第17讲-基因组与比较基因组学
- 格式:ppt
- 大小:9.24 MB
- 文档页数:49
基因组学中的比较基因组学方法基因组学是研究生物体的基因组结构、功能、组成及其相互作用的一门科学,其研究对象广泛,涉及到生命科学、医学、生态学等多个领域。
而比较基因组学则是基因组学中的一个分支,它通过比较各物种的基因组序列,揭示各种生物之间的基因演化及其遗传规律,并且研究各种基因的功能、表达、调控等问题。
在这篇文章中,我们将探讨基因组学中的比较基因组学方法。
一、基因组序列比较基因组序列比较是比较基因组学的基础,其主要作用是把不同物种的基因组序列进行比较,找出相同的序列,并且对相同的序列进行分析,从而揭示物种种类关系,共同祖先及其遗传变化等问题。
此外,基因组序列比较还可以为基因组结构和功能阐明提供重要的信息。
基因组序列比较具有以下几个特点:首先,基因组序列比较的算法不断更新,现代的比对算法比以前的更高效和准确,如MAFFT,MUSCLE等。
同时,基于多序列比对的算法也越来越成熟,如PhyML,RAxML等。
其次,基因组序列比较也需要考虑不同物种之间的基因数目和基因的排列顺序的变化,比如基因重复、基因家族和基因结构的演变等问题。
这些问题可以通过整个基因组序列的比较和基因组控制区的分析得到解决。
最后,基因组序列比较还需要考虑序列保守性和易变性的问题,这也是基因组序列比较的难点之一。
在快速进化的物种中,内含子和基因区之间的序列变异率可能非常大,这也需要采用相应的算法和策略来解决。
二、基于基因家族的比较基因组学方法基因家族是指在不同物种中存在多个拥有同样结构或功能的基因,如酪蛋白基因家族和S100基因家族等。
在基因组中,基因家族在不同物种中的数量和序列有所不同,这反映了基因家族的演化过程,因此可以通过研究基因家族的变化来推测基因的演化和基因家族的起源。
基因家族比较的方法有:1. 基因簇的比较:基因簇是指在染色体上连续排列的基因序列,通常由一系列同源基因组成。
基因簇的比较可以揭示同源基因的演化,还可以发现基因家族的新增和丢失等信息。
植物基因组学及比较基因组学研究植物基因组学是研究植物基因组结构、功能及其进化的学科领域。
通过对植物基因组的研究,我们可以深入了解植物的遗传机制、进化历程以及适应环境的能力。
而比较基因组学则是将不同物种的基因组进行比较和分析,以揭示它们之间的相似性和差异性,推断基因功能、鉴定重要基因,并探究物种进化的规律。
一、植物基因组学研究的重要意义植物基因组学的研究对于揭示植物的生长发育过程、逆境应答机制以及生殖系统演化具有重要意义。
通过对不同植物基因组的测序和分析,可以鉴定出植物特有的基因家族,比如光合作用相关基因家族和抗病性基因家族等,并进一步验证其功能,从而为植物育种和改良提供基础。
二、植物基因组研究方法1. 基因组测序技术:高通量测序技术的发展,使得植物基因组测序成为可能。
通过测序技术,我们可以对植物基因组进行全面的扫描,并提取出其中的基因序列,用于后续的功能研究。
2. 基因组组装与注释:基因组组装是将测得的基因组片段进行拼接和排序,以得到完整的基因组序列。
而基因组注释则是对基因组序列进行功能预测和基因的鉴定。
3. 比较基因组学:通过将不同物种的基因组进行比较,我们可以发现基因组之间的共性和差异性。
这些共性和差异性对于研究物种进化和功能基因的推断具有重要价值。
三、比较基因组学在植物研究中的应用1. 蛋白质功能鉴定:通过比较基因组学的方法,可以找到不同物种间的相似蛋白质序列,从而预测其功能。
这为进一步的实验研究提供了重要线索。
2. 基因家族的演化:比较基因组学可以揭示不同物种间基因家族的起源和演化过程。
通过比较基因组中的保守基因,可以推断其在进化过程中可能的功能和适应方式。
3. 物种进化研究:比较基因组学可以通过比较物种间的基因组序列,揭示它们的进化关系和进化速率。
这些研究有助于我们理解物种的起源和演化历程。
四、植物基因组学及比较基因组学的研究进展随着基因测序技术的不断发展,植物基因组学及比较基因组学的研究也取得了许多突破。
《分子生物学精要》基因组与比较基因组学教学目的掌握基因组学与比较基因组学的相关知识,了解人类基因组计划。
学习指导本章首先介绍了基因组学的概念和分类,分为功能基因组学和结构基因组学。
后介绍了比较基因组学的相关研究。
最后介绍了人类基因组计划的内容。
重点掌握基因组学与比较基因组学的概念,人类基因组计划的过程进展,基因测序的主要方法。
基本概念基因组(genome)指导一个生物物种的结构和功能的所有遗传信息的总和,包括全部的基因和调控元件等核酸分子。
基因组学(genomics)从整体水平上来研究一个物种的基因组的结构、功能及调控的一门科学。
基因组学可分为结构基因组学和功能基因组学两大部分。
结构基因组学(structural genomics)通过基因作图、核苷酸序列分析确定基因组成、基因定位的科学。
功能基因组学(functional genomics)利用结构基因组学所提供的生物信息和材料,全基因组或全系统地理解某种生物的遗传体系,即阐明DNA序列的功能。
基因打靶(gene targeting),这种技术是通过基因工程的方法将一个结构已知但功能未知的基因去除,或用其他序列相近的基因取代(又称基因敲入),然后从整体观察实验动物,从而推测相应基因的功能。
比较基因组学(Comparative Genomics)是基于基因组图谱和测序基础上,对已知的基因和基因组结构进行比较,来了解基因的功能、表达机理和物种进化的学科。
人类基因组计划(human genome project ,HGP)于20世纪80年代提出的,由国际合作组织包括有美、英、日、中、德、法等国参加进行了人体基因作图,测定人体23对染色体由3×109核苷酸组成的全部DNA序列,于2000年完成了人类基因组“工作框架图”。
2001年公布了人类基因组图谱及初步分析结果。
其研究内容还包括创建计算机分析管理系统,检验相关的伦理、法律及社会问题,进而通过转录物组学和蛋白质组学等相关技术对基因表达谱、基因突变进行分析,可获得与疾病相关基因的信息。
比较基因组学比较基因组学摘要:比较基因组学是在基因组图谱和测序的基础上, 利用某个基因组研究获得的信息推测其他原核生物、真核生物类群中的基因数目、位置、功能、表达机制和物种进化的学科。
该学科在后基因组时代是一门重要的工具学科。
通过不同物种间的基因组序列比较, 可以发现生物体中蕴涵的大量生物学信息,其发展及所取得的成果与序列的积累相同步, 尤其是人类全基因组序列的分析与比较使比较基因组学成为整个生物学领域最新、最重要、进展最快和影响最大的学科之一。
关键词:比较基因组学;同源性;单核苷酸多态性;拷贝数多态性世界范围内的多物种基因组计划和各类测序工作已经形成了海量的序列数据资源,它们正在使基因组研究发生革命性变化,信息和新技术的迅速发展也表明:分子遗传革新将是今后几十年的发展方向。
尤其是从整体上而不是仅仅从某个或少数几个基因入手来研究生物体基因组的机能,己经在短短几年迅速发展壮大起来,比较基因组学已成为解读海量基因组序列数据及其相关生物学含义的强有力工具。
通过物种之间的一比较能够了解基因组的进化,从而加速对人类基因结构和功能的了解。
为阐明基因表达机制提供重要线索。
达到从根本上了解认识生命的起源,物种及个体差异的原因,疾病产生的机制以及长寿、衰老等困扰着人类的最基本的生命现象,最终解析生命奥秘。
比较基因组学是通过对不同物种的基因组数据进行比较分析,揭示彼此的相似性和差异性,以了解不同物种进化上的差异,综合这些信息能进一步帮助我们了解物种形成的机制、基因或基因组上非编码区的功能。
1、种间比较基因组学比较基因组学的基础是相关生物的相似性,序列间有显著的相似性即意味着序列之间有同源关系。
同源是指被比较的物种是由共同的祖先经过自然选择进化而来。
同源又可分为两种:直系同源和旁系同源直系同源的序列因物种形成而被区分开,若一个基因原先存在于某个物种,而该物种分化为了两个物种,那么新物种中的基因是直系同源的;旁系同源的序列因基因繁殖而被区分开,若生物体中的某个基因被复制了,那么两个副本序列就是旁系同源的。