关键,着重考查了数形结合和转化与化归思想方法,.10. 某旅行社租用两种型号的客车安排名客人旅行,两种车辆的载客量分别为人和人,租金分别为元/辆和元/辆,旅行社要求租车总数不超过辆,且型车不多于型车辆,则租金最少为()A. 元B. 元C. 元D. 元【答案】C【解析】设租A型车x辆,B型车y辆时租金为z元则z=1600x+2400yx、y满足画出可行域观察可知,直线过点A(5,12)时纵截距最小,∴z min=5×1 600+2 400×12=36800,故租金最少为36800元.选C.视频11. 已知函数的图象经过点,在区间上为单调函数,且的图象向左平移个单位后与原来的图象重合,当,且时,,则()A. B. C. D.【答案】B【解析】分析:由题意,求得的值,写出函数的解析式,求函数的对称轴,得到的值,再求解的值即可.详解:由函数的图象过点,所以,解得,所以,即,由的图象向左平移个单位后得,由两函数的图象完全重合,知,所以,又,所以,所以,所以,则其图象的对称轴为,当,其对称轴为,所以,所以,故选B.点睛:本题主要考查了三角函数的图象变换以及三角函数的图象与性质的应用问题,其中解答中根据题设条件得到函数的解析式,以及根据三角函数的对称性,求得的值是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.12. 已知点是曲线上任意一点,记直线(为坐标原点)的斜率为,则()A. 存在点使得B. 对于任意点都有C. 对于任意点都有D. 至少存在两个点使得【答案】B【解析】分析:任取正实数,则直线的斜率为,利用的性质,逐一判定,即可求解.详解:任取正实数,则直线的斜率为,因为,又由成立,因为和中两个个等号成立条件不一样,所以恒成立,即恒成立,排除A;当时,,则,排除C;对于D选项,至少存在两个点使得,即至少存在两解,即至少有两解,又因为恒成立,所以至多有一个解,排除D,综上所述,选项B是正确的,故选B.点睛:本题主要考查了函数性质的综合应用,以及直线的斜率公式,导数在函数中的应用,其中解答中根据题意构造函数,利用函数的单调性和最值求解是解答的关键,着重考查了转化思想和推理、论证能力.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知平面向量,则事件“”的概率为__________.【答案】【解析】分析:由题意得到点表示以为圆心,半径为的圆,其面积为,其中弓形的面积为,即可利用几何概型求解其概率.详解:由题意,平面向量,且,即,表示以为圆心,半径为的圆,其面积为,其中弓形的面积为,所以所求概率为.点睛:本题主要考查了几何概型及其概率的求解,其中根据题意得到相应的图形的面积是解答的关键,着重考查了推理与计算能力.14. 已知抛物线的焦点为,准线与轴的交点为,为抛物线上任意一点,且满足,则__________.【答案】【解析】分析:由抛物线的定义可得,由,求得的值,即可求出锐角的大小.详解:由抛物线的方程,可得准线方程为,设,过点作垂直于抛物线的准线,为垂足,则由抛物线的定义可得,在中,,由直角三角形的边角关系可得,则,所以.点睛:本题主要考查了抛物线的定义、标准方程及其简单的几何性质的应用,其中有直角三角形的边角关系可得是解答的关键和难点,着重考查了分析问题和解答问题的能力,以及推理与运算能力.15. 如图所示,在平面四边形中,,,,,,则__________.【答案】3【解析】分析:详解:设,在直角中,得,所以,在中,由余弦定理,由于,所以,即,整理得,解得.点睛:在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.16. 在三棱锥中,底面为,且,斜边上的高为,三棱锥的外接球的直径是,若该外接球的表面积为,则三棱锥的体积的最大值为__________.【答案】【解析】分析:以构造长方体,此时三棱锥的外接球即为长方体的外接球,其直径为,由已知得当时,此时三棱锥的体积最大,即可求解.详解:以构造长方体,此时三棱锥的外接球即为长方体的外接球,其直径为,因为该外接球的表面积为,所以,设,在三棱锥中,,且斜边上的高为,所以,设斜边上的高为,所以,由,所以,因为,所以,即,即,当且仅当时取得等号,所三棱锥的最大体积为.点睛:本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)根据球的截面的性质,利用勾股定理求解,着重考查了分析问题和解答问题的能力.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列的前项和为,(1)求的通项公式;(2)记,数列的前项和为,求证:.【答案】(1);(2)见解析【解析】试题分析:(1)由题意可得,则,易得首项为.所以.(2)由(1)的结果可知,则,放缩之后裂项求和可得.试题解析:(1)设的公比为,由得,,所以,所以.又因为,所以,所以.所以.(2)由(1)知,所以,所以.点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.18. 如图,在四棱锥中,底面为矩形,平面平面,,,为的中点..(1)求证:平面平面;(2),在线段上是否存在一点,使得二面角的余弦值为.请说明理由.【答案】(1)见解析;(2)在处或处【解析】分析:(1)由平面平面,,又由平面,平面,即,利用线面垂直的判定定理,证得平面,再由面面垂直的判定定理即可作出证明.(2)如图建立空间直角坐标系,设,求得平面和的一个法向量,利用向量的夹角公式,即可求解.详解:(1)∵平面平面,,平面平面,∴平面,又∵平面,∴又∵,,∴平面,平面,即,在中,,为的中点,∴,,∴平面,又平面,∴平面平面(2)如图建立空间直角坐标系,设,则,,,,设,,,,因为,,所以平面,故为平面平面的一个法向量设平面,且,则由得,由得,从而,∴解得,或,即在处或处.点睛:本题考查了立体几何中的面面垂直的判定和二面角的求解与应用问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.19. 某房产中介公司2017年9月1日正式开业,现对2017年9月1日到2018年5月1日前个月的二手房成交量进行统计,表示开业第个月的二手房成交量,得到统计表格如下:(1)统计中常用相关系数来衡量两个变量之间线性关系的强弱,统计学认为,对于变量,如果,那么相关性很强;如果,那么相关性一般;如果,那么相关性很弱,通过散点图初步分析可用线性回归模型拟合与的关系,计算得相关系数,并回答是否可以认为两个变量具有很强的线性相关关系(计算结果精确到)(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程(计算结果精确到),并预测该房地产中介公司2018年6月份的二手房成交量(计算结果四舍五入取整数).(3)该房地产中介为增加业绩,决定针对二手房成交客户开展抽奖活动,若抽中“一等奖”获千元奖金;抽中“二等奖”获千元奖金;抽中“祝您平安”,则没有奖金.已知一次抽奖活动中获得“一等奖”的概率为,获得“二等奖”的概率为,现有甲、乙两个客户参与抽奖活动,假设他们是否中奖相互独立,求此二人所获奖金总额(千元)的分布列及数学期望.参考数据:,,,,,参考公式:,,【答案】(1)变量线性相关行很强;(2)33;(3)见解析【解析】分析:(1)根据相关系式公式,即可求解相关系数,并作出判断;(2)计算回归系数得出回归方程,再根据回归方程估计成交量,即可作答;(3)根据相互独立事件的概率计算随机变量的各种可能取值对应的概率,从而得出分布列,求解数学期望.详解:(1)依题意:,,.因为,所以变量线性相关性很强.(2),,则关于的线性回归方程为.当,所以预计2018年6月份的二手房成交量为.(3)二人所获奖金总额的所有可能取值有、、、、千元. ,,,,.所以,奖金总额的分布列如下表:千元.点睛:本题主要考查统计知识的应用以及回归直线方程的应用和随机变量的分布列和数学期望,解答本题,首先要准确确定所研究对象的基本事件空间、基本事件个数,再利用二项何分布的概率公式,求得概率,得到分布列和求得数学期望,本题属中等难度的题目,计算量不是很大,能很好的考查考生数学应用意识、基本运算求解能力等.20. 设椭圆的右焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为 .(1)求椭圆的方程;(2)若上存在两点,椭圆上存在两个点满足:三点共线,三点共线,且,求四边形的面积的最小值.【答案】(1);(2)【解析】分析:()由题意可知及,即可求得和的值,求得椭圆的标准方程;(2)讨论直线的斜率不存在,求得弦长,求得四边形的面积;当直线的斜率存在时,设直线的方程为,联立方程组,运用韦达定理和弦长公式,以及四边形的面积公式,计算即可求得最小值.详解:(1)∵过焦点且垂直于长轴的直线被椭圆截得的线段长为,∴,∵离心率为,∴,又,解得,,,∴椭圆的方程为(2)(i)当直线的斜率不存在时,直线的斜率为,此时,,(ii)当直线的斜率存在时,设直线的方程为,联立,得,设的横坐标分别为,则,∴,由可得直线的方程为,联立椭圆的方程,消去,得设的横坐标为,则∴,令,则,综上点睛:本题主要考查椭圆的标准方程与几何性质、直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常利用的关系,确定椭圆(圆锥曲线)方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,确定函数的性质进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21. 已知(1)求的单调区间;(2)设,为函数的两个零点,求证:.【答案】(1)见解析;(2)见解析【解析】分析:(1)由函数,求得,通过讨论实数的取值范围,即可求出函数的单调区间;(2)构造函数,与图象两交点的横坐标为,问题转化为,令,根据函数的单调性即可作出证明.详解:(1)∵,∴当时,∴,即的单调递增区间为,无减区间;当时,∴,由,得,时,,时,,∴时,易知的单调递增区间为,单调递减区间为,(2)由(1)知的单调递增区间为,单调递减区间为,不妨设,由条件知,即构造函数,与图象两交点的横坐标为由可得而,∴知在区间上单调递减,在区间上单调递增,可知欲证,只需证,即证,考虑到在上递增,只需证由知,只需证令,则,所以为增函数,又,结合知,即成立,即成立.点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.22. 在平面直角坐标系中,曲线的参数方程为(为参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点(1)求曲线、的直角坐标方程;(2)若点在曲线上的两个点且,求的值.【答案】(1),;(2)【解析】分析:(1)将及对应的参数,代入,解得,即可得出曲线的直角坐标方程,由于曲线是圆心在极轴上,且过极点的圆,将点代入,即可求解曲线的方程;(2)设在曲线上,求得和,即可求解的值.详解:(1)将及对应的参数,代入,得,即,所以曲线的方程为为参数,即.设圆的半径为,由题意,圆的极坐标方程为.(或)将点代入,得,即所以曲线的极坐标方程为,即(2)设在曲线上,所以,,所以点睛:本题主要考查了椭圆的参数方程,极坐标方程与直角坐标方程,以及圆的极坐标与直角坐标方程的互化,以及直线极坐标方程的应用,着重考查了推理与运算能力,属于基础题.23. 已知函数.(1)求的解集;(2)设函数,若对成立,求实数的取值范围【答案】(1)或;(2)【解析】分析:(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2)即的图象恒在,图象的上方,作出函数图像,根据直线恒过定点,结合函数图象即可的结果.详解:(1)∴,即∴①或②或③解不等式①:;②:无解;③:,所以的解集为或(2)即的图象恒在,图象的上方,可以作出的图象,而,图象为恒过定点,且斜率变化的一条直线,作出函数,图象如图,其中,可求:∴,由图可知,要使得的图象恒在图象的上方,实数的取值范围为.。
山东省潍坊市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,四边形ABCD 是边长为1的正方形,动点E 、F 分别从点C ,D 出发,以相同速度分别沿CB ,DC 运动(点E 到达C 时,两点同时停止运动).连接AE ,BF 交于点P ,过点P 分别作PM ∥CD ,PN ∥BC ,则线段MN 的长度的最小值为( )A .52B .512-C .12D .1 2.如图,在矩形ABCD 中AB =2,BC =1,将矩形ABCD 绕顶点B 旋转得到矩形A'BC'D ,点A 恰好落在矩形ABCD 的边CD 上,则AD 扫过的部分(即阴影部分)面积为( )A .8πB .222π- C .23π- D .6π 3.如图是一个几何体的三视图,则这个几何体是( )A .B .C .D .4.已知一元二次方程1–(x –3)(x+2)=0,有两个实数根x 1和x 2(x 1<x 2),则下列判断正确的是( )A.–2<x1<x2<3 B.x1<–2<3<x2C.–2<x1<3<x2D.x1<–2<x2<35.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.6.下列运算正确的是()A.a﹣3a=2a B.(ab2)0=ab2C.8=22±D.3×27=97.下列二次根式,最简二次根式是()A.8B.12C.13D.0.18.下列选项中,可以用来证明命题“若a2>b2,则a>b“是假命题的反例是()A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=19.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.8,9 B.8,8.5 C.16,8.5 D.16,10.510.如图,直角坐标平面内有一点(2,4)P,那么OP与x轴正半轴的夹角α的余切值为()A.2 B.12C5D511.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.(12)6B.(12)7C.(22)6D.(22)712.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E 在OB的延长线上,当扇形AOB的半径为22时,阴影部分的面积为__________.14.已知方程2390x x m-+=的一个根为1,则m的值为__________.15.已知点P(2,3)在一次函数y=2x-m的图象上,则m=_______.16.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.17.如图,已知∠A+∠C=180°,∠APM=118°,则∠CQN=_____°.18.一元二次方程()21210k x x ---=有两个不相等的实数根,则k 的取值范围是________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式组21324x x x x ≥⎧⎨≥⎩-①-(-)② 请结合题意填空,完成本题的解答(1)解不等式①,得_______.(2)解不等式②,得_______.(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为_______________.20.(6分)如图,在△ABC 中,∠ABC=90°,BD ⊥AC ,垂足为D ,E 为BC 边上一动点(不与B 、C 重合),AE 、BD 交于点F .(1)当AE 平分∠BAC 时,求证:∠BEF=∠BFE ;(2)当E 运动到BC 中点时,若BE=2,BD=2.4,AC=5,求AB 的长.21.(6分)(5分)计算:. 22.(8分)如图,抛物线212y x bx c =-++经过点A (﹣2,0),点B (0,4). (1)求这条抛物线的表达式; (2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标;(3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE ∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO=2OF ,求m 的值.23.(8分)某生姜种植基地计划种植A,B两种生姜30亩.已知A,B两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68000千克,求A,B两种生姜各种多少亩?(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A,B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?24.(10分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.25.(10分)如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.求证:BF=BC;若AB=4cm,AD=3cm,求CF的长.26.(12分)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B 型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放8240aa+辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.27.(12分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数kyx=的图象上,将这两点分别记为A,B,另一点记为C,(1)求出k的值;(2)求直线AB对应的一次函数的表达式;(3)设点C关于直线AB的对称点为D,P是x轴上的一个动点,直接写出PC+PD的最小值(不必说明理由).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.详解:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,=,∴CP=QC-,故选B.点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.2.A【解析】【分析】本题首先利用A点恰好落在边CD上,可以求出A´C=BC´=1,又因为A´B△A´BC为等腰直角三角形,即可以得出∠ABA´、∠DBD´的大小,然后将阴影部分利用切割法分为两个部分来求,即面积ADA´和面积DA´D´【详解】先连接BD,首先求得正方形ABCD1,由分析可以求出∠ABA´=∠DBD´=45°,即可以求得扇形ABA´的面积为245118024=ππ⨯⨯,扇形BDD´的面积为2451318028ππ⨯⨯=,面积ADA´=面积ABCD-面积A´BC-扇形面积ABA´11112424ππ⨯⨯--;面积DA´D´=扇形面积BDD´-面积DBA´-面积BA´D´=)3113111182282ππ⨯⨯--=-,阴影部分面积=面积DA´D´+面积ADA´=8π【点睛】熟练掌握面积的切割法和一些基本图形的面积的求法是本题解题的关键.3.B【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.考点:由三视图判断几何体.设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根据二次函数的图像性质可知y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.【详解】设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)∵y=0时,x=-2或x=3,∴y=-(x﹣3)(x+2)的图像与x轴的交点为(-2,0)(3,0),∵1﹣(x﹣3)(x+2)=0,∴y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1,与x轴的交点的横坐标为x1、x2,∵-1<0,∴两个抛物线的开口向下,∴x1<﹣2<3<x2,故选B.【点睛】本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.5.B【解析】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.直接利用合并同类项法则以及二次根式的性质、二次根式乘法、零指数幂的性质分别化简得出答案.【详解】解:A、a﹣3a=﹣2a,故此选项错误;B、(ab2)0=1,故此选项错误;C=故此选项错误;D,正确.故选D.【点睛】此题主要考查了合并同类项以及二次根式的性质、二次根式乘法、零指数幂的性质,正确把握相关性质是解题关键.7.C【解析】【分析】根据最简二次根式的定义逐个判断即可.【详解】A==,不是最简二次根式,故本选项不符合题意;B2C=,不是最简二次根式,故本选项不符合题意.D10故选C.【点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键.8.A【解析】【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答.【详解】∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命题的反例.故选A.【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.9.A【解析】【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.故选A.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.10.B【解析】【分析】作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.【详解】过P作x轴的垂线,交x轴于点A,∵P(2,4),∴OA=2,AP=4,.∴4 tan22APOAα===∴1 cot2α=.故选B.【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.11.A【解析】试题分析:如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察发现规律:S1=22=4,S2=12S1=2,S2=12S2=1,S4=12S2=12,…,由此可得S n=(12)n﹣2.当n=9时,S9=(12)9﹣2=(12)6,故选A.考点:勾股定理.12.A【解析】【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴ADBG=13,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴OAOB=13,∴2OAOA=13,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.π﹣1【解析】【分析】根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解.【详解】连接OC∵在扇形AOB 中∠AOB =90°,正方形CDEF 的顶点C 是弧AB 的中点,∴∠COD =45°,∴OC =2CD =12 ,∴CD =OD =1,∴阴影部分的面积=扇形BOC 的面积﹣三角形ODC 的面积=24522g π() ﹣12×11 =π﹣1.故答案为π﹣1.【点睛】本题考查正方形的性质和扇形面积的计算,解题关键是得到扇形半径的长度.14.1【解析】【分析】欲求m ,可将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出m 值.【详解】设方程的另一根为x 1,又∵x=1,∴1113{•1=3x m x =, 解得m=1.故答案为1.【点睛】本题的考点是一元二次方程的根的分布与系数的关系,主要考查利用韦达定理解题.此题也可将x=1直接代入方程3x 2-9x+m=0中求出m 的值.15.1【解析】【分析】根据待定系数法求得一次函数的解析式,解答即可.【详解】解:∵一次函数y=2x-m的图象经过点P(2,3),∴3=4-m,解得m=1,故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式.16.1.【解析】试题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题,根据勾股定理可求出葛藤长为=1(尺).故答案为1.考点:平面展开最短路径问题17.1【解析】【分析】先根据同旁内角互补两直线平行知AB∥CD,据此依据平行线性质知∠APM=∠CQM=118°,由邻补角定义可得答案.【详解】解:∵∠A+∠C=180°,∴AB∥CD,∴∠APM=∠CQM=118°,∴∠CQN=180°-∠CQM=1°,故答案为:1.【点睛】本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.18.2k <且1k ≠【解析】【分析】根据一元二次方程的根与判别式△的关系,结合一元二次方程的定义解答即可.【详解】由题意可得,1−k≠0,△=4+4(1−k)>0,∴k <2且k≠1.故答案为k <2且k≠1.【点睛】本题主要考查了一元二次方程的根的判别式的应用,解题中要注意不要漏掉对二次项系数1-k≠0的考虑.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)x≥-1;(2)x≤1;(3)见解析;(4)-1≤x≤1.【解析】【分析】分别解两个不等式,然后根据公共部分确定不等式组的解集,再利用数轴表示解集.【详解】解:(1)x≥-1;(2)x≤1;(3);(4)原不等式组的解集为-1≤x≤1.【点睛】本题考查了解一元一次不等式组:一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.(1)证明见解析;(1)2【解析】分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF=∠AFD ,然后根据对顶角相等可得∠BFE=∠AFD ,等量代换即可得解;(1)根据中点定义求出BC ,利用勾股定理列式求出AB 即可.详解:(1)如图,∵AE 平分∠BAC ,∴∠1=∠1.∵BD ⊥AC ,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD .∵∠BFE=∠AFD (对顶角相等),∴∠BEF=∠BFE ;(1)∵BE=1,∴BC=4,由勾股定理得:AB=22AC BC -=2254-=2.点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.21..【解析】 试题分析:利用负整数指数幂,零指数幂、绝对值、特殊角的三角函数值的定义解答.试题解析:原式==. 考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.22.(1)2142y x x =-++;(2)P (1,72); (3)3或5. 【解析】【分析】(1)将点A 、B 代入抛物线212y x bx c =-++,用待定系数法求出解析式. (2)对称轴为直线x=1,过点P 作PG ⊥y 轴,垂足为G , 由∠PBO=∠BAO ,得tan ∠PBO=tan ∠BAO ,即PG BO BG AO=,可求出P 的坐标. (3)新抛物线的表达式为2142y x x m =-++-,由题意可得DE=2,过点F 作FH ⊥y 轴,垂足为H ,∵DE ∥FH ,EO=2OF ,∴2=1DE EO DO FH OF OH ==,∴FH=1.然后分情况讨论点D 在y 轴的正半轴上和在y 轴的负半轴上,可求得m 的值为3或5.【详解】解:(1)∵抛物线经过点A (﹣2,0),点B (0,4)∴2204b c c --+=⎧⎨=⎩,解得14b c =⎧⎨=⎩, ∴抛物线解析式为2142y x x =-++,(2)()2211941222y x x x =-++=--+, ∴对称轴为直线x=1,过点P 作PG ⊥y 轴,垂足为G , ∵∠PBO=∠BAO ,∴tan ∠PBO=tan ∠BAO ,∴PG BO BG AO=, ∴121BG =, ∴12BG =, 72OG =, ∴P (1,72), (3)设新抛物线的表达式为2142y x x m =-++- 则()0,4D m -,()2,4E m -,DE=2过点F 作FH ⊥y 轴,垂足为H ,∵DE ∥FH ,EO=2OF∴2=1DE EO DO FH OF OH ==, ∴FH=1.点D 在y 轴的正半轴上,则51,2F m ⎛⎫-- ⎪⎝⎭, ∴52OH m =-, ∴42512DO m OH m -==-, ∴m=3,点D 在y 轴的负半轴上,则91,2F m ⎛⎫- ⎪⎝⎭,∴92 OH m=-,∴42912DO mOH m-==-,∴m=5,∴综上所述m的值为3或5.【点睛】本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键. 23.(1)种植A种生姜14亩,种植B种生姜16亩;(2) 种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【解析】试题分析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据:A种生姜的产量+B 种生姜的产量=总产量,列方程求解;(2)设A种生姜x亩,根据A种生姜的亩数不少于B种的一半,列不等式求x的取值范围,再根据(1)的等量关系列出函数关系式,在x的取值范围内求总产量的最大值.试题解析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据题意,2000x+2500(30-x)=68000,解得x=14,∴30-x=16,答:种植A种生姜14亩,种植B种生姜16亩;(2)由题意得,x≥(30-x),解得x≥10,设全部收购该基地生姜的年总收入为y元,则y=8×2000x+7×2500(30-x)=-1500x+525000,∵y随x的增大而减小,∴当x=10时,y有最大值,此时,30-x=20,y的最大值为510000元,答:种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【点睛】本题考查了一次函数的应用.关键是根据总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式.24.(1)800,240;(2)补图见解析;(3)9.6万人.【解析】试题分析:(1)由C类别人数及其百分比可得总人数,总人数乘以B类别百分比即可得;(2)根据百分比之和为1求得A类别百分比,再乘以360°和总人数可分别求得;(3)总人数乘以样本中A、B、C三类别百分比之和可得答案.试题解析:(1)本次调查的市民有200÷25%=800(人),∴B类别的人数为800×30%=240(人),故答案为800,240;(2)∵A类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人.考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图25.(1)见解析,(2)CF=65cm.【解析】【分析】(1)要求证:BF=BC只要证明∠CFB=∠FCB就可以,从而转化为证明∠BCE=∠BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根据三角形的面积等于12BD•CE=12BC•DC,就可以求出CE的长.要求CF的长,可以在直角△CEF中用勾股定理求得.其中EF=BF-BE,BE在直角△BCE中根据勾股定理就可以求出,由此解决问题.【详解】证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,∴∠CDB+∠DBC=90°.∵CE⊥BD,∴∠DBC+∠ECB=90°.∴∠ECB=∠CDB.∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,∴∠CFB=∠BCF∴BF=BC(2)∵四边形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).在Rt△BCD中,由勾股定理得BD5=.又∵BD•CE=BC•DC,∴CE=·125 BC DCBD=.∴BE95 ==.∴EF=BF﹣BE=3﹣96 55 =.∴CF5==cm.【点睛】本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题.26.问题1:A、B两型自行车的单价分别是70元和80元;问题2:a的值为1【解析】【详解】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2:由题可得,1500a×1000+12008240aa+×1000=10000,解得a=1,经检验:a=1是分式方程的解,故a的值为1.27.(2)2;(2)y=x+2;(3【解析】【分析】(2)确定A、B、C的坐标即可解决问题;(2)理由待定系数法即可解决问题;(3)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′的长.【详解】解:(2)∵反比例函数y=kx的图象上的点横坐标与纵坐标的积相同,∴A(2,2),B(-2,-2),C(3,2)∴k=2.(2)设直线AB的解析式为y=mx+n,则有221 m nm n++⎧⎨-+-⎩=,解得11mn⎧⎨⎩==,∴直线AB的解析式为y=x+2.(3)∵C、D关于直线AB对称,∴D(0,4)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值223+5=34【点睛】本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题.。
高考模拟训练试题 理科数学(三) 本试卷分第I 卷和第Ⅱ卷两部分,共5页,满分150分.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米规格的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卷面清洁,不折叠,不破损.第I 卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足24iz i =+,则z 在复平面内对应的点的坐标是A.()4,2B. ()2,4-C. ()2,4D. ()4,2-2.已知集合{}11M x x =-<,集合{}223N x x x =-<,则R M C N ⋂= A. {}02x x <<B. {}12x x -<< C. {}102x x x -<≤≤<3或 D. ∅ 3.下列结论中正确的是 A.“1x ≠”是“()10x x -≠”的充分不必要条件B.已知随机变量ξ服从正态分布()()5,1460.7N P ξ≤≤=,且,则()6=0.15P ξ>C.将一组数据中的每个数据都减去同一个数后, 平均与方差均没有变化D.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人.为了解该单位职工的健康情况,应采用系统抽样的方法中抽取样本4.某几何体的三视图如图所示,则该几何体的体积是A.263π+ B. 113π C. 116π D. 263π+ 5.已知函数()()()sin 0,0f x A x A ωϕω=+>>的图象与直线()0y b b A =<<的三个相邻交点的横坐标分别是2,4,8,则()f x 的单调增区间是A. []()6,63k k k Z ππ+∈B. []()63,6k k k Z -∈C. []()6,63k k k Z +∈D. []()63,6k k k Z ππ-∈6.a 为如图所示的程序框图中输出的结果,则()cos a πθ-的结果是A. cos θB. cos θ-C. sin θD. sin θ-7.在ABC ∆中,,,a b c 分别为,,A B C ∠∠∠所对的边,若函数()()3222113f x x bx a c ac x =+++-+有极值点,则B ∠的范围是A. 0,3π⎛⎫ ⎪⎝⎭B. 0,3π⎛⎤ ⎥⎝⎦C.,3ππ⎛⎫ ⎪⎝⎭D.,3ππ⎡⎤⎢⎥⎣⎦8.已知()2243,0,23,0,x x x f x x x x ⎧-+≤⎪=⎨--+>⎪⎩不等式()()[]2,1f x a f a x a a +>-+在上恒成立,则实数a 的取值范围是A.()2,0-B. (),0-∞C. ()0,2D. (),2-∞-9.设12,F F 分别是双曲线()222210,0x y a b a b -=>>的左、右两个焦点,若双曲线右支上存在一点P ,使()220OP OF F P +=u u u r u u u u r u u u u r g (O 为坐标原点),且123PF PF =,则双曲线的离心率为A. 212+B. 21+C. 31+D. 31+10.定义域是R 的函数,其图象是连续不断的,若存在常数()R λλ∈使得()()f x f x λλ++=0对任意实数都成立,则称()f x 是R 上的一个“λ的相关函数”的结论:①()0f x =是常数函数中唯一一个“λ的相关函数”;② ()2f x x =是一个“λ的相关函数”;③“ 12的相关函数”至少有一个零点;④若x y e =是“λ的相关函数”,则10λ-<<.其中正确..结论的个数是 A.1B.2C.3D.4 第II 卷(非选择题 共100分)注意事项:将第II 卷答案用0.5mm 规格的黑色签字笔答在答题卡的相应位置上.二、填空题:本大题共5小题,每小题5分,共25分.11.若二项式6a x x ⎛- ⎪⎝⎭的展开式中的常数项为-160,则()2031a x dx -=⎰_________. 12.过点()1,2M 的直线l 与圆()()22:3425C x y -+-=交于A,B 两点,C 为圆心,当ACB ∠最小时,直线l 的方程是________. 13.用红、黄、蓝三种颜色之一去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为“1,5,9”的小正方形涂相同的颜色,则符合条件的所有涂去共有_________种.14.设x D ∈,对于使()f x M ≤恒成立的所有常数M 中,我们把M 的最小值叫作()f x 的上确界.例如()22,f x x x x R =-+∈的上确界是1.若,,1a b R a b +∈+=且,则 122a b--的上确界为________. 15.对于函数()[]()()sin ,0,2,12,2,,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩有下列4个结论:①任取[)()()1212,0,2x x f x f x ∈+∞-≤,都有恒成立; ②()()()22f x kf x k k N *=+∈,对于一切[)0,x ∈+∞恒成立;③函数()()ln 1y f x x =--有3个零点;④对任意0x >,不等式()k f x x ≤恒成立,则实数k 的取值范围是5,4⎡⎫+∞⎪⎢⎣⎭. 则其中所有正确结论的序号是________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16. (本小题满分12分)已知向量()()()2sin ,cos ,3cos ,2cos ,1a x x b x x f x a b =-==+g .(I )求函数()f x 的最小正周期,并求当2,123x ππ⎡⎤∈⎢⎥⎣⎦时()f x 的取值范围; (II )将函数()f x 的图象向左平移3π个单位,得到函数()g x 的图象.在ABC ∆中,角A,B,C 的对边分别为,,,a b c 若1,2,42A g a b c ⎛⎫==+= ⎪⎝⎭,求ABC ∆的面积.17. (本小题满分12分)甲、乙两人进行定点投篮比赛,在距篮筐3米线内设一点A ,在点A 处投中一球得2分;在距篮筐3米线外设一点B ,在点B 处投中一球得3分.已知甲、乙两人在A 和B 点投中的概率相同,分别是1123和,且在A,B 两点处投中与否相互独立.设定每人按先A 后B 再A 的顺序投篮三次,得分高者为胜.(I )若甲投篮三次,试求他投篮得分ξ的分布列和数学期望;(II )求甲胜乙的概率.18. (本小题满分12分)-的一个面ABC内接于圆O,G,H分别是AE,BC的中点,如图,一四棱锥A BCDEAB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.(I)证明:GH//平面ACD;--的余弦值.(II)若AC=BC=BE=2,求二面角O CE B19. (本小题满分12分)已知{}n a 是各项都为正数的数列,其前n 项和为n S ,且n S 为n a 与1n a 的等差中项. (I )求证:数列{}2n S 为等差数列; (II )求数列{}n a 的通项公式;(III )设()1n n n b a -=,求{}n b 的前n 项和n T .20. (本小题满分13分) 设椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为12,F F ,上顶点为A ,过点A 与AF 2垂直的直线交y 轴负半轴于点Q ,且12220F F F Q +=u u u u r u u u u r .(I )求椭圆C 的离心率;(II )若过A,Q,F 2三点的圆恰好与直线:30l x -=相切,求椭圆C 的方程; (III )在(II )的条件下,过右焦点F 2作斜率为k 的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在点(),0P m ,使得以PM ,PN 为邻边的平行四边形是菱形?如果存在,求出m 的取值范围;如果不存在,说明理由.21. (本小题满分14分)已知函数()2ln 21f x x x ax =+-+(a 为常数). (I )讨论函数()f x 的单调性;(II )证明:若对任意的(a ∈,都存在(]00,1x ∈使得不等式()()20ln f x a m a a +>-成立,求实数m 的取值范围.。
2019—2020学年度高三模拟考试数学试题注意事项:1.答题前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束,将本试卷和答题卡一并交回。
一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}{}2220,log 1M x x x N x x =+-≤=<,则M N ⋂= A.{}21x x -≤≤B.{}01x x <≤C.{}12x x ≤<D.{}22x x -≤<2.已知向量()()2,1,3,,1AB AC t BC AB AC ===⋅=u u u u r u u u r u u u r u u u r u u u r,则A.2B.3C.7D.83.设i 为虚数单位,a ∈R ,“复数2202021a i z i=--是纯虚数”是“1a =”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 4.数学的对称美在中国传统文化中多有体现,譬如如图所示的太极图是由黑白两个鱼形纹组成的网形图案,充分展现了相互转化、对称统一的和谐美.如果能够将圆的周长和面积同时平分的函数称为这个圆的“优美函数”,下列说法错误的是A .对于任意一个圆,其“优美函数”有无数个B .()3f x x =可以是某个圆的“优美函数”C .正弦函数sin y x =可以同时是无数个圆的“优美函数”D.函数()y f x =是“优美函数”的充分不必要条件为函数()y f x =的图象是中心对称图形 5.已知33cos 22πϕ⎛⎫-=⎪⎝⎭,且2πϕϕ<,则tan 等于 A.33-B.33C.3D.3-6.已知直三棱柱111ABC A B C -的各顶点都在同一球面上,2AB =,1,60AC BAC =∠=o ,则该球的表面积为A.4πB.C.8πD.32π7.将全体正整数排成一个三角形数阵按照以上排列的规律,第10行从左向右的第3个数为 A.13 B.39 C.48 D.588.已知F 为双曲线()222210x y C a b a b-=>>:的右焦点,A 、B 是双曲线C 的一条渐近线上关于原点对称的两点,0AF BF ⋅=u u u r u u u r且AF 的中点在双曲线C 上,则C 的离心率为1-B.111二、多项选择题:本题共4小题,每小题5分,共20分。
山东省潍坊市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,A ,B ,C ,D ,E ,G ,H ,M ,N 都是方格纸中的格点(即小正方形的顶点),要使△DEF 与△ABC 相似,则点F 应是G ,H ,M ,N 四点中的( )A .H 或NB .G 或HC .M 或ND .G 或M2.下列等式从左到右的变形,属于因式分解的是 A .8a 2b=2a·4ab B .-ab 3-2ab 2-ab=-ab(b 2+2b)C .4x 2+8x-4=4x 12-x x ⎛⎫+ ⎪⎝⎭D .4my-2=2(2my-1)3.以x 为自变量的二次函数y=x 2﹣2(b ﹣2)x+b 2﹣1的图象不经过第三象限,则实数b 的取值范围是( ) A .b≥1.25B .b≥1或b≤﹣1C .b≥2D .1≤b≤24.如图1,点P 从矩形ABCD 的顶点A 出发,沿以的速度匀速运动到点C ,图2是点P 运动时,APD ∆的面积2()y cm 随运动时间()x s 变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .C .32D .5.分式方程()22111x x x -++=1的解为( ) A .x=1 B .x=0C .x=﹣23D .x=﹣16.在12,0,-1,12-这四个数中,最小的数是( )A.12B.0 C.12-D.-17.如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.53cm B.25cm C.48cm5D.24cm58.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm9.下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6D.﹣3a2+2a2=﹣a210.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×10811.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800ta nα米C.800sinα米D.800tanα米12.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣3 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是_____. 摸球的次数n 100 150 200 500 800 1000 摸到白球的次数m 58 96 116 295 484 601 摸到白球的频率m/n0.580.640.580.590.6050.60114.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为_____.15.如图,正比例函数y 1=k 1x 和反比例函数y 2=2k x的图象交于A (﹣1,2),B (1,﹣2)两点,若y 1>y 2,则x 的取值范围是_____.16.如图,反比例函数y=k x(x >0)的图象与矩形AOBC 的两边AC ,BC 边相交于E ,F ,已知OA=3,OB=4,△ECF 的面积为83,则k 的值为_____.17.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.18.如图,在平行四边形ABCD 中,点E 在边BC 上,将ABE △沿AE 折叠得到AFE △,点F 落在对角线AC 上.若AB AC ⊥,3AB =,5AD =,则CEF △的周长为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一根电线杆PQ直立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,求电线杆PQ的高度.(结果保留根号).20.(6分)向阳中学校园内有一条林萌道叫“勤学路”,道路两边有如图所示的路灯(在铅垂面内的示意图),灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=1.求灯杆AB的长度.21.(6分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.求证:AC是⊙O的切线;已知⊙O的半径为2.5,BE=4,求BC,AD的长.22.(8分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC 的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=2AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=25,CE=2,求线段AE的长.23.(8分)(1)|﹣2|+327•tan30°+(2018﹣π)0-(15)-1(2)先化简,再求值:(2xx x +﹣1)÷22121xx x-++,其中x的值从不等式组23241xx-≤⎧⎨-⎩<的整数解中选取.24.(10分)在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:x/cm 0 1 2 3 4 5y/cm 6.0 4.8 4.5 6.0 7.4(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.25.(10分)如图,抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3).(1)求该抛物线的解析式;(2)在抛物线的对称轴上是否存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形?若存在,试求出点Q的坐标;若不存在,请说明理由.26.(12分)如图所示,一艘轮船位于灯塔P的北偏东60︒方向与灯塔Р的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45︒方向上的B处.求此时轮船所在的B处与灯塔Р的距离.(结果保留根号)27.(12分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据两三角形三条边对应成比例,两三角形相似进行解答【详解】设小正方形的边长为1,则△ABC的各边分别为3、13、10,只能F是M或N时,其各边是6、213,210.与△ABC各边对应成比例,故选C【点睛】本题考查了相似三角形的判定,相似三角形对应边成比例是解题的关键2.D【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选D.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.3.A【解析】∵二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,a=1>0,∴Δ≤0或抛物线与x轴的交点的横坐标均大于等于0.当Δ≤0时,[-2(b-2)]2-4(b2-1)≤0,解得b≥.当抛物线与x轴的交点的横坐标均大于等于0时,设抛物线与x轴的交点的横坐标分别为x1,x2,则x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,无解,∴此种情况不存在.∴b≥.4.C【解析】【分析】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,根据矩形的面积公式可求出.【详解】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,∴矩形ABCD的面积为4×8=32,故选:C.【点睛】本题考查动点运动问题、矩形面积等知识,根据图形理解△ABP面积变化情况是解题的关键,属于中考常考题型.5.C【解析】【分析】首先找出分式的最简公分母,进而去分母,再解分式方程即可.【详解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-23,检验:当x=-23时,(x+1)2≠0,故x=-23是原方程的根.故选C.【点睛】此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.6.D【解析】试题分析:因为负数小于0,正数大于0,正数大于负数,所以在12,0,-1,12这四个数中,最小的数是-1,故选D.考点:正负数的大小比较.7.D 【解析】 【分析】根据菱形的性质得出BO 、CO 的长,在RT △BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC×AE ,可得出AE 的长度. 【详解】∵四边形ABCD 是菱形, ∴CO=12AC=3,BO=12BD=,AO ⊥BO ,∴BC 5==. ∴ABCD 11S BD AC 682422=⋅=⨯⨯=菱形. 又∵ABCD S BC AE =⋅菱形, ∴BC·AE=24, 即()24AE cm 5=. 故选D .点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分. 8.B 【解析】【分析】由已知可证△ABO ∽CDO,故CD OC AB OA = ,即1.813AB =. 【详解】由已知可得,△ABO ∽CDO,所以,CD OCAB OA = , 所以,1.813AB =, 所以,AB=5.4 故选B【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质. 9.D 【解析】 【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题. 【详解】故选项A错误,故选项B错误,故选项C错误,故选项D正确,故选:D.【点睛】考查整式的除法,完全平方公式,同底数幂相乘以及合并同类项,比较基础,难度不大.10.C【解析】【分析】依据科学记数法的含义即可判断.【详解】解:48511111=4.85×117,故本题选择C.【点睛】把一个数M记成a×11n(1≤|a|<11,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是1的数字前1的个数,包括整数位上的1.11.D【解析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=ACAB,即可解决问题.【详解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=AC AB,∴AB=800 tan tanACαα=,故选D.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.12.A【解析】【分析】方程变形后,配方得到结果,即可做出判断.【详解】方程2410x x +=﹣,变形得:241x x =﹣﹣,配方得:24414x x +=+﹣﹣,即223x =(﹣),故选A .【点睛】本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.0.1【解析】【分析】根据表格中的数据,随着实验次数的增大,频率逐渐稳定在0.1左右,即为摸出白球的概率.【详解】解:观察表格得:通过多次摸球实验后发现其中摸到白球的频率稳定在0.1左右,则P 白球=0.1.故答案为0.1.【点睛】本题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.14.1【解析】【详解】解:连接OC ,∵AB 为⊙O 的直径,AB ⊥CD ,∴CE=DE=12CD=12×6=3, 设⊙O 的半径为xcm ,则OC=xcm ,OE=OB ﹣BE=x ﹣1,在Rt △OCE 中,OC 2=OE 2+CE 2,∴x 2=32+(x ﹣1)2,解得:x=1,∴⊙O 的半径为1,故答案为1.【点睛】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.15.x<﹣2或0<x<2【解析】【分析】仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2>y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.【详解】解:如图,结合图象可得:①当x<﹣2时,y2>y2;②当﹣2<x<0时,y2<y2;③当0<x<2时,y2>y2;④当x>2时,y2<y2.综上所述:若y2>y2,则x的取值范围是x<﹣2或0<x<2.故答案为x<﹣2或0<x<2.【点睛】本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x 的取值范围.16.1【解析】【分析】设E(k3,3),F(1,k4),由题意12(1-k3)(3-k4)=83,求出k即可;【详解】∵四边形OACB是矩形,∴OA=BC=3,AC=OB=1,设E(k3,3),F(1,k4),由题意12(1-k 3)(3-k 4)=83, 整理得:k 2-21k+80=0,解得k=1或20,k=20时,F 点坐标(1,5),不符合题意,∴k=1故答案为1.【点睛】本题考查了反比例函数系数k 的几何意义,解题的关键是会利用参数构建方程解决问题.17.85【解析】【分析】根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.【详解】解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,中位数为中间两数84和86的平均数,∴这六位同学成绩的中位数是85.【点睛】本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.18.6.【解析】【分析】先根据平行线的性质求出BC=AD=5,再根据勾股定理可得AC=4,然后根据折叠的性质可得AF=AB=3,EF=BE ,从而可求出CEF △的周长.【详解】解:∵四边形ABCD 是平行四边形,∴BC=AD=5,∵AB AC ⊥,∴∵ABE △沿AE 折叠得到AFE △,∴AF=AB=3,EF=BE ,∴CEF △的周长=CE+EF+FC=CE+BE+CF=BC+AC-AF=5+4-3=6故答案为6.【点睛】本题考查了平行四边形的性质,勾股定理,折叠的性质,三角形的周长计算方法,运用转化思想是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6+23)米【解析】【分析】根据已知的边和角,设CQ=x,BC=3QC=3x,PC=3BC=3x,根据PQ=BQ列出方程求解即可.【详解】解:延长PQ交地面与点C,由题意可得:AB=6m,∠PCA=90°,∠PAC=45°,∠PBC=60°,∠QBC=30°,设CQ=x,则在Rt△BQC 中,33,∴在Rt△PBC中3,∵在Rt△PAC中,∠PAC=45°,则PC=AC,∴,3,解得33-3∴PQ=PC-CQ=3x-x=2x=6+23则电线杆PQ高为(6+3米.【点睛】此题重点考察学生对解直角三角形的理解,掌握解直角三角形的方法是解题的关键.20.灯杆AB的长度为2.3米.【解析】【分析】过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=2.设AF=x知EF=AF=x、DF=AFtan ADF∠=6x,由DE=13.3求得x=11.4,据此知AG=AF﹣GF=1.4,再求得∠ABG=∠ABC﹣∠CBG=30°可得AB=2AG=2.3.【详解】过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=2.由题意得:∠ADE=α,∠E=45°.设AF=x .∵∠E=45°,∴EF=AF=x .在Rt △ADF 中,∵tan ∠ADF=AF DF ,∴DF=AF tan ADF ∠=6x . ∵DE=13.3,∴x+6x =13.3,∴x=11.4,∴AG=AF ﹣GF=11.4﹣2=1.4. ∵∠ABC=120°,∴∠ABG=∠ABC ﹣∠CBG=120°﹣90°=30°,∴AB=2AG=2.3.答:灯杆AB 的长度为2.3米.【点睛】本题主要考查解直角三角形﹣仰角俯角问题,解题的关键是结合题意构建直角三角形并熟练掌握三角函数的定义及其应用能力.21.(1)证明见解析;(2)BC=165,AD=457. 【解析】分析:(1)连接OE ,由OB=OE 知∠OBE=∠OEB 、由BE 平分∠ABC 知∠OBE=∠CBE ,据此得∠OEB=∠CBE ,从而得出OE ∥BC ,进一步即可得证;(2)证△BDE ∽△BEC 得BD BE BE BC =,据此可求得BC 的长度,再证△AOE ∽△ABC 得AO OE AB BC=,据此可得AD 的长.详解:(1)如图,连接OE ,∵OB=OE ,∴∠OBE=∠OEB ,∵BE 平分∠ABC ,∴∠OBE=∠CBE ,∴∠OEB=∠CBE ,∴OE ∥BC ,又∵∠C=90°,∴∠AEO=90°,即OE ⊥AC ,∴AC 为⊙O 的切线;(2)∵ED ⊥BE ,∴∠BED=∠C=90°,又∵∠DBE=∠EBC ,∴△BDE ∽△BEC , ∴BD BE BE BC =,即54=4BC, ∴BC=165; ∵∠AEO=∠C=90°,∠A=∠A ,∴△AOE ∽△ABC , ∴AO OE AB BC =,即 2.5 2.51655AD AD +=+, 解得:AD=457. 点睛:本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质.22.(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)依据AE=EF ,∠DEC=∠AEF=90°,即可证明△AEF 是等腰直角三角形;(2)连接EF ,DF 交BC 于K ,先证明△EKF ≌△EDA ,再证明△AEF 是等腰直角三角形即可得出结论;(3)当AD=AC=AB 时,四边形ABFD 是菱形,先求得,Rt △ACH 中,,即可得到.试题解析:解:(1)如图1.∵四边形ABFD 是平行四边形,∴AB=DF .∵AB=AC ,∴AC=DF .∵DE=EC ,∴AE=EF .∵∠DEC=∠AEF=90°,∴△AEF 是等腰直角三角形;(2)如图2,连接EF ,DF 交BC 于K .∵四边形ABFD 是平行四边形,∴AB ∥DF ,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED .∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE .∵∠DKC=∠C ,∴DK=DC .∵DF=AB=AC ,∴KF=AD .在△EKF 和△EDA 中,EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩,∴△EKF ≌△EDA (SAS ),∴EF=EA ,∠KEF=∠AED ,∴∠FEA=∠BED=90°,∴△AEF 是等腰直角三角形,∴AE .(3)如图3,当AD=AC=AB 时,四边形ABFD 是菱形,设AE 交CD 于H ,依据AD=AC ,ED=EC ,可得AE 垂直平分CD ,而CE=2,∴EH=DH=CH=2,Rt △ACH 中,AH=22252()()+=32,∴AE=AH+EH=42.点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.23.(13-1(1)-1【解析】【分析】(1)先根据根据绝对值的意义、立方根的意义、特殊角的三角函数值、零指数幂、负整数指数幂的意义化简,然后按照实数的运算法则计算即可;(1)把括号里通分,把22121x x x -++的分子、分母分解因式约分,然后把除法转化为乘法计算;然后求出不等式组的整数解,选一个使分式有意义的值代入计算即可.【详解】 (1)原式=1+3×3﹣5 3+1﹣531;(1)原式=()()()()()2211111x x x x x x x x x x ⎡⎤+-+-÷⎢⎥+++⎢⎥⎣⎦=()2111x x x x x --÷++ =111x x x x -++-n =﹣1x x -,解不等式组23241x x -≤⎧⎨-<⎩得:-1≤x 52< 则不等式组的整数解为﹣1、0、1、1,∵x (x+1)≠0且x ﹣1≠0,∴x≠0且x≠±1,∴x=1,则原式=﹣221-=﹣1. 【点睛】本题考查了实数的运算,分式的化简求值,不等式组的解法.熟练掌握各知识点是解答本题的关键,本题的易错点是容易忽视分式有意义的条件.24.(1)2.1;(2)见解析;(3)x =2时,函数有最小值y =4.2【解析】【分析】(1)通过作辅助线,应用三角函数可求得HM+HN 的值即为x=2时,y 的值;(2)可在网格图中直接画出函数图象;(3)由函数图象可知函数的最小值.【详解】(1)当点P 运动到点H 时,AH=3,作HN ⊥AB 于点N .∵在正方形ABCD 中,AB=4cm ,AC 为对角线,AC 上有一动点P ,M 是AB 边的中点,∴∠HAN=42°,∴AN=HN=AH•sin42°=3232⨯=,∴HM 22()HN AN AM =+-,HB 22()HN AB AN =+-,∴HM+HN=222232323232()(2)()(4)2222+-++-=136225122-+-≈4.5168.032+≈2.122+2.834≈2.1.故答案为:2.1;(2)(3)根据函数图象可知,当x=2时,函数有最小值y=4.2.故答案为:4.2.【点睛】本题考查了二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.(1) y=﹣x2+2x+3;(2)见解析.【解析】【分析】(1)将B(3,0),C(0,3)代入抛物线y=ax2+2x+c,可以求得抛物线的解析式;(2) 抛物线的对称轴为直线x=1,设点Q的坐标为(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC为斜边,AQ为斜边,CQ时斜边三种情况求解即可.【详解】解:(1)∵抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3),∴,得,∴该抛物线的解析式为y=﹣x2+2x+3;(2)在抛物线的对称轴上存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形,理由:∵抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,点B(3,0),点C(0,3),∴抛物线的对称轴为直线x=1,∴点A的坐标为(﹣1,0),设点Q的坐标为(1,t),则AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3﹣t)2=t2﹣6t+10,当AC为斜边时,10=4+t2+t2﹣6t+10,解得,t1=1或t2=2,∴点Q的坐标为(1,1)或(1,2),当AQ为斜边时,4+t2=10+t2﹣6t+10,解得,t=,∴点Q的坐标为(1,),当CQ时斜边时,t2﹣6t+10=4+t2+10,解得,t=,∴点Q的坐标为(1,﹣),由上可得,当点Q的坐标是(1,1)、(1,2)、(1,)或(1,﹣)时,使得以A、C、Q为顶点的三角形为直角三角形.【点睛】本题考查了待定系数法求函数解析式,二次函数的图像与性质,勾股定理及分类讨论的数学思想,熟练掌握待定系数法是解(1)的关键,分三种情况讨论是解(2)的关键.26.406【解析】【分析】⊥,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB.过点P作PC AB【详解】⊥,垂足为点C.解:如图,过点P作PC AB∴30APC ︒∠=,45BPC ︒∠=,80AP =海里.在Rt APC ∆中,cos PC APC AP ∠=, ∴3cos 80403PC AP APC =⋅∠≡⨯=(海里). 在Rt PCB ∆中,cos PC BPC PB∠=, ∴403406cos PC PB BPC ===∠(海里). ∴此时轮船所在的B 处与灯塔P 的距离是406海里.【点睛】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.27.这种测量方法可行,旗杆的高为21.1米.【解析】分析:根据已知得出过F 作FG ⊥AB 于G ,交CE 于H ,利用相似三角形的判定得出△AGF ∽△EHF ,再利用相似三角形的性质得出即可.详解:这种测量方法可行.理由如下:设旗杆高AB=x .过F 作FG ⊥AB 于G ,交CE 于H (如图).所以△AGF ∽△EHF .因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x ﹣1.1.由△AGF ∽△EHF ,得AG GF EH HF=,即1.530 23x-=,所以x﹣1.1=20,解得x=21.1(米)答:旗杆的高为21.1米.点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.。
2020年山东省潍坊市临朐县中考数学三模试卷一、选择题(本大题共12小题,共36.0分)1. 下列关于单项式−3x 5y 2的说法中,正确的是( )A. 它的系数是3B. 它的次数是5C. 它的次数是2D. 它的次数是7 2. 下列运算中,计算结果正确的是( ) A. x 3+x 3=x 6 B. (−4m 2n)2=16m 4n 2C. (−a)3⋅a 2=−a 6D. 3a −2=13a 23. 下列图形中,中心对称图形的个数是( )A. 1个B. 2个C. 3个D. 4个4. 某次数学测验,抽取部分同学的成绩(得分为整数),整理制成如图所示的频数直方图,根据图示信息,下列描述中,不正确的是( ).A. 抽样调查的学生共50人B. 估计这次测试的及格率(60分及以上为及格)在92%左右C. 估计优秀率(80分及以上为优秀)在36%左右D. 60.5~70.5这一分数段的频数为125. 若关于x 的一元一次不等式组{x −2<012x +m ≥2有4个整数解,则m 的取值范围为( )A. −3<m <−2B. −3≤m <−2C. 3≤m <72D. 3<m <72 6. 若√0.3673=0.716,√3.673=1.542,则√3673=( )A. 15.42B. 0.0716C. 0.1542D. 7.167. 如图,在△ABC 中,AB =AC ,BC =12,E 为AC 边的中点,线段BE 的垂直平分线交边BC 于点D.设BD =x ,tan∠ACB =y ,则( )A. x −y 2=3B. 2x −y 2=9C. 3x −y 2=15D. 4x −y 2=21 8. A ,B 两地相距80千米,已知乙的速度是甲的1.5倍,甲先由A 去B ,1小时后,乙再从A 地出发去追甲,追到B 地时,甲已早到20分钟,则甲的速度为( )A. 40km/ℎB. 45km/ℎC. 50km/ℎD. 60km/ℎ9. 已知关于a ,b 的方程组{3a +b =m a +bm =n的解是{a =−1b =1,则直线y =mx +n 不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限10. 已知a n =(−1)n +1,当n =1时,a 1=0;当n =2时,a 2=2;当n =3时,a 3=0,…;则a 1+a 2+⋯a 2018的值为( )A. 2018B. 2017C. 1009D. 101011. 如图,在边长为2的正方形ABCD 中,点E 是边CD 的中点,以A 为圆心,AB 为半径作弧BD⏜,交BE 于点F.记图中分割部分的面积为S 1,S 2,则S 1−S 2的值为( )A. 4−πB. 2π−4C. 6−2πD. π−312. 如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC =√2,则图中阴影部分的面积等于( ) A. 2−√2B. 1C. √2D. √2−l二、填空题(本大题共6小题,共18.0分)13. 若线段长x 是9和16的比例中项,则线段长x 的值为______.14. 若x 2+x =1,则3x 4+3x 3+3x +1的值为______.15. 若关于x 的分式方程m x−2=1−x2−x −3有增根,则实数m 的值是 .16.将抛物线y=x2−2向右平移一个单位后,再向上平移一个单位得一新的抛物线,那么新的抛物线的表达式是______ .AB的长为17.如图,在Rt△ABC中,∠ACB=90°,AC=2BC,分别以点A和B为圆心,以大于12半径作弧,两弧相交于点M和N,作直线MN,交AC于点E,连接BE,若CE=3,则BE的长为______.18.已知反比例函数y=4,则当函数值y≥−2时,自变量x的取值范围是______ .x三、解答题(本大题共7小题,共66.0分)19.某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两工厂的人数各是多少?20.某中学为推动“时刻听党话永远跟党走”校园主题教育活动,计划开展四项活动:A:党史演讲比赛,B:党史手抄报比赛,C:党史知识竞赛,D:红色歌咏比赛.校团委对学生最喜欢的一项活动进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2两幅不完整的统计图.请结合图中信息解答下列问题:(1)本次共调查了______名学生;将图1的条形统计图补充完整;(2)扇形统计图中m=______,表示“C”类的扇形的圆心角是______度;(3)已知在被调查的最喜欢“党史知识竞赛”项目的4个学生中只有1名女生,现从这4名学生中任意抽取2名学生参加该项目比赛,请用画树状图或列表的方法,求出恰好抽到一名男生一名女生的概率.21.如图,在一坡长AB为70√5,坡度i1=1:2的山顶B处修建一座铁塔BC,小李在其对面山坡沿坡面AD向上走了25米到D处测得塔顶C的仰角为37°,已知山坡AD的坡度i2=1:0.75(1)求点D距水平面AE的高度DH;(2)求BC的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)22.如图,在△ABC中,AB=AC,以腰AB为直径作半圆,分别交BC、AC于点D、E,连结DE.(1)求证:BD=DE;(2)若AB=13,BC=10,求CE的长.23.某单位为了创建城市文明单位,准备在单位的墙(线段MN所示)外开辟一处长方形的土地进行绿化美化,除墙体外三面要用栅栏围起来,计划用栅栏50米.(1)不考虑墙体长度,问长方形的各边的长为多少时,长方形的面积最大?(2)若墙体长度为20米,问长方形面积最大是多少?24.如图所示,在直角坐标系中,点O为坐标原点,A,B分别在x,y轴的正半轴上,OA=OB,点M,N在线段AB上,满足∠MON=45°,点M关于ON的对称点为D,连接ON,OM,OD,DA,DN.(1)求证:△OBM≌△OAD;(2)求证:MN2=AN2+BM2;AB时,求点D的坐标.(3)若OA=OB=4,BM=1325.如图,已知二次函数y=ax2+bx+3的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C(1)求此二次函数解析式;(2)点D为抛物线的顶点,试判断△BCD的形状,并说明理由;(3)将直线BC向上平移t(t>0)个单位,平移后的直线与抛物线交于M,N两点(点M在y轴的右侧),当△AMN为直角三角形时,求t的值.-------- 答案与解析 --------1.答案:D解析:解:单项式−3x5y2的系数是−3,次数是7.故选D.2.答案:B解析:解;A、x3+x3=2x3,故错误;B、正确;C、(−a)3⋅a2=−a5,故错误;D、3a−2=3,故错误;a故选:B.根据同底数幂的乘法、积的乘方、合并同类项、负整数指数幂,即可解答.本题考查了同底数幂的乘法、积的乘方、合并同类项、负整数指数幂,解决本题的关键是熟记同底数幂的乘法、积的乘方、合并同类项、负整数指数幂.3.答案:A解析:【分析】本题主要考查的是中心对称图形的有关知识,由题意利用中心对称图形的定义进行求解即可.【解答】解:第一个图不是中心对称图形;第二个图不是中心对称图形;第三个图是中心对称图形,第四个图不是中心对称图形;故选A.4.答案:D解析:【分析】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.根据表中提供的数据和及格率、优秀率的计算方法,分别进行计算,即可找出描述不正确的选项.【解答】解:A、抽样的学生共有:4+10+18+12+6=50人,故本选项正确,不符合题意;B、这次测试的及格率是:10+18+12+650×100%=92%,故本选项正确,不符合题意;C、优秀率(80分以上)是:12+650×100%=36%,故本选项正确,不符合题意;D、60.5~70.5这一分数段的频数为10,故本选项错误,符合题意.故选D.5.答案:C解析:【分析】本题考查一元一次不等式组的解法,解题的关键是求出一元一次不等式的解,最后求出不等式组的解,由不等式组有4个整数解求出m的取值范围即可.【解答】解:由x−2<0得,x<2,由12x+m≥2得,x≥4−2m,∴不等式组{x−2<012x+m≥2的解为:4−2m≤x<2,∵不等式组有4个整数解,∴其整数解为1,0,−1,−2,∴−3<4−2m≤−2,∴3≤m<72.故选C.6.答案:D解析:【分析】本题主要考查的是立方根的有关知识,由题意利用立方根的定义进行求解即可.【解答】解:∵√0.3673=0.716,√3.673=1.542,∴√3673=7.16.故选D . 7.答案:B解析:【分析】本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键,过A 作AQ ⊥BC 于Q ,过E 作EM ⊥BC 于M ,连接DE ,根据线段垂直平分线求出DE =BD =x ,根据等腰三角形求出BQ =CQ =6,求出CM =QM =3,解直角三角形求出EM =3y ,AQ =6y ,在Rt △DEM 中,根据勾股定理求出即可.解:过A 作AQ ⊥BC 于Q ,过E 作EM ⊥BC 于M ,连接DE ,∵BE 的垂直平分线交BC 于D ,BD =x ,∴BD =DE =x ,∵AB =AC ,BC =12,tan∠ACB =y ,∴EM MC =AQCQ =y ,BQ =CQ =6,∴AQ =6y ,∵AQ ⊥BC ,EM ⊥BC ,∴AQ//EM ,∵E 为AC 中点,∴CM =QM =12CQ =3,∴EM =3y ,∴DM =12−3−x =9−x ,在Rt △EDM 中,由勾股定理得:x 2=(3y)2+(9−x)2,即2x −y 2=9,故选:B . 8.答案:A解析:【分析】本题主要考查分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.求的是速度,路程明显,一定是根据时间来列等量关系,等量关系为:甲用的时间−乙用的时间=1−2060. 【解答】解:设甲的速度为xkm/ℎ,那么乙的速度为1.5xkm/ℎ,根据题意得:80x−801.5x =1− 2060, 解得:x =40,经检验:x =40是原方程的解, 故甲的速度为40km/ℎ. 故选A .9.答案:A解析: 【分析】本题考查了一次函数和二元一次方程(组)的关系在实际问题中的应用:要准确的将条件转化为二元一次方程(组)并求解.根据一次函数与二元一次方程组的关系即可求解. 【解答】解:∵关于a ,b 的方程组{3a +b =m a +bm =n的解是{a =−1b =1∴m =−2,n =−3, ∴y =−2x −3,∴一次函数图象经过二、三、四象限. 故选A .10.答案:A解析:【分析】本题考查了数字的变化类,解答此题的关键是找出规律,利用规律再求解.根据指数幂的知识,当n 为奇数时,(−1)n =−1;当n 为偶数时,(−1)n =1,找出此规律,得出2018个数中有1009个2相加,1009个0相加,再进行计算即可得出答案. 【解答】解:∵当n =1时,a 1=0, 当n =2时,a 2=2, 当n =3时,a 3=0, 当n =4时,a 2=2, …,∴a 1+a 2+a 3+a 4…+a 2017+a 2018=0+2+0+2+⋯+0+2=2×1009=2018;11.答案:D解析:解:∵四边形ABCD是正方形,∴AB=CD=BC=2,∵点E是边CD的中点,∴CE=12CD=1,∴S1−S2=S△BCE−(S正方形ABCD −S扇形ABD)=12×2×1−(2×2−90⋅π×22360)=π−3,故选:D.根据正方形的性质和扇形以及三角形的面积公式即可得到结论.本题考查了扇形面积的计算,正方形的性质,三角形面积的计算,正确的识别图形是解题的关键.12.答案:D解析:【分析】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=12BC=1,AF=FC′=sin45°AC′=√22AC′=1,进而求出阴影部分的面积.【解答】解:∵△ABC绕点A顺时针旋转45°得到△AB′C′,∠BAC=90°,AB=AC=√2,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=12BC=1,AF=FC′=√22AC′1,∴图中阴影部分的面积等于:S△AFC′−S△DEC′=12×1×1−12×(√2−1)2=√2−1.故选D.解析:解:∵线段长x是9和16的比例中项,∴x2=9×16,解得x=12.(负值舍去)故答案为:12.根据比例中项的定义列方程求解即可.本题考查了比例中项的概念,根据两条线段的比例中项的平方是两条线段的乘积,可得出方程求解.14.答案:4解析:解:∵x2+x=1,∴3x4+3x3+3x+1=3x2(x2+x)+3x+1=3x2+3x+1=3(x2+x)+1=3+1=4;故答案为:4.把所求多项式进行变形,代入已知条件,即可得出答案.本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.15.答案:1解析:【分析】此题考查了分式方程的增根,关键是熟练掌握增根的确定方法.分式方程去分母转化为整式方程,由分式方程有增根,得到x−2=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母,得:m=x−1−3(x−2),由分式方程有增根,得到x−2=0,即x=2,把x=2代入整式方程可得:m=1,故答案为:1.16.答案:y=(x−1)2−1解析:解:抛物线y=x2−2的顶点坐标为(0,−2),把点(0,−2)先向右平移1个单位,再向上平移1个单位得到对应点的坐标为(1,−1),所以平移后的抛物线解析式为y=(x−1)2−1.故答案为y=(x−1)2−1先得到抛物线y=x2−2的顶点坐标(0,−2),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(1,−1),然后根据顶点式写出平移后的抛物线解析式.本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17.答案:5解析:解:由作图可知,MN 垂直平分线段AB , ∴AE =EB , 设AE =EB =x , ∵EC =3,AC =2BC , ∴BC =12(x +3),在Rt △BCE 中,∵BE 2=BC 2+EC 2, ∴x 2=32+[12(x +3)]2,解得,x =5或−3(舍弃), ∴BE =5, 故答案为5.设BE =AE =x ,在Rt △BEC 中,利用勾股定理构建方程即可解决问题.本题考查作图−基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.18.答案:x ≤−2或x >0解析:解:如图所示:由函数图象可知,当y ≥−2时,x ≤−2或x >0. 故答案为:x ≤−2或x >0.先画出反比例函数y =4x 的图象,再利用数形结合可直接解答.本题考查的是反比例函数的性质,根据题意利用数形结合求解是解答此题的关键.19.答案:解:设甲工厂的人数为x 人,乙工厂的人数为y 人,由题意得,{x −9=y +9x +5=2(y −5),解得:{x =51y =33,答:甲工厂的人数为51人,乙工厂的人数为33人.解析:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.设甲工厂的人数为x人,乙工厂的人数为y人,等量关系为:甲厂人数−9=乙厂人数+9,甲厂人数+5=2(乙厂人数−5),据此列方程组,求解.20.答案:解:(1)40;(2)40;36(3)列表如下:男男男女男(男,男)(男,男)(男,女)男(男,男)(男,男)(男,女)男(男,男)(男,男)(男,女)女(女,男)(女,男)(女,男)其中恰好抽到一名男生和一名女生的结果有6种,所以抽到一名男生和一名女生的概率为612=12.解析:【解答】解:(1)本次调查的学生总人数为6÷15%=40人,B项活动的人数为40−(6+4+14)=16,补全统计图如下:故答案为:40;(2)m%=1640×100%=40%,即m=40;表示“C”类的扇形的圆心角是360°×10%=36°,故答案为:40、36;(3)见答案.【分析】(1)根据A活动的人数及其百分比可得总人数,总人数减去A、C、D的人数求出B活动的人数,据此补全统计图可得;(2)用B活动项的除以总人数可得m的值,用360°乘以C所占的百分比可得;(3)列表得出所有等可能结果,再从中找到恰好抽到一名男生一名女生的结果数,继而根据概率公式计算可得.此题考查了列表法或树状图法求概率以及扇形与条形统计图的知识.注意掌握扇形统计图与条形统计图的对应关系.用到的知识点为:概率=所求情况数与总情况数之比.21.答案:解:(1)∵AD的坡度i2=1:0.75,∴DHAH =1:0.75=43,∴DHAD =45,∵AD=25米,∴DH=AD×45=20(米),∴AH=√AD2−DH2=15(米),答:点D距水平面AE的高度DH=20米;(2)过点D作DF⊥BC于点F,∴∠DFE=90°,∵∠H=∠E=90°,∴四边形DHEF是矩形,∴EF=DH=20米,DF=EH,∵AB为70√5米,坡度i1=1:2,∴BEAE =12,∴BEAB =√5,∴BE=70米,AE=140米,∴DF=AH+AE=155(米),∵∠CDE=37°,∴CF=DF⋅tan37°≈155×0.75=116.25(米),∴BC=CF+EF−BE=116.25+20−70=66.25≈66.3(米).答:BC的高度约为66.3米.解析:(1)由AD的坡度i2=1:0.75,AD=25米,利用坡度的定义求即即可求得答案;(2)首先过点D作DF⊥BC于点F,易得四边形DHEF是矩形,然后分别解Rt△ABE与Rt△DCF,继而求得答案.此题考查了坡度坡角以及仰角俯角问题.注意准确构造直角三角形是解此题的关键.22.答案:解:(1)连接AD,DE,∵AB为半圆的直径,∴AD⊥BC,∵AB=AC,∴∠BAD=∠CAD,∴BD⏜=DE⏜,∴BD=DE;(2)∵AB=AC=13,AD⊥BC,∴BD=CD=12BC=5,∵∠CDE=∠BAC,∠C=∠C,∴△CDE∽△CAB,∴CDCE =CABC,∴5CE =1310,∴CE=5013.解析:(1)连接AD,DE,根据等腰三角形的性质得到∠BAD=∠CAD,于是得到结论;(2)根据等腰三角形的性质得到BD=CD=12BC=5,根据相似三角形的性质即可得到结论.本题考查了等腰三角形的性质,相似三角形的判定和性质,圆周角定理,正确的作出辅助线是解题的关键.23.答案:解:(1)设AB =x ,则BC =50−2x ,长方形面积为y得:y =x(50−2x) =−2x 2+50x , 当x =252时,y 最大值=1254,BC =50−2×252=25,答:当AB =252米,BC =25米时,面积最大是1254平方米;(2)若墙体长度是20米,则BC ≤20,AB ≥15, 在函数y =−2x 2+50x 中,a =−2<0, 当x >252时,y 随x 的增大而减小,所以当x =15时,y 最大值=300, 答:面积最大为300平方米.解析:(1)直接利用矩形面积求法得出函数关系式,进而求出最值; (2)利用二次函数增减性得出答案.此题主要考查了二次函数的应用,正确得出函数关系式是解题关键.24.答案:证明:(1)∵∠MON =45°,∠AOB =90°,∴∠BOM +∠AON =45°,∵点M 关于ON 的对称点为D ,∠MON =45°, ∴MN =ND ,OM =OD ,∠MON =∠DON =45°, ∴∠AON +∠AOD =45°,∴∠BOM =∠AOD ,且AO =BO ,OM =OD , ∴△OBM≌△OAD(SAS) (2)∵OA =OB ,∠AOB =90°, ∴∠OAB =∠OBA =45°, ∵△OBM≌△OAD ,∴∠OBA =∠OAD =45°,BM =AD , ∴∠BAD =90°, ∴ND 2=AN 2+AD 2, ∴MN 2=AN 2+BM 2;(3)如图,过点D 作DC ⊥AO 于C ,∵OA =OB =4,∠AOB =90°, ∴AB =4√2, ∵BM =13AB , ∴BM =4√23,∴AD =4√23∵∠OAD =45°,CD ⊥AO , ∴AC =CD =43,∴OC =OA −AC =83, ∴点D 坐标(83,−43).解析:(1)由轴对称的性质可得MN =ND ,OM =OD ,∠MON =∠DON =45°,由“SAS ”可证△OBM≌△OAD ;(2)由全等三角形的性质可得∠OBA =∠OAD =45°,BM =AD ,由勾股定理可求解; (3)由勾股定理可求AB 的长,即可求AD =BM =4√23,由等腰直角三角形的性质可求AC =AD =43,即可求点D 坐标.本题是几何变换综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,轴对称的性质,勾股定理,证明△OBM≌△OAD 是本题的关键.25.答案:解:(1)将A(1,0)、B(3,0)代入y =ax 2+bx +3,得:{a +b +3=09a +3b +3=0,解得:{a =1b =−4,∴此二次函数解析式为y =x 2−4x +3. (2)△BCD 为直角三角形,理由如下: ∵y =x 2−4x +3=(x −2)2−1, ∴顶点D 的坐标为(2,−1). 当x =0时,y =x 2−4x +3=3, ∴点C 的坐标为(0,3).∵点B 的坐标为(3,0),∴BC =√(3−0)2+(0−3)2=3√2,BD =√(2−3)2+(−1−0)2=√2,CD =√(2−0)2+(−1−3)2=2√5. ∵BC 2+BD 2=20=CD 2, ∴∠CBD =90°, ∴△BCD 为直角三角形.(3)设直线BC 的解析式为y =kx +c(k ≠0), 将B(3,0),C(0,3)代入y =kx +c ,得: {3k +c =0c =3,解得:{k =−1c =3, ∴直线BC 的解析式为y =−x +3,∴将直线BC 向上平移t 个单位得到的直线的解析式为y =−x +3+t . 联立新直线与抛物线的解析式成方程组,得:{y =−x +3+t y =x 2−4x +3,解得:{x 1=3+√9+4t2y 1=3+2t−√9+4t 2,{x 2=3−√9+4t2y 2=3+2t+√9+4t2,∴点M 的坐标为(3+√9+4t 2,3+2t−√9+4t2),点N 的坐标为(3−√9+4t 2,3+2t+√9+4t2).∵点A 的坐标为(1,0), ∴AM 2=(3+√9+4t2−1)2+(3+2t−√9+4t2−0)2=t 2+5t +7−(1+t)√9+4t ,AN 2=(3−√9+4t2−1)2+(3+2t+√9+4t2−0)2=t 2+5t +7+(1+t)√9+4t ,MN 2=(3−√9+4t2−3+√9+4t 2)2+(3+2t+√9+4t2−3+2t−√9+4t 2)2=18+8t .∵△AMN 为直角三角形, ∴分三种情况考虑:①当∠MAN =90°时,有AM 2+AN 2=MN 2,即t 2+5t +7−(1+t)√9+4t +t 2+5t +7+(1+t)√9+4t =18+8t , 整理,得:t 2+t −2=0,解得:t 1=1,t 2=−2(不合题意,舍去);②当∠AMN =90°时,有AM 2+MN 2=AN 2,即t 2+5t +7−(1+t)√9+4t +18+8t =t 2+5t +7+(1+t)√9+4t , 整理,得:t 2−2t −8=0,解得:t 1=4,t 2=−2(不合题意,舍去);③当∠ANM =90°时,有AN 2+MN 2=AM 2,即t 2+5t +7+(1+t)√9+4t +18+8t =t 2+5t +7−(1+t)√9+4t ,整理,得:√9+4t(1+t+√9+4t)=0.∵t>0,∴该方程无解(或解均为增解).综上所述:当△AMN为直角三角形时,t的值为1或4.解析:(1)根据点A、B的坐标,利用待定系数法即可求出二次函数解析式;(2)利用配方法及二次函数图象上点的坐标特征,可求出点C、D的坐标,利用两点间的距离公式可求出CD、BD、BC的长,由BC2+BD2=CD2可证出△BCD为直角三角形;(3)根据点B、C的坐标,利用待定系数法可求出直线BC的解析式,进而可找出平移后直线的解析式,联立两函数解析式成方程组,通过解方程组可找出点M、N的坐标,利用两点间的距离公式可求出AM2、AN2、MN2的值,分别令三个角为直角,利用勾股定理可得出关于t的无理方程,解之即可得出结论.本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数图象上点的坐标特征、勾股定理以及勾股定理的逆定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理找出BC2+BD2=CD2;(3)分∠MAN=90°、∠AMN=90°及∠ANM=90°三种情况考虑.第21页,共21页。
中考数学三模试卷一、选择题(本大题共12小题,每小题四个选项只有一项是正确的,每小题选对得3分.)1.下列运算正确的是()A.x•x4=x5B.x6÷x3=x2C.3x2﹣x2=3 D.(2x2)3=6x62.下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个3.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是()A.0.69×10﹣6B.6.9×10﹣7C.69×10﹣8D.6.9×1074.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是()A.①B.②C.③D.④5.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定6.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°7.甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰()丙丁平均数8 8方差 1.2 1.8A.甲B.乙C.丙D.丁8.已知A(﹣1,y1),B(2,y2)两点在双曲线y=上,且y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m>﹣D.m<﹣9.要使式子有意义,a的取值范围是()A.a≠0 B.a>﹣2且a≠0 C.a>﹣2或a≠0 D.a≥﹣2且a≠010.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点E.点G是上的任意一点,延长AG交DC的延长线于点F,连接GC,GD,AD.若∠BAD=25°,则∠AGD 等于()A.55°B.65°C.75°D.85°11.对于点A(x1,y1)、B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(﹣5,4),B(2,﹣3),A⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点()A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点12.点A、C为半径是4的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为()A.或2B.或2C.2或2D.2或2二、填空题(本大题共6小题,共18分,只填写最后结果,每小题填对得3分)13.化简÷(1+)的结果是.14.分解因式x2﹣y2﹣z2﹣2yz= .15.如图,△ABC中,AB=AC,D是AB上的一点,且AD=AB,DF∥BC,E为BD 的中点.若EF⊥AC,BC=6,则四边形DBCF的面积为.16.关于x的方程kx2﹣(2k+1)x+k+2=0有实数根,则k的取值范围是.17.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2018的坐标为.18.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若=,则= 用含k的代数式表示).三、解答题(本大题共7小题,共66分.解答要写出文字说明、证明过程或演算步骤)19.(8分)九(1)班同学分成甲、乙两组,开展“四个城市建设”知识竞赛,满分得5分,得分均为整数.小马虎根据竞赛成绩,绘制了如图所示的统计图.经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误.(1)指出条形统计图中存在的错误,并求出正确值;(2)若成绩达到3分及以上为合格,该校九年级有800名学生,请估计成绩未达到合格的有多少名?(3)九(1)班张明、李刚两位成绩优秀的同学被选中参加市里组织的“四个城市建设”知识竞赛.预赛分为A、B、C、D四组进行,选手由抽签确定.张明、李刚两名同学恰好分在同一组的概率是多少?[来源:]20.(8分)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB.(结果保留根号)21.(8分)某商场计划从厂家购进甲、乙、丙三种型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍.具体情况如下表:甲种乙种丙种进价(元/台)1200 1600 2000售价(元/台)1420 1860 2280经预算,商场最多支出132000元用于购买这批电冰箱.(1)商场至少购进乙种电冰箱多少台?(2)商场要求甲种电冰箱的台数不超过丙种电冰箱的台数.为获得最大利润,应分别购进甲、乙、丙电冰箱多少台?获得的最大利润是多少?22.(8分)如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD ⊥CD,垂足为D,AD交⊙O于E,连接CE.(1)判断CD与⊙O的位置关系,并证明你的结论;(2)若E是的中点,⊙O的半径为1,求图中阴影部分的面积.23.(9分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为W元.(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?24.(12分)如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD 上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.(1)如图1,猜想∠QEP= °;(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠Q EP的度数,选取一种情况加以证明;(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.25.(13分)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC 的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标.参考答案与试题解析一、选择题1.【分析】结合各选项分别进行同底数幂的乘法、同底数幂的除法、合并同类项、幂的乘方等运算,然后选出正确选项即可.【解答】解:A、x•x4=x5,原式计算正确,故本选项正确;B、x6÷x3=x3,原式计算错误,故本选项错误;C、3x2﹣x2=2x2,原式计算错误,故本选项错误;D、(2x2)3=8x,原式计算错误,故本选项错误;故选:A.2.【分析】分别分析四种几何体的三种视图,再找出有两个相同,而另一个不同的几何体.【解答】解:①正方体的主视图与左视图都是正方形;②圆柱的主视图和左视图都是长方形;③圆锥主视图与左视图都是三角形;④球的主视图与左视图都是圆;故选:D.3.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00 000 069=6.9×10﹣7,故选:B.4.【分析】根据轴对称图形的特点进行判断即可.【解答】解:选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是:④.故选:D.5.【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选:A.6.【分析】首先过点D作DE∥a,由∠1=60°,可求得∠3的度数,易得∠ADC=∠2+∠3,继而求得答案.【解答】解:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选:C.7.【分析】求出甲、乙的平均数、方差,再结合方差的意义即可判断.【解答】解:=(6+10+8+9+8+7+8+9+7+7)=8,=[(6﹣8)2+(10﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(7﹣8)2+(7﹣8)2]=×13=1.3;=(7+10+7+7+9+8+7+9+9+7)=8,=[(7﹣8)2+(10﹣8)2+(7﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(7﹣8)2+(9﹣8)2+(9﹣8)2+(7﹣8)2]=×12=1.2;丙的平均数为8,方差为1.2,丁的平均数为8,方差为1.8,故4个人的平均数相同,方差丁最大.故应该淘汰丁.故选:D.8.【分析】根据反比例函数的增减性即可得出结论.【解答】解:∵﹣1<2,y1>y2,∴3+2m<0,解得m<﹣.故选:D.9.【分析】分子中二次根式的被开方数是非负数,而且分母不能为0,同时满足两个条件,求a的范围.【解答】解:根据题意,得解得a≥﹣2且a≠0.故选:D.10.【分析】连接BD,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可.【解答】解:连接BD,∵AB是直径,∠BAD=25°,∴∠ABD=90°﹣25°=65°,∴∠AGD=∠ABD=65°,故选:B.11.【分析】如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),先根据新定义运算得出(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),则x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上.【解答】解:∵对于点A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么C⊕D=(x3+x4)+(y3+y4),D⊕E=(x4+x5)+(y4+y5),E⊕F=(x5+x6)+(y5+y6),F⊕D=(x4+x6)+(y4+y6),又∵C⊕D=D⊕E=E⊕F=F⊕D,∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),∴x3+y3=x4+y4=x5+y5=x6+y6,令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上,∴互不重合的四点C,D,E,F在同一条直线上.故选:A.12.【分析】过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=OB=2,如图②,BD=6,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论.【解答】解:过B作直径,连接AC交AO于E,∵点B为的中点,∴BD⊥AC,如图①,∵点D恰在该圆直径上,D为OB的中点,∴BD=×4=2,∴OD=OB﹣BD=2,∵四边形ABCD是菱形,∴DE=BD=1,∴OE=1+2=3,连接OC,∵CE===,在Rt△DEC中,由勾股定理得:DC===2;如图②,OD=2,BD=4+2=6,DE=BD=3,OE=3﹣2=1,由勾股定理得:CE===,DC===2,故选:C.二、填空题(本大题共6小题,共18分,只填写最后结果,每小题填对得3分)13.【分析】根据分式混合运算的法则进行计算即可.【解答】解:原式=÷=•=.故答案为:.14.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题后三项可以为一组组成完全平方式,再用平方差公式即可.【解答】解:x2﹣y2﹣z2﹣2yz,=x2﹣(y2+z2+2yz),=x2﹣(y+z)2,=(x+y+z)(x﹣y﹣z).15.【分析】过D点作DG⊥AC,垂足为G,过A点作AH⊥BC,垂足为H,根据题意设BE=DE=x,则AD=AF=4x,由DG∥EF,利用平行线分线段成比例求FG,由DF∥BC得△ADF∽△ABC,利用相似比求DF,同时可得∠DFG=∠C,易证Rt△DFG∽Rt△ACH,利用相似比求x,在Rt△ABH中,用勾股定理求AH,计算△ABC的面积,由△ADF∽△ABC,利用相似三角形的性质求△ADF的面积,作差求四边形DBCF的面积.【解答】解:如图,过D点作DG⊥AC,垂足为G,过A点作AH⊥BC,垂足为H,∵E为BD的中点,且AD=AB,∴可设BE=DE=x,则AD=AF=4x,∵DG⊥AC,EF⊥AC,∴DG∥EF,=,即=,解得FG=x,∵DF∥BC,∴△ADF∽△ABC,=,即=,解得DF=4,又∵DF∥BC,∴∠DFG=∠C,∴Rt△DFG∽Rt△ACH,=,即=,解得x2=,在Rt△ABH中,由勾股定理,得AH===9,则S△ABC=×BC×AH=×6×9=27,又∵△ADF∽△ABC,∴=()2=,S△ADF=×27=12,∴S四边形DBCF=S△ABC﹣S△ADF=27﹣12=15.故答案为:15.16.【分析】分k=0及k≠0两种情况考虑:当k=0时,通过解一元一次方程可得出原方程有解,即k=0符合题意;等k≠0时,由△≥0即可得出关于k的一元一次不等式,解之即可得出k的取值范围.综上此题得解.【解答】解:当k=0时,原方程为﹣x+2=0,解得:x=2,∴k=0符合题意;当k≠0时,有△=[﹣(2k+1)]2﹣4k(k+2)≥0,解得:k≤且k≠0.综上:k的取值范围是k≤.故答案为:k≤.17.【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每两个偶数之间的B相差6个单位长度,根据这个规律可以求得B2018的坐标.【解答】解:∵A(,0),B(0,2),∴Rt△AOB中,AB=,[来源:]∴OA+AB1+B1C2=+2+=6,∴B2的横坐标为:6,且B2C2=2,即B2(6,2),∴B4的横坐标为:2×6=12,∴点B2018的横坐标为:2018÷2×6=6054,点B2018的纵坐标为:2,即B2018的坐标是(6054,2).故答案为:(6054,2).18.【分析】根据中点定义可得DE=CE,再根据翻折的性质可得DE=EF,AF=AD,∠AFE=∠D=90°,从而得到CE=EF,连接EG,利用“HL”证明Rt△ECG和Rt △EFG全等,根据全等三角形对应边相等可得CG=FG,设CG=a,表示出GB,然后求出BC,再根据矩形的对边相等可得AD=BC,从而求出AF,再求出AG,然后利用勾股定理列式求出AB,再求比值即可.【解答】解:∵点E是边CD的中点,∴DE=CE,∵将△ADE沿AE折叠后得到△AFE,∴DE=EF,AF=AD,∠AFE=∠D=90°,∴CE=EF,连接EG,在Rt△ECG和Rt△EFG中,,∴Rt△ECG≌Rt△EFG(HL),∴CG=FG,设CG=a,∵=,∴GB=ka,∴BC=CG+BG=a+ka=a(k+1),在矩形ABCD中,AD=BC=a(k+1),∴AF=a(k+1),AG=AF+FG=a(k+1)+a=a(k+2),在Rt△ABG中,AB===2a,∴==.故答案为:.三、解答题(本大题共7小题,共66分.解答要写出文字说明、证明过程或演算步骤)19.【分析】(1)分别利用条形统计图和扇形统计图得出总人数,进而得出错误的哪组;(2)求出3分以下所占的百分比即可估计成绩未达到合格的有多少名学生;(3)根据题意可以画出相应的树状图,从而可以求得张明、李刚两名同恰好分在同一组的概率.【解答】解:(1)由统计图可得:(1分)(2分)(4分)(5分)甲(人)0 3 7 6 4乙(人) 2 2 5 8 4全体 5 12.5 30 35 17.5(%)乙组得分的人数统计有误,理由:由条形统计图和扇形统计图的对应可得,2÷5%=40,(3+2)÷12.5%=40,(7+5)÷30%=40,(6+8)÷35%=40,(4+4)÷17.5%≠40,故乙组得5分的人数统计有误,正确人数应为:40×17.5%﹣4=3.(2)800×(5%+12.5%)=140(人);(3)如图得:∵共有16种等可能的结果,所选两人正好分在一组的有4种情况,∴所选两人正好分在一组的概率是:=.20.【分析】作CF⊥A B于点F,设AF=x米,在直角△ACF中利用三角函数用x 表示出CF的长,在直角△ABE中表示出BE的长,然后根据CF﹣BE=DE即可列方程求得x的值,进而求得AB的长.【解答】解:作CF⊥AB于点F,设AF=x米,在Rt△ACF中,tan∠ACF=,则CF====x,在直角△ABE中,AB=x+BF=4+x(米),在直角△ABF中,tan∠AEB=,则BE===(x+4)米.∵CF﹣BE=DE,即x﹣(x+4)=3.解得:x=,则AB=+4=(米).答:树高AB是米.21.【分析】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80﹣3x)台,根据“商场最多支出132000元用于购买这批电冰箱”列出不等式,解之即可得;(2)根据“总利润=甲种冰箱利润+乙种冰箱利润+丙种冰箱利润”列出W关于x的函数解析式,结合x的取值范围,利用一次函数的性质求解可得.【解答】解:(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80﹣3x)台.根据题意得:1200×2x+1600x+2000(80﹣3x)≤132000,解得:x≥14,∴商场至少购进乙种电冰箱14台;(2)由题意得:2x≤80﹣3x且x≥14,∴14≤x≤16,∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,∴W随x的增大而减小,∴当x=14时,W取最大值,且W最大=﹣140×14+22400=20440,此时,商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.22.【分析】(1)CD与圆O相切,理由为:由AC为角平分线得到一对角相等,再由OA=OC,利用等边对等角得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OC与AD平行,根据AD垂直于CD,得到OC垂直于CD,即可得证;(2)根据E为弧AC的中点,得到弧AE=弧EC,利用等弧对等弦得到AE=EC,可得出弓形AE与弓形EC面积相等,阴影部分面积拼接为直角三角形DEC的面积,求出即可.【解答】解:(1)CD与圆O相切.理由如下:∵AC为∠DAB的平分线,∴∠DAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,则CD与圆O相切;(2)连接EB,交OC于F,∵E为的中点,∴=,∴AE=EC,∴∠EAC=∠ECA,又∵∠EAC=∠OAC,∴∠ECA=∠OAC,∴CE∥OA,又∵OC∥AD,∴四边形AOCE是平行四边形,∴CE=OA,AE=OC,又∵OA=OC=1,∴四边形AOCE是菱形,∵AB为直径,得到∠AEB=90°,∴EB∥CD,∵CD与⊙O相切,C为切点,∴OC⊥CD,∴OC∥AD,∵点O为AB的中点,∴OF为△ABE的中位线,∴OF=AE=,即CF=DE=,在Rt△OBF中,根据勾股定理得:EF=FB=DC=,则S阴影=S△DEC=××=.23.【分析】(1)直接利用每件利润×销量=总利润进而得出等式求出答案;(2)直接利用每件利润×销量=总利润进而得出函数关系式,利用二次函数增减性求出答案.【解答】解:(1)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=25,x2=35,答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)由题意得:W=(x﹣20)(﹣2x+80)=﹣2(x﹣30)2+200,∵a=﹣2,∴抛物线开口向下,当x<30时,y随x的增大而增大,又由于这种农产品的销售价不高于每千克28元∴当x=28时,W最大=﹣2×(28﹣30)2+200=192(元).24.【分析】(1)猜想∠QEP=60°;(2)以∠DAC是锐角为例进行证明,如图2,根据等边三角形的性质得AC=BC,∠ACB=60°,再根据旋转的性质得CP=CQ,∠PCQ=6O°,则∠ACP=∠BCQ,根据“SAS”可证明△ACP≌△BCQ,得到∠APC=∠Q,然后利用三角形内角和定理可得到∠QEP=∠PCQ=60°;(3)作CH⊥AD于H,如图3,与(2)一样可证明△ACP≌△BCQ,则AP=BQ,由∠DAC=135°,∠ACP=15°,易得∠APC=30°,∠PCB=45°,则可判断△ACH为等腰直角三角形,所以AH=CH=AC=2,在Rt△PHC中,根据含30度的直角三角形三边的关系得PH=CH=2,于是可计算出PA=PH﹣AH=2﹣2,所以BQ=2﹣2.【解答】解:(1)∠QEP=60°;证明:如图1,∵PC=CQ,且∠PCQ=60°,则△CQB和△CPA中,,∴△CQB≌△CPA(SAS),∴∠CQB=∠CPA,又因为△PEM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.故答案为:60;(2)∠QEP=60°.以∠DAC是锐角为例.证明:如图2,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∵线段CP绕点C顺时针旋转60°得到线段CQ,∴CP=CQ,∠PCQ=6O°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴∠APC=∠Q,∵∠1=∠2,∴∠QEP=∠PCQ=60°;(3)作CH⊥AD于H,如图3,与(2)一样可证明△ACP≌△BCQ,∴AP=BQ,∵∠DAC=135°,∠ACP=15°,∴∠APC=30°,∠PCB=45°,∴△ACH为等腰直角三角形,∴AH=CH=AC=×4=2,在Rt△PHC中,PH=CH=2,∴PA=PH﹣AH=2﹣2,∴BQ=2﹣2.25.【分析】(1)根据待定系数法,可得函数解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得QF,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;(3)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ的长,根据平行四边形的性质,可得关于m的方程,根据解方程,可得m,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)将A,C点坐标代入函数解析式,对称轴,得[来源:] ,解得,抛物线的解析式为y=﹣x2+x+4;(2)当y=0时,﹣x2+x+4=0,解得x1=﹣2,x2=4,B(4,0);设直线BC的解析式为y=kx+n(k≠0),∵B(4,0),C(0,4),,解得BC的解析式为y=﹣x+4,过F点作FQ⊥x轴交BC于Q,如图,设点Q的坐标是(m,﹣m+4),则点F的坐标是(m,﹣m2+m+4).FQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,S四边形ABCF=S△ABC+S△BCF=BC•OC+FQ•x B=×[4﹣(﹣2)]×4+×4(﹣m2+2m)=﹣m2+4m+12=﹣(m﹣2)2+16,当m=2时,S四边形ABCF最大,最大值是16,m=2时,﹣m2+m+4=4,即F点坐标是(2,4);(3)设直线BC的解析式为y=kx+n(k≠0),∵B(4,0),C(0,4),∴,解得BC的解析式为y=﹣x+4,由y=﹣x2+x+4=﹣(x﹣1)2+,∴顶点D(1,),又点E在直线BC上,则点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,由﹣m2+2m=,解得:m=1或3.当m=1时,线段PQ与DE重合,m=1舍去,∴m=3,P1(3,1).②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,由m2﹣2m=,解得m=2±,经检验适合题意,此时P 2(2+,2﹣),P3(2﹣,2+).综上所述,满足题意的点P有三个,分别是P 1(3,1),P2(2+,2﹣),P3(2﹣,2+).。