苏科版七年级上 4.1从问题到方程(第一课时) 教案 (常州比赛一等奖)
- 格式:doc
- 大小:43.00 KB
- 文档页数:3
苏科版七年级数学上册《4.1从问题到方程》教学设计一. 教材分析本节课的主题是从问题到方程,是苏科版七年级数学上册第四章第一节的内容。
本节课的主要目的是让学生理解方程的概念,并学会如何将实际问题转化为方程。
教材通过丰富的实例,引导学生认识方程在解决问题中的重要性。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数学概念和运算有一定的了解。
但是,他们可能对将实际问题转化为方程的方法还不够熟悉。
因此,在教学过程中,需要通过具体的实例,让学生体会方程在解决问题中的作用,并逐步学会如何将问题转化为方程。
三. 教学目标1.让学生理解方程的概念,知道方程在解决问题中的重要性。
2.引导学生学会如何将实际问题转化为方程。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:让学生理解方程的概念,并学会如何将实际问题转化为方程。
2.难点:引导学生学会如何将实际问题转化为方程。
五. 教学方法本节课采用问题驱动的教学方法,通过具体的实例,引导学生认识方程的概念,并学会如何将实际问题转化为方程。
同时,采用小组合作的学习方式,培养学生的团队合作意识和解决问题的能力。
六. 教学准备1.准备相关的实例,用于引导学生理解方程的概念。
2.准备练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这个问题。
例如,给出一个实际问题:小明有苹果和香蕉两种水果,苹果的数量是香蕉的两倍,如果小明一共有10个水果,那么请问小明有多少个苹果和香蕉?2.呈现(10分钟)通过呈现实例,让学生理解方程的概念。
以小明的问题为例,引导学生列出方程:2x + y = 10,其中x表示香蕉的数量,y表示苹果的数量。
解释方程的含义,并让学生认识到方程在解决问题中的重要性。
3.操练(10分钟)让学生分组讨论,尝试解决其他类似的问题。
例如,给出一个新的问题:小红有苹果和香蕉两种水果,苹果的数量是香蕉的三倍,如果小红一共有15个水果,那么请问小红有多少个苹果和香蕉?让学生列出方程并求解。
《从问题到方程》教学目标(一)知识与能力目标.1、探索实际问题中的等量关系,并用方程描述;2、通过对多种实际问题中数量关系的分析,使学生初步感受方程是刻画现实世界的有效模型.(二)过程与方法目标.1、会经历将一些实际问题抽象为数与代数问题(方程问题)的过程;2、经历运用数学符号和图形描述现实世界的过程.(三)情感态度与价值观目标.1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义;2、体验在生活中学数学、用数学的价值,感受学习数学的乐趣.教学重、难点引导学生自主探索实际问题中的等量关系,感受方程作为刻画现实世界有效模型的意义.教学方法自主探究、引导发现式教学.教学过程(一)情景创设,引入新课.小游戏:用学生的年龄和老师的年龄编题.【设计意图】1、增强学生学习的自信心,实现师生互动.2、使学生通过比较算术方法与方程方法优劣,经历将一些实际问题抽象为数与代数问题(方程问题)的过程,初步感受方程是解决实际问题的有效模型.从而引入新课.(二)激发探究,揭示新知.观察与思考:1、观看flash动画,如何称一个蓝色小球的质量?2、想一想:在图中平衡的天平上,蓝色小球重多少克?【设计意图】引导学生用方程的思想解决实际问题,感受方程是表达数量之间相等关系的“天平”.试一试:买5瓶饮料,4只面包.共花去15.8元钱.每瓶饮料2.2元,每只面包多少元?你能列出方程吗?【设计意图】以图片信息给出问题,培养学生自主探究及语言表达能力,初步感受方程.探索活动:做一做:1、某排球队参加排球比赛,胜一场得2分,负一场得1分,该队共赛了12场,总得分为20分,请问该队胜了几场?请列出方程.分析:如果设他们胜了x场,那么负 ____ 场,你能用方程描述这个问题中数量之间的相等关系吗?相等关系:胜场得分+负场得分=总得分.2、国庆六十周年的阅兵场上,除了三军仪仗队外,每个方阵中的人数是相同的.如果将每横排25人改为每横排35人,这样就比原来的排数少4排,那么你知道每个方阵中有多少人吗?【设计意图】观看国庆六十周年的阅兵片段,增强民族自豪感,培养学生合作学习及语言表达能力.(三)小结反思,步步为赢.1、由实际问题到方程要经历哪些过程?(1).审清题意,找出相等关系;(2).恰当地设未知数x;(3).根据相等关系列出方程.2、你觉得用方程来描述问题中的相等关系方便吗?【设计意图】引导学生结合前面学习的感受,交流发言.(四)拓展提高、人人参与.巩固所学、拓展思维.1、为了预防甲型H1N1流感,校医李医生到防疫站买测温仪,如果买6只,她带的钱将剩余300元;如果买7只,她带的钱还少150元.你知道这款测温仪的价格吗?请列出方程.2、据资料,海拔每升高100m,气温下降0.6°C.现测得某山脚下的气温15.2°C,山顶的气温为12.4°C.若设这座山高为xm,可得方程______________.【设计意图】巩固所学,培养学生思维的开放性、灵活性、创造性.体会学数学用数学的快乐.知识升华、回归生活.你能由你的生活感受编一个为下列方程的应用问题吗?1、2x+3=102、2x+3(x-1)=10(五)、收获体会、交流心得.说一说这节课你有什么收获?说出来,让我们一起来分享!(六)、布置作业、引导预习.思考:今天所列的方程,有什么共同特点?第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
4.1从问题到方程(1)一、教材分析:1.学习目标:知识与技能:学会用方程描述问题中数量之间的相等关系.过程与方法:通过对多种实际问题中数量关系的分析,使学生初步感受方程是刻画现实世界的有效模型.情感、态度与价值观:初步认识方程与现实世界的密切联系,感受数学的价值.2.重、难点:理解题意,寻求数量间的等量关系并列出方程.二、教材处理:1.情景创设:(1)天平称球(或硬币、铅笔等),见课本P114.(2)排球联赛,某队胜多少场?见课本P114.……建议根据实际情况,创设较多的与学生生活相关的实际问题,以激发学生学习兴趣. 2.学生活动、意义建构、数学理论:用天平演示实验后,学生思考问题一:可以用什么方法解决这个问题?问题二:你是如何解决这个问题的?借助方程能否解,怎样解?对排球队胜多少场的问题,学生思考问题一:猜一猜,该队胜了多少场?问题二:可以用什么方法解决这个问题?(尝试法;枚举法;列方程等)问题三:设该队胜了x场,能用方程来解吗?如何解?从而揭示课题——从问题到方程.3.数学运用:例1(补):见教师教学参考资料“某校七年级共有216名师生参加某次活动,用一辆面包车和若干辆客车接送,已知这一辆面包车只能坐16人,还需用多少辆40座的客车?”学生思考一:设用x辆40座的客车,则客车能接送多少人?学生思考二:列方程,等量关系是什么?师提供正确的解题格式“设还需用x辆40座的客车.根据题意,得40x+16=216”.变式训练一:用四辆轿车和若干辆客车接送,已知一辆轿车只能坐4人,还需用多少辆40座的客车?变式训练二:用轿车和客车共9辆车接送,已知一辆轿车只能坐4人,还需用多少辆轿车和多少辆40座的客车?……思维拓展见课本P115试一试;也可补充题,见教师教学参考资料……习题处理,见课本P115练一练1,2,3.学生说清每小题的等量关系式,而后师小结.建议补充一些能借用一元一次方程来解的简单的实际问题,如行程问题、工程问题、形积问题、商品销售问题等,介绍一些名词,为后面的学习作一铺垫,但一定要控制难度. 4.回顾反思:(1)本课只是要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程是作为刻画现实世界模型的重要意义,建立方程思想.为第3单元作铺垫,对本章知识的学习起到提纲挈领的作用.(2)教学时,要在调动学生的积极性和激发他们的学习兴趣上下工夫.。
《从问题到方程(第一课时)》教学案问题设计2、利用讲台上的天平实物等教具让学生自主操作,称量铁球重量。
引导学生“你在刚才的操作中,是怎么想的?为什么这样操作?”3、课件展示天平图片及问题:“如果设蓝色小球的质量是x克,你能得到一个关于式吗?”4、引导学生探究问题1“你能找出题中的等量关系吗?如果我们设该队胜了x场,你能列出方程吗?”5、你觉得“从问题到方程”一般要经历哪些过程?如何去列出方程?6、引导学生回顾本节课学习的得失和感悟:“你今天一定有不少感受吧,谈一谈你有哪些教学难点:学生对实际问题中的等量关系的正确寻找和建立教学方法:根据本节内容与现实生活联系较紧密的特点,教学中我利用情景创设进行导入,选取学生熟悉的、感兴趣的背景材料,充分调动学生的学习热情,形成思维疑点,恰当设计各种问题,让学生在教师的引导下,通过小组讨论、相互交流、动手操作、自主探索等活动,获得知识,积累经验,体验成功,积极推行自主学习、探究学习等学习方式,努力完成教师和学生在教与学活动中角色的转变。
最后通过快乐之旅的练习巩固和自我评价提高的拓展延伸使课堂教学内容得以进一步巩固和深化,同时在结束时注意利用一些总结归纳性的问题进行交量是多少克吗?师:如果设蓝色小球的质量是x克,你能得到一个关于x的等式吗?教师教学方程的相关概念及知识:“我们把这种含有未知数的等式叫做方程,方程是表达数量之间相等关系的“天平”。
、自主探究,学习新知生:(答略)生:(答略)鼓励学生从身边去发现数学问题,分析问题,解决问题,使学生进一步体会天平的“等量平衡”关系,通知知识迁移促进学生对方程的概念及作用的认识理解。
、谈谈收获,交流心得课件展示:“你今天一定有不少感受吧,谈一谈你有哪些收获?”师引导学生对本节课内容进行回顾,归纳学生自主交流发言,对本节课知识进行回顾,总结学习中的得失让学生通过自我回顾、反思,用自己的语言表达自己的收获,互相交流,体会学数学用数学的快乐,提高语言表达能力。
4.1 从问题到方程-苏科版七年级数学上册教案
一、教学目标
1.理解从实际问题到方程的思想过程。
2.掌握列出简单一元一次方程的方法。
3.培养解决实际问题的数学建模能力。
二、教学重点
1.理解问题到方程思想过程。
2.掌握列出简单一元一次方程的方法。
三、教学难点
1.如何将实际问题转化为数学问题。
2.如何列出简单一元一次方程。
四、教学过程
1.引入新知
1.通过一个简单的题目引入新知:“一支笔加两个铅笔等于五支笔,铅笔减一只铅笔等于两只铅笔,求笔和铅笔各是几只?”
2.让学生用自己的语言描述这个问题。
2.解决问题
1.将问题转化为数学问题,找出变量;
2.列出方程;
3.求解方程。
3.讲解新知
1.定义一元一次方程;
2.介绍解方程的过程。
4.练习
1.让学生提供一些问题,并帮助他们将这些问题转换为数学问题;
2.让学生应用所学知识,列出相应的一元一次方程并求解。
5.总结
提醒学生复习一元一次方程的相关知识,加强练习。
五、教学反思
这节课主要教授如何将实际问题转换为数学问题,并通过建立方程进行求解。
学生需要理解如何将自然语言转化为数学语言并清晰呈现。
同时也需要理解什么是一元一次方程,如何列方程和解方程,并独立解决问题。
整节课呈现生动有趣,语言简洁,思维导向强烈,提高了学生的数学建模能力,培养了学生的数学思维方式。
但在实际操作时容易出错,需要老师提前准备好充分的例子,慢慢让学生感受到解题的感觉,增强学生的自信心。
《4.1从问题到方程》教学设计一.教学内容初中数学七年级上册(苏科版)教材第96~98页二.教材分析本章主要内容是一元一次方程及其解法,这是中学数学的重要内容,也是数学中的基本运算工具,对培养学生分析问题、解决问题的能力,体会数学的价值具有重要意义,也是今后学习一次方程组、一元一次不等式、一次函数及一元二次方程的基础.本节课《从问题到方程》是本章第一节内容.教材从贴近学生生活的实际问题出发,设计了许多“做数学”的内容,让学生感受方程可以用来描述问题中数量之间的相等关系,体验并领会实际问题抽象成数学问题的过程,渗透建模的数学思想.三. 教学目标(一)知识与能力1.探索实际问题中的相等关系,并用方程描述.2.通过对多种实际问题中数量关系的分析,使学生初步感受方程是刻画现实世界的有效模型.(二)过程与方法1.经历将一些实际问题抽象为数与代数问题(方程问题)的过程.2.经历运用数学符号和图形描述现实世界的过程.(三)情感态度与价值观1.通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义.2.体验在生活中学数学、用数学的价值,感受学习数学的乐趣.四. 教学重难点重点:引导学生自主探索实际问题中的相等关系,感受方程作为刻画现实世界有效模型的意义.难点:分析和确定问题中的相等关系,能用方程来描述和刻画事物间的相等关系.五. 教学过程(一)情境创设1.数学实验室:现有三袋同样重的食盐、一架天平和一些砝码(有10克、20克、50克、100克、200克砝码各两个),你如何称出每袋食盐的质量?若设每袋食盐的质量为x g,你能各用一个数学式子来描述两种方案下天平平衡的相等关系吗?(学生观察天平,知道天平平衡时,左右两边是相等的,并会用等式表示相等的量.)2.归纳总结:像这种含有未知数的等式叫做方程.方程是表达数量之间相等关系的“天平”.(板书方程的概念)跟踪练习:下列式子哪些是方程?3.引出课题:今天这节课,我们就来学习第四章第一小节《从问题到方程》(板书课题)4212)(463)(3212)(2312)(1=+-=+>-+m n x x a(二)探索活动1.合作探究(1)探究例题一:比赛得分问题学校篮球队上周五参加了区篮球联赛,得分规则:胜一场得2分,负一场得1分,没有平局.若该队赛了12场,共得20分.你知道该队胜了多少场吗?相等关系:胜的场数+负的场数=12场,胜场得分+负场得分=20分(板书)猜一猜:该队胜了多少场?方法一:枚举法(列表格计算得分)方法二:列方程 (板书解题过程,强调问题中的两个相等关系,一个用于设未知数,另一个用于列方程)你觉得哪种方法更简洁些呢?(2)探究例题二:年龄问题问题1:老师今年30岁,比小明年龄的2倍还多6岁,你知道小明多大吗?设小明今年x岁,可得方程________________问题2:小明今年12岁,老师今年30岁,多少年后老师年龄是小明年龄的两倍?设a年后老师年龄等于小明年龄的两倍,此时老师的年龄是_____岁,小明的年龄是_____岁,可得方程_____________(3)交流总结:通过上面的学习,你觉得“从问题到方程”一般要经历哪些过程?(学生交流讨论得出结论)①审:认真审题,找出问题中的相等关系②设:设合适的未知数③列:根据相等关系列出方程关键:找到数量之间的相等关系(板书从“实际问题→数学问题→方程”的过程)2.挑战自我(1)巩固练习:用方程描述下列问题中数量之间的相等关系一星题:(数字问题)如果设某数为m ,那么某数的6倍与它的一半的差等于9,可得方程 .二星题:(调动问题)七年级(1)班分两组参加学校某项活动,第一组16人,第二组28人,现在要重新分组,使两组人数相同.如果设从第二组调x人到第一组去,那么可得方程 . (列表格分析)第一组第二组原有 16 28现有调动问题变式训练:七年级(1)班分两组参加学校某项活动,第一组16人,第二组28人,现在要重新分组,使第二组人数是第一组的3倍.如果设从第一组调y 人到第二组去,那么可得方程 .(列表格分析)三星题:(租船问题)某班学生到公园划船,共租用9条船,每条大船可坐5人,每条小船可坐3人, 39人正好坐满每条船.问大船租了多少条?(强调问题中的两个相等关系,一个用于设未知数,另一个用于列方程,一般问什么设什么)四星题:(路程问题)甲、乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从100km/h 提高到120km/h ,运行时间缩短了2小时.设甲、乙两城市间的路程为x km ,可得方程___________________复习路程、速度、时间之间的三个关系式?想一想:提速前所需时间和提速后所需时间哪个长?(2)交流讨论:问题中的这些方程有哪些特点?(列举前面问题中出现的所有方程,学生观察方程讨论得出结论)① 方程两边都是________② 方程中含有_____个未知数(元)③ 方程中未知数的次数都是_____次(3)归纳总结:只含有一个未知数(元),并且未知数的次数都是1(次),像这样的方程叫做一元一次方程 .(板书一元一次方程的概念)注意:必须满足三个条件:①两边都是整式②只含有一个未知数(元)③未知数的次数都是1(次)(4)跟踪练习:①若关于x 的方程 5x |m|+3=0是一元一次方程,则m=_________.②下列方程哪些是一元一次方程?(三)小结与思考谈谈你本节课的收获是什么?1. 经历将一些实际问题抽象为数与代数问题(方程问题)的过程2.从“问题到方程”的几个步骤:(1)审清题意,找出相等关系(2)设未知数(3)列方程关键是找到数量之间的相等关系3.方程、一元一次方程的概念(四)拓展提升1.阅读资料:丢番图的墓志铭同学们,你知道丢番图去世时的年龄是多少吗?相等关系:各阶段的年数和=丢番图的年龄如果设丢番图去世时的年龄是x 岁,由题意,得:012)5(312)4(3145.2)3(102)2(6.053)1(22=-=+-=-=+-=-xy y x x y x x你会解这个方程吗?下节课我们再来讨论怎么解一元一次方程。
第四章一元一次方程
第1课时从问题到方程(1)
目的与要求对实际问题的分析,体会方程作为实际问题的数学模型的作用。
知识与技能会列一元一次方程解决一些简单的实际应用
情感、态度与价值观初步认识方程与现实世界的密切联系,感受数学的价值。
教学教程
一、情境引入
我国古代民间流传“百僧分百馍”问题:100个和尚分食100个馒头,大和尚1人吃3个,小和尚3人合吃1个馒头,100个和尚恰好分完100个馒头,问大和尚和小和尚各多少人?
二、新授
阅读课本P148-150试一试
像这样这含有一个末知数(元)且末知数的指数是1(次)的方程叫做一元一次方程(linear equation with one unknown)
例1、下列各式是方程的是()
例2、下列各式是一元一次方程的是()
例3、已知
例4、根据下列条件列出方程
(1)某数的2倍与3的和等于4
(2)用某数去除14得商2,余数为4
(3)某数增加4倍后得20
例5、毕达哥拉斯是古希腊著名的数学家,有一次有位数学家问他::“尊敬的毕达哥位斯,请告诉我,有多少学生在你的学校里听你讲课?”毕达哥拉斯回答说:“一共有这么
多学生在听课:其中在学习数学,学习音乐,沉默无言,此外还有三名妇女。
”(只列方程不必解答)
三、课堂随练
课堂练习
四、课堂作业
作业纸
五、课堂小结
这节课你学会了什么
六、课后反馈
补充:请你编拟一道符合实际生活的应用题,使编拟的应用题所列出的方程为一元一次方程。
初中-数学-打印版。
苏科版数学七年级上册4.1《从问题到方程》教学设计一. 教材分析《从问题到方程》是苏科版数学七年级上册4.1节的内容,主要介绍了方程的定义、分类和基本性质。
本节课的内容是学生学习方程的基础,对于培养学生的数学思维和解决问题的能力具有重要意义。
教材从实际问题出发,引导学生认识方程,理解方程的意义,并通过例题和练习题让学生掌握方程的解法和应用。
二. 学情分析七年级的学生已经掌握了基本的代数知识,对于解决一些简单的数学问题有一定的基础。
但是,学生对于方程的概念和性质可能还不够清晰,需要通过实例和练习来进一步理解和掌握。
此外,学生可能对于将实际问题转化为方程的过程感到困惑,需要教师的引导和解释。
三. 教学目标1.知识与技能:使学生理解方程的定义和分类,掌握方程的基本性质,能够将实际问题转化为方程,并求解方程。
2.过程与方法:培养学生运用代数方法解决问题的能力,提高学生分析和解决实际问题的能力。
3.情感态度与价值观:激发学生学习方程的兴趣,培养学生的数学思维和逻辑推理能力。
四. 教学重难点1.重点:方程的定义和分类,方程的基本性质。
2.难点:将实际问题转化为方程,并求解方程。
五. 教学方法1.情境教学法:通过实际问题的引入,激发学生的兴趣,引导学生主动参与学习。
2.案例教学法:通过例题和练习题的分析和解题过程,让学生理解和掌握方程的解法。
3.讨论法:引导学生分组讨论,共同解决问题,培养学生的合作能力和沟通能力。
六. 教学准备1.教学PPT:制作教学PPT,包括课题、引入问题、例题、练习题等。
2.教学素材:准备一些实际问题,用于引入和巩固方程的概念。
3.练习题:准备一些练习题,用于让学生巩固和应用所学的知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如“小明买了3个苹果和2个香蕉,共花费10元,求苹果和香蕉的单价。
”让学生思考如何解决这个问题。
2.呈现(15分钟)通过引入问题,引导学生认识方程,并介绍方程的定义、分类和基本性质。
第四章一元一次方程4.1从问题到方程(第一课时)一、课前预习准备1、预习目标:1、弄清方程与实际问题的关系,知道方程是人们分析、解决实际问题的工具。
2、初步学会根据实际问题的意义设未知数,并列出方程。
3、初步感受方程是刻画现实世界的有效模型。
2、预习练习:(1)、甲、乙两数的和为10,并且甲比乙大2,现设乙数为x,则甲数可表示为,可列出等式为(2)、小文家有5.4亩桃树,他和爸爸、妈妈一起收摘,三天全部摘完。
结果妈妈比小文多摘0.6亩,而爸爸收摘的是小文的2倍。
若设小文摘了x亩,则妈妈摘了亩,爸爸摘了亩,它们应满足的等式为二、教学内容组织和教学环节设计1、情境创设某排球队参加排球联赛,胜一场得2分,负一场得1分,该队赛了12场,共得20分。
该队胜了多少场?(是用尝试的方法,还是用枚举的方法?是否有更好的方法?)2、思索、交流问题1、在课外活动中,张老师发现同学们的年龄都是13岁,就问同学们:“今年我45岁,几年后你们的年龄将是我的年龄的三分之一?问题2、小明、小刚两人在学校运动场上练习长跑,运动场示意图如下,它的周长是400m,已知小明每分钟跑200m,小刚每分钟跑160m,两人同时从同一地点出发。
(1)同向而行,经过几分钟两人第一次相遇?(2)异向而行,经过几分钟两人第一次相遇?提示:解答本题的关键是数形结合,仔细分析,找出题目中各数量的相等关系式,同时要注意跑步的方向性。
总结:根据题意列方程的一般步骤是:(1)设出适当的未知数x(2)分析已知量和未知量的相等关系,这一步是非常重要的分析过程,但不要求写出来(3)把相等关系的左、右两边用含x的代数式表示出来,即列出方程。
3、应用、探究(例题选讲)例1、七年级(1)班分两组参加学校某项活动,第一组16人,第二组28人,现要重新分组,使两组人数相等。
你打算如何操作,使两组人数相等?例2、已知教室黑板的周长为760cm,长比宽的2倍还长50cm,求黑板的长和宽?注意解题的规范性!三、知识的链接与拓展A组:A、B两地相距280千米,甲、乙两车分别由A、B两地同时出发,相向而行。
从问题到方程
翔宇教育集团宝应实验初中常国宝
【课题】:义务教育课程标准实验教科书数学(苏科版)七年级上册第四章第一节(第一课时)
一、教学目标
(一)知识与能力目标
1、探索实际问题中的等量关系,并用方程描述;
2、通过对多种实际问题中数量关系的分析,使学生初步感受方程是刻画现实世界的有效模型。
(二)过程与方法目标
1、会经历将一些实际问题抽象为数与代数问题(方程问题)的过程;
2、经历运用数学符号和图形描述现实世界的过程。
(三)情感态度与价值观目标
1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义;
2、体验在生活中学数学、用数学的价值,感受学习数学的乐趣。
二、教学重难点
引导学生自主探索实际问题中的等量关系,感受方程作为刻画现实世界有效模型的意义。
三、教学准备
PowerPoint课件
四、教学过程
(一)情景创设,引入新课
师:同学们,我能猜出你们的年龄,相信吗?试一试。
告诉我你的年龄乘以2减1得数是多少?
【设计意图】激发学生学习兴趣,渲染课堂气氛,实现师生互动。
(二)激发探究,揭示新知
聪明的你能知道这是为什么吗?
如果设你的年龄为x岁,
则得方程 2x-1=27.
像这样含有未知数的等式叫做方程
【设计意图】使学生经历将一些实际问题抽象为数与代数问题(方程问题)的过程,初步感受方程。
练一练:
下列各式中,是方程的有 ( )个
(1) 2x+3 (2)2+5 =7 (3) x2=2
(3)–2x=3x+2 (4)–3+0.4y=8(5) x+1>3
A.2
B.3
C.4
D.5
1、设某数为x,根据下列条件列方程.
(1)某数的65%与–2的差等于它的一半.
(2)某数的 与5的差等于它的相反数.
2.据资料,海拔每升高100m,气温下降0.6°C.现测得某山脚下的气温15.2°C, 山顶的气温为12.4°C.若设这座山高为xm, 可得方程______________
【设计意图】培养学生合作学习及语言表达能力
探索活动
例 1.某球队参加排球联赛,胜一场得2分,负一场得1分,该队赛了12场,共得20分,该队胜了几场?
1.猜猜该队胜了几场?
2.你能找出题中等量关系吗?
3.如果设该队胜了x 场,你能用方程表达吗?
例2 某件商品打8折比打9折少花两元钱,则这件商品原价多少元?(只列方程) 思路:商品原价×0.9-商品原价×0.8=2
【设计意图】鼓励学生从身边去发现数学问题,分析问题,解决问题。
(三)小结反思,步步为赢
由实际问题到方程要经历哪些过程?
1. 弄清题意,找出相等关系;
2.恰当地设未知数x ;
3.根据相等关系列出方程.
【设计意图】引导学生结合前面学习的感受,交流发言。
思维拓展
1.一(13)班分两组参加学校某项活动,第一组28人,第二组38人,现在重新分组,需要从第二组调多少人到第一组能使第一组人是第二组的2倍。
2.2005年10月9日,我国登山队测定珠穆朗玛峰的高度为8844.43米,它每年约1. 27厘米的速度增高.从2005年以后,经过多少年后珠穆朗玛峰的高度为海拔8845.065米?
【设计意图】感受自然之美,自然之活!
(四)拓展提高 人人参与
巩固所学 拓展思维
1.小明用50元钱购买了面值为1元和5角的邮票共40张,他买了多少张面值为1元的邮票?
2.某市出租车的收费标准是:起步价为8元,起步里程为3km(3km 以内按起步价付费) ,3km 后每千米收2元.某人乘出租车从甲地到乙地共付费16元,求甲、乙两地的路程.
3.宝应自来水公司的收费标准是:5t 内为1.5元/t(含5t) ,超过5t 的部分为2元/t,43
小明家某月共付费16元,求小明家这月用多少吨水. (只列方程)
4.某长方形足球场的周长为340米,长比宽多20米,问这个足球场的长和宽各是多少米?
(1)若设这个足球场的宽为x米,那么长为__________米.由此可以得到方程__________ (2)若设长为x米呢?
【设计意图】巩固所学,培养学生思维的开放性、灵活性、创造性。
体会学数学用数学的快乐。
(五)知识留念,课后韵味
请你根据方程:2x+3(x–1)=27,自编一道应用题.并与同伴交流你的设计思路
五、备课设想
设想一:让学生多接触社会,多了解、观察社会,让数学学习回归生活实际。
首先,数学源于生活,生活中的数学是最具有鲜活力的,一切脱离生活实际的教和学都是显得苍白无力。
如果学生时时处处都依赖教师的提示,学生的能力是培养不起来的。
因此,教师应促进学生将数学知识融入到火热的生活中去,增强应用数学的能力。
而这些在新的课程标准中已经有所体现,“初步学会从数学的角度提出问题、理解问题,并能综合运用所学的知识和技能解决问题,发展应用意识”。
设想二:给数学问题具有真实的生活背景。
学生平时做的练习题大多都是经过人为加工的纯数学问题,尽管有的问题题材来源于实际生活,但是大部分通过“精加工”以后都变成了纯粹的“应用题”模型,实际上是教师代替学生完成了从实际生活中收取信息这一过程,学生只要把自己熟悉的方法或公式“复制”到模型中去就能够解决问题,降低了学生理解问题、分析问题的能力。
事实告诉我们,不让学生经历“实际问题、数学问题、数学模型、知识技能”的转化过程,是不能很好地掌握解决问题的基本策略的,因此在日常的教学中,教师应充分利用好教材中的素材,赋予原题生活化的现实背景,改变设问的角度,尽可能地多给学生呈现生活中的现实问题,或者只是对现实问题进行简单的加工处理,提供学生寻找数学模型的平台,这一点可以锻炼学生在实际问题转化过程中的审题、建构等多方面的能力,而且对于今后的方程模型、函数模型等学习很有帮助。
【教者简介】常国宝,男,1973年11月出生,学历本科,中教二级,现任职翔宇教育集团宝应实验初中,初一数学。
联系电话:8115956。