语音信号数字化和时分多路复用
- 格式:ppt
- 大小:537.00 KB
- 文档页数:35
多路复⽤技术(频分多路复⽤、时分多路复⽤和波分多路复⽤)基带信号就是将数字信号1或0直接⽤两种不同的电压来表⽰,然后送到线路上去传输。
宽带信号则是将基带信号进⾏调制后形成的频分复⽤模拟信号。
多路复⽤技术的基本原理是:各路信号在进⼊同⼀个有线的或⽆线的传输媒质之前,先采⽤调制技术把它们调制为互相不会混淆的已调制信号,然后进⼊传输媒质传送到对⽅,在对⽅再⽤解调(反调制)技术对这些信号加以区分,并使它们恢复成原来的信号,从⽽达到多路复⽤的⽬的。
常⽤的多路复⽤技术有频分多路复⽤技术和时分多路复⽤技术。
频分多路复⽤是将各路信号分别调制到不同的频段进⾏传输,多⽤于模拟通信。
频分复⽤(FDM,Frequency Division Multiplexing)就是将⽤于传输信道的总带宽划分成若⼲个⼦频带(或称⼦信道),每⼀个⼦信道传输1路信号。
频分复⽤要求总频率宽度⼤于各个⼦信道频率之和,同时为了保证各⼦信道中所传输的信号互不⼲扰,应在各⼦信道之间设⽴隔离带,这样就保证了各路信号互不⼲扰(条件之⼀)。
频分复⽤技术的特点是所有⼦信道传输的信号以并⾏的⽅式⼯作,每⼀路信号传输时可不考虑传输时延,因⽽频分复⽤技术取得了⾮常⼴泛的应⽤。
频分复⽤技术除传统意义上的频分复⽤(FDM)外,还有⼀种是正交频分复⽤(OFDM)。
频分多路复⽤的原理图如下所⽰:时分多路复⽤技术是利⽤时间上离散的脉冲组成相互不重叠的多路信号,⼴泛应⽤于数字通信。
时分多路复⽤适⽤于数字信号的传输。
由于信道的位传输率超过每⼀路信号的数据传输率,因此可将信道按时间分成若⼲⽚段轮换地给多个信号使⽤。
每⼀时间⽚由复⽤的⼀个信号单独占⽤,在规定的时间内,多个数字信号都可按要求传输到达,从⽽也实现了⼀条物理信道上传输多个数字信号。
假设每个输⼊的数据⽐特率是 9. 6kbit / s ,线路的最⼤⽐特率为76. 8 kbit / s ,则可传输8 路信号。
除了频分和时分多路复⽤技术外,还有⼀种波分复⽤技术。
简述多路复用技术的概念与分类
多路复用技术是一种将多个独立的数据流或信号传输在同一物理通道中的技术。
它可以提高通信资源的利用率,减少物理通道的数量,从而实现高效的数据传输。
根据不同的传输方式,多路复用技术可以分为以下几种分类:
1. 时分多路复用(TDM):TDM 将不同的数据流分配到不同的时间片段,每个数据流在特定的时间间隔内进行传输。
这种方式常用于电话系统中,每个话音信号在时间上交替传输,使得多个用户可以共享同一物理通道。
2. 频分多路复用(FDM):FDM 将不同的数据流分配到不同的频率带宽上,每个数据流占据不同的频率范围。
这种方式常用于无线电广播和电视传输中,不同的广播电台或电视频道在不同的频段上进行传输,利用频谱资源。
3. 统计时分多路复用(STDM):STDM 是一种灵活的多路复用技术,它根据不同数据流的实时需求来动态分配时间片段。
它可以根据数据流的负载情况,自适应地调整每个数据流的传输速率。
4. 统计多路复用(SDM):SDM 是一种基于统计的多路复用技术,它根据不同数据流的实时需求来动态分配通信资源。
它可以根据数据流的特点和优先级,智能地调整资源分配,以实现更高效的数据传输。
总之,多路复用技术通过巧妙地将多个数据流或信号合并在一起传输,提高了通信资源的利用效率和传输效果。
不同的多路复用技术适用于
不同的应用场景,可以根据需求选择合适的技术来实现数据传输。
PCM时隙解释1第二章电路交换原理2.2 模拟语音数字化和时分复用2在通信行业的实践运用中,经常会提到2M、E1、TS0、信令点、路由等通信技术专业术语。
本课程从最基础的语音数字化入手,阐述这些基础技术的由来和应用。
3语音数字化是将语音的电模拟信号变成二进制的数字加以传输的一种通信方式。
常用的方法有两大类:脉冲编码(PCM);增量编码(△M)。
一、语音数字化通信图PCM通信的简单模型发端:语音经声电变换成模拟信号,再经模拟数字转换设备变成二进制数字脉冲信号。
线路:一连串的二进制等幅编码脉冲。
收端:经过数字模拟转换设备把二进制编码脉冲还原成模拟信号,最后由电声变换设备变成语音。
基本原理:51、抽样——语音信号的离散化语音信号的抽样抽样器6低通型信号抽样根据著名的奈奎斯特抽样定理(抽样定理)有:设时间连续信号f(t),其最高截止频率为fM。
如果用时间间隔为TS≤1/2fM的开关信号对f(t)进行抽样,则f(t)就可被样值信号fS(t)=f(nTS) 来唯一地表示。
或者说,要从样值序列无失真地恢复原时间连续信号,其抽样频率应选为fS≥2fM。
抽样定理7因为语音信号频率为300~3400Hz,所以抽样频率f>6800Hz就可以,综合考虑到要有频率过渡带保护,故抽样频率取8000Hz。
每个抽样之间的间隔T=1/8000=125μs。
语音信号频率的确定82、量化——抽样信号幅值的离散化量化的定义及描述量化是把信号在幅度域上连续取值变换为幅度域上离散取值的过程。
是一个近似表示的过程,即无限个数取值的模拟信号用有限个数值的离散信号近似表示。
9 量化示意图10均匀量化:过程简单,但当语音动态范围太大时,为保证小信号的信噪比达到标准,代价大,数码率高,编译码器成本高。
非均匀量化:把小信号的量化级增加,提高信噪比;大信号的量化级减少,使大小信号的信噪比相对拉平。
量化非均匀量化均匀量化{量化的两种方式以及优缺点非均匀量化实现框图中国采用的A律A律13折线压缩特性133、编码码位安排:D1=1 正0 负编码一般和量化一起进行。
通信系统中的多路复用技术介绍多路复用技术指的是在通信系统中,通过将多个信号合并在一个信道中传输,以提高通信信道的利用率和传输效率的一种技术。
它可以将不同用户的信号同时传输在同一个信道中,从而实现多个用户同时进行通信。
下面将详细介绍多路复用技术的原理和步骤。
一、多路复用技术的原理1. 频分多路复用(FDM):将传输信道频带划分为若干个不重叠的子信道,每个子信道用于传输一个用户的信号。
通过控制每个子信道的带宽,可以使不同用户之间的信号不会相互干扰。
2. 时分多路复用(TDM):将传输信道的时间分成若干个时隙,每个时隙用于传输一个用户的信号。
用户的信号在不同的时隙进行传输,通过控制每个用户的传输速率,可以实现多用户同时传输。
3. 统计多路复用(SDM):根据用户的传输需求和信道的使用情况,动态地分配信道资源。
当用户的传输需求较小或者其他用户没有传输时,可以将信道资源分配给其他用户使用。
二、多路复用技术的步骤1. 信号接入:将不同用户产生的信号接入到通信系统中。
用户的信号可以通过不同的方式接入,如数字化后通过信号结构器输入、模拟信号通过模数转换器转换为数字信号后输入等。
2. 信号编码:对每个用户的信号进行编码。
编码可以使得不同用户的信号在传输过程中相互独立,不会相互干扰。
常见的编码方式有频分编码、时分编码等。
3. 多路复用:将各个用户的信号按照多路复用技术的原理进行合并。
例如,对于频分多路复用技术,可以将每个用户的信号经过调制后分配到不同的频带中;对于时分多路复用技术,可以将每个用户的信号按照时间顺序分配到不同的时隙中。
4. 信号传输:将多路复用后的信号通过信道传输。
传输过程中需要保持信号的完整性和准确性,避免信号受到干扰或衰减。
5. 信号分解:在接收端,将传输的信号进行分解,分离出各个用户的信号。
分解可以使用与多路复用技术相对应的解复用技术,如频分解复用、时分解复用等。
6. 信号解码:对分离出的每个用户的信号进行解码。
TDM的原理与应用1. 什么是TDM时分多路复用(TDM,Time Division Multiplexing)是一种通信技术,它将多个信号按时间进行划分,通过在不同时间段内传输不同信号,实现多路复用的目的。
2. TDM的原理TDM原理基于时间片(Time Slot),将时间分为若干等间隔的小片段,每个小片段称为一个时间槽。
不同信号依次占用时间槽,按照预定的顺序进行发送和接收。
通过这种方式,多个信号可以在同一传输介质上共享,提高了传输效率。
3. TDM的应用TDM技术广泛应用于各个领域,下面列举了几个常见的应用场景:3.1 通信网络TDM在通信网络中用于集中管理和传输多个通信信号,如电话网络、数据网络等。
通过在时间上轮流发送不同信号,实现了多个通信信号的同时传输和接收,提高了传输效率和利用率。
3.2 数字音视频传输TDM被广泛用于数字音视频传输领域。
通过将音视频信号按照时间片的方式进行传输,可以实现多个音视频信号的同时传输和播放,使得用户可以同时观看多个电视频道或听取多个音频源。
3.3 数字交换机TDM技术在数字交换机中起到重要作用。
数字交换机通过TDM将多个语音信号以数字化的方式在传输介质上进行传输和交换。
这种方式可以提高交换机的容量和效率,同时降低成本和占用空间。
3.4 物联网通信TDM技术在物联网通信中也有广泛的应用。
通过TDM技术,可以在物联网传感器网络中实现多个传感器数据的采集和传输,使得物联网系统可以同时处理多个传感器的数据。
4. TDM的优点和缺点4.1 优点•提高传输效率:TDM技术可以实现多个信号在同一传输介质上共享,提高了传输效率。
•简单实用:TDM技术相对简单,易于实施和维护。
4.2 缺点•对时钟同步要求高:TDM技术对于信号的时钟同步要求较高,如果各个信号的时钟不同步,可能导致数据传输错误。
•难以适应变化的数据速率:TDM技术通常需要预先分配好时间片的数量,难以适应数据速率变化较大的场景。
gsm技术原理
GSM(全球系统移动通信)是一种数字移动通信技术,它基
于分时复用和频分复用的原理,允许手机用户通过无线信道进行语音和数据的传输。
在GSM系统中,一个城市或地区被分为多个小区,每个小区
都有一个基站,负责接收和发送移动设备的信号。
每个基站都有一个覆盖范围,称为小区覆盖范围。
GSM系统使用频分复用的原理来同时支持多个用户进行通信。
为了实现这一点,GSM的频谱被划分为多个频道,每个频道
都有一定的带宽。
每个小区都被分配了一组频道,其中包括用于语音通信的常用控制信道和数据通信的用户信道。
在GSM系统中,数据和语音信号被数字化并使用时间分多路
复用技术进行传输。
这意味着每个用户在不同的时间段占用同一个频道进行通信。
这种时间分多路复用技术允许多个用户同时使用同一个频道进行通信,提高了频谱的利用率。
GSM系统还使用了TDMA(时分多路复用)技术,将每个时
间周期划分为多个时隙,每个时隙被分配给一个用户进行通信。
这种分时复用技术允许多个用户同时在同一个频率上进行通信,每个用户在自己的时隙内传输数据。
此外,GSM系统还采用了一些技术来增强通信的可靠性和质量。
其中包括错误检测和纠正编码、功率控制、信道编码等。
这些技术能够降低通信中的误码率,提高通信的质量和可靠性。
总而言之,GSM技术基于分时复用和频分复用的原理,通过数字化、时间分多路复用和时分多路复用技术,允许多个用户同时在同一个频道进行通信。
通过使用一系列的增强技术,GSM系统能够提供可靠的语音和数据传输服务。
时分多路复用(TDM):概念时分多路复用(TDM:Time Division Multiplexing)是按传输信号的时间进行分割的,它使不同的信号在不同的时间内传送,将整个传输时间分为多时间间隔(Slot time,TS,又称为时隙),每个时间片被一路信号占用。
TDM就是通过在时间上交叉发送每一路信号的一部分来实现一条电路传送多路信号的。
电路上的每一短暂时刻只有一路信号存在。
因数字信号是有限个离散值,所以TDM技术广泛应用于包括计算机网络在内的数字通信系统,而模拟通信系统的传输一般采用FDM。
TDM是以信道传输时间作为分割对象,通过多个信道分配互不重叠的时间片的方法来实现,因此时分多路复用更适用于数字信号的传输。
它又分为同步时分多路复用和统计时分多路复用。
采用基带传输的数字数据通信系统,如计算机网络系统、现代移动通信系统等;原理由于基带传输系统采用串行传输的方法传输数字信号,不能在带宽上划分。
TDM技术在信道使用时间上进行划分,按一定原则把信道连续使用时间划分为一个个很小的时间片,把各个时间片分配给不同的通信过程使用;由于时间片的划分一般较短暂,可以想象成把整个物理信道划分成了多个逻辑信道交给各个不同的通信过程来使用,相互之间没有任何影响,相邻时间片之间没有重叠,一般也无须隔离,信道利用率更高。
通常采用的技术有:STDM同步十分多利复用技术和ATDM异步时分多路复用技术同步时分复用采用固定时间片分配方式,即将传输信号的时间按特定长度连续地划分成特定的时间段(一个周期),再将每一时间段划分成等长度的多个时隙,每个时隙以固定的方式分配给各路数字信号,各路数字信号在每一时间段都顺序分配到一个时隙。
由于在同步时分复用方式中,时隙预先分配且固定不变,无论时隙拥有者是否传输数据都占有一定时隙,这就形成了时隙浪费,其时隙的利用率很低,为了克服STDM的缺点,引入了异步时分复用技术。
异步时分复用(ATDM)技术又被称为统计时分复用技术(Statistical Time Division Multiplexing),它能动态地按需分配时隙,以避免每个时间段中出现空闲时隙。
多路复用技术的概念多路复用技术的概念多路复用(Multiplexing)技术是一种将多个信号合并成一个信号进行传输的技术。
在通信技术中,一条物理通路是很宝贵的,多路复用技术可以将多条数据流合并传输,从而节省了通信资源。
多路复用技术被广泛应用在通信领域,例如电话、网络等。
按类划分,多路复用技术主要分为以下几种:1. 时分复用 (Time Division Multiplexing, TDM)时分复用技术将不同的信号按时间顺序交织在一起,然后在接收端对其进行分离。
例如电话系统中,多个电话通信时,通过时分复用技术将不同的通话按时间分隔,使其能够同时进入同一条物理通路。
这种技术的优点是简单易用,但是需要准确的时钟同步,因此要求实现较高。
2. 频分复用 (Frequency Division Multiplexing, FDM)频分复用技术将不同的信号按照不同的频率划分在一起,然后在接收端对其进行分离。
例如广播电台,通过频分复用技术将不同的电视、广播频道混在一起,使其能够通过同一条无线电波进行传输。
这种技术的优点是实现较为简单,但是占用频带较为宽广。
3. 波分复用 (Wavelength Division Multiplexing, WDM)波分复用技术将不同的信号按照不同的波长划分在一起,然后在接收端对其进行分离。
例如光纤通信,通过波分复用技术将不同的光信号混在一起,使其能够通过同一条光纤进行传输。
这种技术的优点是传输距离远、媒介损耗小,但是实现较难、成本较高。
4. 统计时分复用 (Statistical Time Division Multiplexing, STDM)统计时分复用技术与时分复用技术类似,不同的是数据传输时不需要严格的时隙分配。
例如,在数据网络传输中,将不同的数据包按需时分复用,从而充分利用了通信资源。
这种技术的优点是灵活性高,但是需要复杂的流量控制和调度算法。
综上所述,多路复用技术是一种通信领域中非常重要的技术之一,它通过合理地利用通信资源,提高了通信效率和可靠性。
PCM 系统一、PCM系统相关概念1、PCM的发展多路复用技术主要有:频分制(FDM)和时分制(TDM)1)频分制(FDM):语音信号调制在各个频带上。
◆把传输频带分为若干部分,每部分均可作为独立的传输信道使用每对用户占用其中的一个频段。
(频分制:又称载波通信,主要用于模拟通信)◆缺点:频带宽,干扰大2)时分制(TDM):◆把传输通道按时间分割以传送若干路电话的通信方式◆每对用户占用其中的一段时间(时隙Time Slot),进行PCM处理。
(时分制:又称时间分割制通信,主要用于数字通信)2、模拟电信号的处理,话音信号的数字化PCM系统的基本单元:发送端PCM系统基本单元1)采样频率:f >=2 f0 话音不失真话音频率:300~3400,Max:4000Hzf0=4000Hz,采样频率=2×4000=8000Hz先滤波,再采样以限制频率(<4000Hz),通过采样,连续信号变为每秒有限的离散值2)量化:采用先压缩再均匀量化,压缩率为A律(美国用µ律)所有的离散值可得到归一化的电平输出3)编码:把离散值用一定的编码表示,目前用8比特编码编码类型:A)起止信号(单极性信号):1:有电流,0:无(AXE内部使用:GS,BUS)B)双极性信号:1:正电流,0:负电流C)归零信号:1:1/2宽电流,0:无D)伪三元码:1:+-交替,0:无E)曼彻斯特码:1:+-,0:-+F)差分编码:1:有电流变化,0:无变化G)HDB3码:连续三个0,插入1,连续两个破坏点(1个数为奇数),第一个0改为1/0(1/0,取决于两个破坏点间“1”的个数,即“1”个数要为奇数)4)再生:PCM系统利用再生中继器恢复PCM波形,从而可抗畸变和噪声5)解码:按码字恢复脉冲幅度6)滤波:数字信号 模拟信号3、PCM 基本原理欧洲、我国使用的PCM系统:32信道/帧,采样频率:8000Hz采样间隔:125µs每时隙时长:125µs/32=3.9µs压缩律:A律速率:2.048Mbit/s1)PCM帧结构(见图)帧结构特点:a)每帧125微秒,分32时隙(TS0~TS31),每时隙3.9微秒b)时隙TS1~TS15和TS17~TS31用于传送话音信息,TS0:用于帧同步和帧失步告警TS16:CAS:用于线路信令的传输和复帧同步,N0.7:某些TS16用于信号传输,但不是所有TS16不用于信号传输的TS16可用于话音c)每时隙8比特,每位占用时间1/8×3.9微秒=488毫微秒,每帧有8×32=256比特d)每16帧为一复帧(F0~F15),复帧时长:16×125微秒=2毫秒e)每秒传送8000次,帧的总码率为256比特/帧×8000帧/秒=2048Kbit/s 基群速率二、PCM 线上信令的传递p3:9.91、CAS2、CCS三、连接到GS的设备p3:9.15GS是APT部分的核心,绝大多数的交换设备均连在GS上(LIC,KRC等除外,直接连在用户级上),由于设备类型众多,为了方便管理和维护,为各种设备提供了统一的接口:TPLU 或GSNIC,接口速率为2Mbit/s◆TPLU:Time and Plane Selection UnitGSNIC:Group Switching Network Interface CircuitTPLU和GSNIC的功能:负责选面,链路监视和例行测试图3:9.6◆连接在GS的设备主要有:ETC,PCD,PCDD,CCD,RT,JT,CSR1,ASDH等图3:9.7◆ETC的功能:ETC是最常用的PCM接口板,与其它功能块一起完成对PCM的监视。
摘要数据通信系统或计算机网络系统中,传输媒体的带宽或容量往往会超过传输单一信号的需求,为了有效地利用通信线路,希望一个信道同时传输多路信号,这就是所谓的多路复用技术(Multiplexing)。
采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输,在远距离传输时可大大节省电缆的安装和维护费用。
频分多路复用FDM (Frequency Division Multiplexing)和时分多路复用TDM (Time Division Multiplexing)是两种最常用的多路复用技术。
时分多路复用(TDM)是按传输信号的时间进行分割,它使不同的信号在不同的时间内传送,将整个传输时间分为许多时间间隔(Slot time,TS,又称为时隙),每个时间片被一路信号占用,适用于媒体数据速率容量超过要传输的几路数字信号总速率的情况。
此次课程设计利用MATLAB/Simulink仿真软件实现对时分多路复用系统的模拟仿真,达到对输入信号实现复用和解复用的效果。
关键词:多路复用;解复用;系统仿真目录前言 (1)一、基本原理 (2)1.1多路复用技术 (2)1.2时分多路复用技术概述 (2)1.3TDM系统组成及工作原理 (3)1.4时分复用中的同步技术原理 (3)1.2.1位同步原理 (4)1.2.2帧同步原理 (4)1.2.3 载波同步原理 (4)1.2.4网同步原理 (4)二、模块简介 (6)2.1设计思路 (6)2.2 MATLAB概述 (6)2.3 Simulink简介 (6)2.4时分多路复用系统的基本原理 (7)三、时分复用系统仿真模型 (10)3.1 Simulink仿真框图搭建 (10)3.2 Subsystem/Subsystem1结构框图 (10)3.3参数设置 (11)3.4仿真结果及分析 (13)总结 (17)致谢 (18)参考文献 (19)前言在实际的通信系统中,经常需要在两地之间同时传送多路信号。
下面主要以语音信号为例,介绍PCM 原理:一、语音信号的数字化大家都知道,语音信号是模拟信号,而数字程控交换机内部交换的却是数字信号,那么如何使模拟的语音信号数字化,可采用脉冲编码调制的方法,即PCM 。
我们知道,模拟信号数字化称为模/数(A/D )变换,而把数字信号还原成模拟信号称为数/模(D/A )变换,综合A/D 和D/A 的一般步骤,图1给出了PCM 通信的简单模型。
图1 PCM 通信的简单模型 (一)抽样语音信号在时间上是连续的,经过抽样后变成时间上离散的信号。
简单的说,抽样就是将模拟信号在时间上离散的过程。
抽样上每隔一定的时间间隔T ,在抽样器上接发送端接收端A/D 变换 D/A 变换入一个抽样脉冲,通过抽样的脉冲去控制抽样器的开关电路,取出话音信号的瞬间电压值,即样值。
如图2所示,抽样后的信号称为抽样信号,显然,它可以看作按幅度调制的脉冲信号,即PAM 信号,其幅度的取值仍是连续的,不能用有限个数字来表示,因此抽样值仍是模拟信号。
图2 语音信号的抽样语音信号抽样后信号所占用的时间被压缩了,这是时分复用技术的必要条件。
关于这一点将在本节课第三个内容讲解,但是,用抽样信号代替原信号必须要满足抽样定理,否则样值不能够完全表征原信号。
f(t)t tt抽样脉冲抽样定理:对于一个具有有限带宽的模拟信号f(t),其最高频率分量为fm ,则当抽样频率fs ≥2fm 时,样值可以完全表征原信号。
我们的语音信号频率在300-3400HZ之间,根据抽样定理,抽样频率fs=2x3400=6800HZ,为了留一定的防卫带,ITU(International Telecommunications Union,国际电信联)盟规定的抽样频率为:fs=8000HZ,抽样周期为T=1/8000=125μs。
(二)量化抽样后的信号,其幅度的取值仍是无限多个,是连续的,在幅度上离散化抽样信号,就是量化。
简单的说,量化就是将抽样信号在幅度上离散化的过程。
第1章概述一、模拟信号与数字信号的特点模拟信号——幅度取值是连续的连续信号离散信号数字信号——幅度取值是离散的二进码多进码连续信号离散信号●数字信号与模拟信号的区别是根据幅度取值上是否离散而定的。
●离散信号与连续信号的区别是根据时间取值上是否离散而定的。
二、模拟通信与数字通信●根据传输信道上传输信号的形式不同,通信可分为模拟通信——以模拟信号的形式传递消息(采用频分复用实现多路通信)。
数字通信——以数字信号的形式传递消息(采用时分复用实现多路通信)。
●数字通信传输的主要对象是模拟话音信号等,而信道上传输的一般是二进制的数字信号。
所要解决的首要问题模拟信号的数字化,即模/数变换(A/D变换)三、数字通信的构成●话音信号的基带传输系统模型四、数字通信的特点1、抗干扰能力强,无噪声积累对于数字通信,由于数字信号的幅值为有限的离散值(通常取二个幅值),在传输过程中受到噪声干扰,当信噪比还没有恶化到一定程度时,即在适当的距离,采用再生的方法,再生成已消除噪声干扰的原发送信号。
由于无噪声积累,可实现长距离、高质量的传输。
2、便于加密处理3、采用时分复用实现多路通信4、设备便于集成化、小型化5、占用频带较宽五、数字通信系统的主要性能指标● 有效性指标 P7·信息传输速率——定义、公式l n f f s B ⋅⋅=、物理意义 ·符号传输速率——定义、公式(BB t N 1=)、关系:M N R B b 2log = ·频带利用率——是真正用来衡量数字通信系统传输效率的指标(有效性)频带宽度符号传输速率=η Hz Bd /频带宽度信息传输速率=η Hz s bit //● 可靠性指标 P8·误码率——定义 ·信号抖动例1、设信号码元时间长度为s 7106-⨯,当(1)采用4电平传输时,求信息传输速率和符号传输速率。
(2)若系统的带宽为2000kHz ,求频带利用率为多少Hz s bit //。
《计算机网络基础(第二版)》习题参考答案第一章1.填空题(1)计算机网络按网络的覆盖X围可分为_局域网_、城域网和__广域网__。
(2)从计算机网络组成的角度看,计算机网络从逻辑功能上可分为通信子网和__资源 __子网。
(3)计算机网络的拓扑结构有星型、树型、总线型、环型和网状型。
2.简答题(1)计算机网络的发展经过哪几个阶段?每个阶段各有什么特点?答:单机系统:在单处理机联机网络中,由单用户独占一个系统发展到分时多用户系统,被称为第一代网络。
多机系统:将多个单处理机联机终端网络互相连接起来,以多处理机为中心的网络,并利用通信线路将多台主机连接起来,为用户提供服务,形成了以通信子网为核心的第二代网络,随着分组交换技术的使用,逐渐形成了以遵守网络体构的第三代网系结络。
Internet是计算机网络发展最典型的实例,该网络的发展也促使新的高速网络技术的不断出现,又提高了网络的发展。
(2)什么是计算机网络?计算机网络的主要功能是什么?答:利用通信设备和线路,将分布在地理位置不同的、功能独立的多个计算机系统连接起来,以功能完善的网络软件(网络通信协议及网络操作系统等)实现网络中资源共享和信息传递的第1页共33页系统。
主要功能: 1. 数据交换和通信:在计算机之间快速可靠地相互传递数据、程序或文件;2. 资源共享:充分利用计算机网络中提供的资源(包括硬件、软件和数据); 3. 提高系统的可靠性:通过计算机网络实现的备份技术可以提高计算机系统的可靠性。
4.分布式网络处理和负载均衡:将任务分散到网络中的多台计算机上进行,减轻任务负荷过重的单台主机。
(3)计算机网络分为哪些子网?各个子网都包括哪些设备,各有什么特点?答:从计算机网络系统组成的角度看,典型的计算机网络分为资源子网和通信子网。
资源子网由主机、终端、终端控制器、连网外设、各种软件资源与信息资源组成。
主机是资源子网的主要组成单元,为本地用户和网络中远程用户访问网络其他主机设备与资源提供服务。