圆的基本性质(拔高)
- 格式:doc
- 大小:245.53 KB
- 文档页数:2
圆的性质及相关定理圆是几何学中的基本图形之一,它具有许多独特的性质和定理。
在本文中,我们将探讨圆的性质以及与之相关的一些定理。
一、圆的定义与基本性质圆可以被定义为平面上所有到一个给定点距离相等的点的集合。
这个给定点被称为圆心,而到圆心的距离被称为半径。
圆的基本性质包括以下几点:1. 圆的直径是通过圆心的一条线段,它的两个端点都在圆上。
直径的长度是半径长度的两倍。
2. 圆的周长是圆上任意两点之间的弧长,它等于圆的直径乘以π(pi)。
周长也可以被称为圆的周长。
3. 圆的面积是圆内部所有点的集合。
圆的面积等于半径的平方乘以π。
二、圆的相关定理在圆的研究中,有一些重要的定理被广泛应用。
下面我们将介绍其中几个。
1. 弧长定理弧长定理指出,在同一个圆上,两个弧所对应的圆心角相等时,它们的弧长也相等。
这个定理可以用来求解弧长,也可以用来证明一些与圆有关的性质。
2. 弧度制与角度制弧度制是一种用弧长来度量角度大小的方法。
在弧度制中,一个圆的周长被定义为2π弧度。
而角度制是我们常用的度量角度大小的方法。
两者之间可以通过一定的换算关系进行转换。
3. 切线定理切线定理是指与圆相切的直线与半径所构成的角是直角。
这个定理在解决与圆相关的几何问题时非常有用,可以帮助我们确定切线的位置和方向。
4. 正切定理正切定理指出,与圆相切的半径与切线所构成的角的正切值等于切线上相应弧所对应的角的正切值。
这个定理可以用来求解与切线相关的角度问题。
5. 弦切角定理弦切角定理是指,当一个弦与切线相交时,切线与弦所夹的角等于弦上所对应的弧所对应的角的一半。
这个定理可以用来求解与弦和切线相关的角度问题。
三、圆的应用圆的性质和定理在实际生活中有着广泛的应用。
以下列举几个例子:1. 圆的运动轨迹当一个点以固定的速度绕着另一个点旋转时,它的轨迹是一个圆。
这个性质被广泛应用在天文学中,用来描述行星、卫星等天体的运动。
2. 圆形建筑与设计圆形建筑具有独特的美学效果和结构稳定性。
圆的基本性质汇总圆是平面上的一种特殊几何图形,具有许多基本性质。
以下是圆的一些基本性质的汇总。
1.定义性质:圆是由平面上每个点到一个固定点的距离相等的点的集合。
这个固定点被称为圆心,而相等的距离被称为半径。
2.弧:圆上的两个点之间的连线称为圆弧。
圆弧的长度等于圆心角的度数与圆的半径之积,也可以通过欧几里得的原理求解。
3.圆心角:圆心角是圆上的两条射线所夹的角,其中包括圆心的角。
圆心角的度数可以通过弧度公式求解,也可以用度数来表示。
一个圆的完整圆心角为360度或2π弧度。
4.圆上的点:圆上的任何点与圆心的距离等于圆的半径。
5.弦:两点在圆上的连线称为弦,可以是圆的直径(通过圆心的直径是对称的),也可以是其他长度小于直径的弦。
6.切线:切线是从圆上的一个点到圆的切点的直线。
7.弦弧定理:如果两条弦在圆的内部相交,那么它们所对应的弧是相等的。
8.切线定理:从一个点到圆的切点的切线是与半径垂直的。
如果两条切线相交,那么相交的角是外角,并且等于它们所对应的弧的一半。
9.弧长:弧长是圆上的一段弧的长度,可以通过圆心角的度数和圆的半径计算得到。
10.反弧:如果圆上的一段弧的两个端点相交,那么这段弧与它们所对应的圆心角称为反弧。
11.弓形:弓形是由一段弧和连接弧两个端点的线段组成的图形。
12.圆与直线的关系:一个圆与一条直线可以有三种关系。
如果圆和直线没有交点,那么它们是相离的;如果圆和直线有一个交点,那么它们是相切的;如果直线穿过圆,那么它们是相交的。
13.圆的面积:圆的面积公式为πr²,其中r是圆的半径。
这个公式可以通过将圆划分为无数个小扇形来计算。
14.圆周长:圆的周长等于直径乘以π,或者等于2πr,其中r是圆的半径。
15.圆的切线长度:如果从外部一点到圆的切点的切线与半径相交,那么切线长度是切点到圆心的距离的平方根乘以2以上是圆的一些基本性质的汇总。
理解这些性质对于解决与圆相关的数学问题非常重要,也有助于我们更好地理解三角学、几何学和数学中的其他概念和原理。
圆的性质及相关定理圆是几何学中的一个基本概念,是由平面上所有距离等于定值的点构成的图形。
在这篇文章中,我们将探讨圆的性质及相关定理,帮助读者更好地理解和应用圆的知识。
一、圆的基本性质1. 圆心和半径:每个圆都有一个圆心和一个半径。
圆心是圆上所有点的中心位置,通常用字母O表示。
半径是从圆心到圆上的任意点的距离,通常用字母r表示。
2. 直径:直径是通过圆心的任意两点间的线段。
直径的长度等于半径的两倍。
3. 弧:圆上两点之间的弧是连接这两点的圆上的一部分。
圆上的弧可以根据其长度分为弧长和弧度。
4. 弦:弦是连接圆上任意两点的线段。
直径是最长的弦。
5. 弧度和角度:弧度是一个与圆的半径相关的度量单位,用符号rad表示。
角度是以度为单位的度量,用符号°表示。
二、圆的定理1. 切线定理:从圆外一点引一条切线,切线与半径的连线垂直。
2. 切线与弦定理:切线和弦的交点处的角等于从该点到弦的两个割线所夹的弧对应的角。
3. 弧中角定理:在同一个圆上,弧所对的圆心角相等,而弧所对的弦所夹的角则相等。
4. 圆心角定理:在同一个圆上,圆心角是其所对弧的两倍。
5. 弧长定理:同样大小的圆心角所对应的弧长相等。
6. 切割圆定理:如果有两个弧相交于圆心,它们所对的圆心角互补(和为180°)。
三、应用示例1. 计算圆的面积:圆的面积公式为A = πr²,其中A表示面积,π是一个近似值,约等于3.14,r为半径。
2. 计算圆的周长:圆的周长公式为C = 2πr,其中C表示周长,π是一个近似值,约等于3.14,r为半径。
3. 判断点是否在圆内:计算点到圆心的距离,如果小于半径,则点在圆内。
4. 判断两个圆是否相交:计算两个圆心之间的距离,如果小于两个半径之和,则两个圆相交。
总结:本文介绍了圆的基本性质和相关定理。
通过学习圆的性质,我们可以更好地理解和应用圆的知识,解决与圆相关的几何问题。
希望本文对读者有所帮助,并在几何学学习中起到指导作用。
企业跨国并购存在的风险有哪些企业并购对于大家而言也行并不是个陌生的词,当一家企业有了足够的实力是,会通过并购其他企业来增强自己的实力,企业并购带来的不仅仅好处,同样也存在着风险,那么这次要带大家讨论的是有关于企业跨国并购存在的风险的知识了。
▲一、企业跨国并购存在的风险▲(一)▲信息不对称风险由于“信息不对称”现象的存在,在有效市场条件下,投资者依据这些信息进行并购决策,择优避劣。
然而,公司财务报表和股价等信息又有着明显的局限性。
公司财务报表和股价不可能与企业基本情况及变化完全一致,公司仍可在制度、原则允许的范围内隐藏不必公开的商业秘密。
可见,“信息不对称”的现象影响着并购行为,成为并购经营者必须严加关注和防范的一种风险。
▲(二)▲财务风险对价值的预测风险在确定要并购的企业后,并购双方最关心的问题莫过于以持续经营的观点合理地估算目标企业的价值并作为成交的底价,这是并购成功的基础。
目标企业的估价取决于并购企业对其未来自由现金流量和时间的预测。
对目标企业的价值评估可能因预测不当而不够准确,这就产生了并购公司的估价风险.并购的融资风险并购的融资风险主要是指能否按时足额地筹集到资金,保证并购的顺利进行,如何利用企业内部和外部的资金渠道在短期内筹集到所需的资金是关系到并购活动能否成功的关键。
并购对资金的需要决定了企业必须综合考虑各种融资渠道。
并购企业应针对目标企业负债偿还期限的长短,维持正常的营运资金,使投资回收期与借款种类相配合,合理安排资本结构。
▲(三)▲经营风险经验的外在风险。
一方面是在市场经济环境中,企业都面临着巨大的竞争压力,许多企业都在抢夺同一片市场,为自己争取更多的顾客群。
为了获得更多的顾客和销售收入,竞争对手经常调整自己的竞争策略。
使外部环境发生预期变化。
另一方面,政府政策变化对企业经营的影响。
经验的内部风险。
作为买方,企业所购买的应当是一个能够运营的目标公司的整体业务,而不仅仅是简单的资产总和,要做到这一点,企业集团必须做到拥有强大的经营管理能力作为支持,否则,将可能跌入经营不善的陷阱。
圆的有关性质与定理圆是几何学中非常重要的一个形状,它具有许多独特的性质和定理。
本文将探讨圆的有关性质和定理,以及它们在解决几何问题中的应用。
1. 圆的基本性质圆由一组等距离于中心点的点组成,这个等距离被称为半径(r)。
其中,将圆分成两个部分的线段,称为圆的直径(d),直径是半径的两倍。
从圆的中心点到圆上任意一点的线段称为弦(chord),而连接圆心和圆上一点的线段被称为半径。
此外,圆的周长(c)与直径之间有一个重要的关系,即周长等于直径乘以π(pi)。
2. 切线与切点与圆相切的直线称为切线(tangent)。
切线与半径的交点称为切点。
在圆上,切线与半径垂直,这是一个重要的性质。
对于给定的圆和一点P在圆外,只有一条通过点P且与圆相切的直线存在。
3. 弧长与扇形面积圆的弧是圆上两点之间的弧段。
圆心角是由圆心和弧上两点确定的角。
弧长是圆弧的长度,它与圆周上的圆心角成正比。
扇形是由圆心、圆周上的两点和弧组成的区域。
扇形的面积与圆心角的大小成正比。
4. 弧度与角度弧度是衡量角度大小的单位,它是表示圆心角的一种常用方式。
一个完整的圆是360度,对应的弧度是2π。
在解决几何问题时,很多情况下使用弧度会更方便。
5. 垂径定理垂径定理是一种关于圆的性质。
它指出,如果一条直径与圆上的弦垂直相交,那么它将弦二等分。
6. 弦切角定理弦切角定理也是一个与圆有关的重要定理。
它指出,如果一条弦和切线相交,那么切线与这条弦所对的弧所对应的圆心角相等。
7. 正切线定理在圆上,如果一条切线和一条半径相交,那么相交点处的切线段长的平方等于切点到圆心的距离乘以切点到切线的距离。
8. 切割线定理切割线定理是关于两个圆的性质。
当两个圆相交时,两个圆心之间的直线被称为切割线。
根据切割线定理,两个相交圆的切割线可以划分成相等的线段。
以上是一些关于圆的重要性质和定理,它们在解决几何问题和建立几何证明时经常被使用。
掌握这些性质和定理,能够帮助我们深入理解圆的特性,并且能够应用它们解决与圆相关的几何问题。
圆的性质与定理圆是一种具有特殊几何性质的几何图形,它由一条曲线组成,这条曲线上的每一点到圆心的距离都相等。
在数学中,关于圆的性质和定理有很多,它们帮助我们深入理解圆的特点和应用。
一、圆的基本性质1. 圆心和半径:圆心是圆上所有点的中心,用字母O表示。
半径是圆心到圆上任意一点的距离,用字母r表示。
2. 直径和周长:直径是穿过圆心的两个点之间的距离,等于半径的两倍。
周长是圆的边界长度,等于直径乘以π(圆周率)。
二、圆的重要定理1. 同圆弧定理:如果两条弧所对应的圆心角相等,则这两条弧是同圆弧。
2. 同弦定理:如果两条弦所对应的圆心角相等,则这两条弦是同弦。
3. 弧长定理:圆内任意一段圆弧的长度等于这段圆弧所对应的圆心角的弧度数乘以半径的长度。
即弧长 = 圆心角的弧度数 ×半径。
4. 切线定理:切线与半径垂直。
5. 相切弦定理:从外部一定点引圆的两条切线,这两条切线所夹的弦的长度相等。
6. 弦切角定理:圆内的弦所夹的角等于这条弦所对应的圆心角的一半。
7. 弧切角定理:圆内一条弧与这条弧所对应的切线所夹的角等于这段弧所对应的圆心角的一半。
三、圆的应用1. 圆周率π的计算:π是无理数,它代表了圆的周长与直径的比值。
在计算中常用3.14或22/7作为π的近似值。
2. 圆的面积计算:圆的面积等于半径的平方乘以π。
即面积= π ×半径的平方。
3. 圆的几何画图:在平面几何中,圆的几何画图是重要的基础知识,它包括圆的作图、切线的作图等。
4. 圆与三角形的关系:圆与三角形之间存在着多个重要的性质和定理,如圆内切等著名定理。
综上所述,圆的性质与定理是数学中重要的内容,它们帮助我们更深入地了解圆的特点与应用。
通过学习圆的性质与定理,我们可以解决与圆相关的问题,同时也为进一步学习几何学奠定了坚实基础。
圆的基本性质圆是几何学中最基本的图形之一,具有许多独特的性质和特征。
在本文中,我将介绍圆的基本性质,包括圆的定义、圆的半径和直径、圆心和弧、圆的面积和周长等。
通过了解这些基本性质,我们可以更好地理解和运用圆形。
1. 圆的定义圆是由一条与一个固定点距离相等的点构成的集合。
这个固定点被称为圆心,圆心到圆上的任意一点的距离被称为半径。
圆内部的点到圆心的距离都小于半径,而圆外部的点到圆心的距离都大于半径。
2. 圆的半径和直径圆的半径是从圆心到圆上任意一点的距离。
圆的直径是通过圆心,并且两个端点都在圆上的线段。
圆的直径是半径的两倍,也是圆的最长线段。
3. 圆心和弧圆心是圆的中心点。
圆上的弧是由圆上的两个点以及它们之间的弧长所确定的。
圆的弧可以被度量为角度,弧度或弧长。
4. 圆的面积圆的面积是圆内部所包围的空间。
圆的面积公式为:面积= π * r²,其中π(pi)是一个无理数,约等于3.14159,r是圆的半径。
这个公式表明,圆的面积正比于半径的平方。
5. 圆的周长圆的周长是圆上所有点之间的距离总和。
圆的周长也被称为圆周长或圆的周长。
圆的周长公式为:周长= 2 * π * r,其中2πr是一个圆的直径。
6. 圆的切线在圆上的每个点上都有一个与切线相切的方向。
切线是与圆只有一个交点的直线,且与圆的切点处于圆上的切线角度为90度。
7. 圆的弦圆上的任意两个点之间的线段被称为弦。
最长的弦是圆的直径。
8. 圆的弧度弧度是一种用于度量圆上弧长的单位。
一个圆的弧长等于半径的弧度数乘以圆心角的弧度。
总结:在几何学中,圆拥有许多独特的性质和特征。
通过了解圆的定义、圆的半径和直径、圆心和弧、圆的面积和周长等基本性质,我们可以更好地理解和应用圆形。
圆在许多领域中都有广泛的应用,如工程、建筑、数学等。
掌握圆的基本性质对于解决与圆相关的问题非常重要。
通过学习和应用这些性质,我们可以更好地理解圆,并在实际生活和学习中运用它们。
高中圆知识点归纳总结圆是圆心到圆周上任意一点的距离等于半径的线段,圆的直径是圆上任意两点的距离等于半径的两倍。
圆的周长是圆的边界的长度,圆的面积是圆内部的面积。
在数学中,圆是一个非常基础的几何图形,也是许多数学问题中的基础形状之一。
本文将对高中数学中关于圆的相关知识点进行归纳总结,包括圆的定义、性质、相关定理和定理的证明等内容。
一、圆的相关知识点1. 圆的定义圆是平面上到一个定点距离等于定长的动点的轨迹。
这个定点叫做圆心,这个定长叫做半径。
2. 圆的基本性质(1)圆上任意一点到圆心的距离等于半径的长度。
(2)圆上所有点到圆心的距离都相等。
(3)圆的直径是圆的两个端点的距离等于半径的二倍。
(4)圆的周长等于直径与π的乘积。
(5)圆的面积等于半径的平方与π的乘积。
3. 圆的相关定理(1)同弧(或同角)的圆周角相等。
(2)圆内切等腰三角形。
(3)弦上的圆周角等于弦所在圆的中心角(或外角)。
(4)圆内接四边形内角和为180度。
(5)相交弦定理:相交弦这俩一半与另一半分别相乘相等。
(6)直径上的等角:直径所含角都是90度。
二、重要定理及证明1. 圆的周长和面积圆的周长C=2πr,圆的面积S=πr²。
其中r为半径,π≈3.14159。
2. 弧长与圆心角以及面积的关系(1)弧长L=θr,其中θ为圆心角的度数,r为半径。
(2)圆的面积S=θ/360*πr²,其中θ为圆心角的度数,r为半径。
3. 锥的切线定理(切割定理)如果直线L与圆C相交于点A和B,那么从点A、B作出的切线AB与L垂直(AB与弦的交角=弦的交角的一半)。
证明:设AB是切线,则AC、BC就是切线,所以∠ABC=∠ACB,所以AB⊥L。
三、常见的计算题目1. 已知圆的半径为r,求圆的周长和面积。
解:圆的周长C=2πr,圆的面积S=πr²。
2. 圆的面积为S,求圆的半径和周长。
解:圆的半径r=√(S/π),圆的周长C=2πr。
数学中的圆的性质数学中的圆是一个非常重要的概念,它具有许多独特的性质和特征。
本文将深入探讨圆的性质,并通过具体的例子加以说明。
1. 圆的定义与基本性质圆由平面上所有到一个固定点的距离相等的点构成。
这个固定点称为圆心,到圆心的距离称为半径。
圆的基本性质包括:(1)圆的直径是任意两点在圆上的距离中最大的。
(2)圆的半径相等。
(3)圆的周长是圆心到圆上一点的距离的两倍,即2πr(其中r为半径)。
(4)圆的面积是πr²。
例如,考虑一个半径为5个单位的圆。
根据定义,圆上的任意一点到圆心的距离都是5个单位。
圆的半径也是5个单位,周长为10π个单位,面积为25π个单位。
2. 圆与其他几何图形的关系圆与其他几何图形之间存在着密切的关系,例如直线、正方形和三角形。
(1)圆与直线的关系:直线可以与圆相交于两个点、一个点或没有交点。
当直线与圆相交于两个点时,这条直线被称为切线。
(2)圆与正方形的关系:正方形的四个顶点可以构成一个圆。
这个圆被称为内切圆,也就是正方形内部与正方形的四条边都相切的圆。
(3)圆与三角形的关系:三角形中可以有一个外接圆,即一个圆与三角形的三条边都相切。
此外,三角形也可以有一个内切圆,即一个圆与三角形的三条边的延长线相切。
3. 圆的重要定理在数学中,圆的性质可以由一系列重要的定理来描述。
以下是其中的两个:(1)圆的切线定理:如果一个直线与圆相切于圆上一点P,那么这条切线垂直于通过点P的半径。
(2)圆的弦线定理:如果一条弦通过圆的中心,那么它一定是圆的直径。
这些定理对于解决与圆相关的问题非常有用。
例如,在旋转几何中经常使用到切线定理。
4. 圆的应用圆的性质在实际生活中有许多应用。
以下是一些常见的例子:(1)建筑设计:建筑设计中常常需要使用圆形结构,例如圆形天井、圆形拱门等。
圆的性质可以帮助工程师和设计师在设计过程中合理地计算和安排结构的大小和位置。
(2)钟表:钟表的表盘通常是圆形的,钟表上的刻度也是按照圆的性质设计的。
圆的性质和定理圆是几何中的重要概念之一,它具有许多独特的性质和定理。
在本文中,我们将探讨圆的基本性质以及一些与圆相关的重要定理。
一、圆的性质1. 定义:圆是由平面上与一定点的距离相等的所有点组成的集合。
圆心是圆上所有点的中心,半径是从圆心到圆上任意一点的距离。
2. 圆周率:圆的周长与直径的比值被定义为圆周率π(pi),它是一个无理数,约等于3.14159。
根据这个定义,圆的周长C可以表示为C = 2πr,其中r是圆的半径。
3. 直径和半径的关系:直径是一条通过圆心的线段,它的长度等于半径的两倍。
换句话说,d = 2r,其中d代表直径,r代表半径。
4. 弧和弦:在圆上,弧是圆上的一段弯曲的部分,而弦则是连接圆上两个点的线段。
任何一条弦对应的弧都是唯一确定的,且弦总是小于或等于圆的直径。
5. 弦的性质:如果两条弦互相垂直,则它们所对应的弧互补。
二、圆的定理1. 弧度制和角度制:在计量角度时,常见的有两种制度,一种是弧度制,另一种是角度制。
弧度制是以圆的半径为单位,角度制是以度为单位。
两者之间的转换关系是2π弧度等于360度。
2. 弧度与圆周角的关系:一条弧所对应的圆周角的弧度数等于这条弧所对应的圆心角的弧度数。
这个定理揭示了圆弧度的重要性,为许多相关问题的解决提供了便利。
3. 切线定理:与圆相切的直线(切线)与半径的相交点处的角是一个直角。
4. 弧长和扇形面积:弧长是弧上的一部分的长度,可以由弧度数乘以半径得到。
扇形面积是由相邻两条半径和其所夹的弧组成的图形的面积,它可以通过半径和所夹的圆心角的弧度数计算得出。
5. 割线定理:在与圆相交的直线上,两个相交点分割的弦的乘积等于这条直线外部线段与这条直线在圆上的切点分割的弦的乘积。
总结:圆具有许多独特的性质和定理,对于几何学的研究和应用有着重要的意义。
掌握了圆的性质和定理,我们可以更好地理解和解决与圆相关的问题。
在实际应用中,圆的性质和定理也被广泛应用于建筑、机械、地理等领域,为问题的解决提供了有效的方法和准确的计算依据。
D B C O A
E .
A
C O M N B B
O A P 【圆及垂径定理】第3份
1、过一点可作 个圆。
过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。
过 的三点确定一个圆。
2、经过三角形三个顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做圆的 。
三角形的外心是三角形三条边的
3、下列四个命题:① 经过任意三点可以作一个圆;② 三角形的外心在三角形的内部;③ 等腰三角形的外心必在底边的中线上;④ 菱形一定有外接圆,圆心是对角线的交点。
其中真命题的个数( ) A.4个 B.3个 C.2个 D.1个
4、如图,AB 为⊙O 的直径,CD 为⊙O 的弦,AB 、CD 的延长线交于点E ,已知AB=2DE ,∠E=18°,求∠AOC 的度数
5、如图,平面直角坐标系中一第圆弧经过网格点A 、B 、C ,其中B 点坐标为(4,4),那么该圆弧所在圆的圆心坐标为
6、垂径定理:垂直于弦的直径 ,并且平分
7、垂径定理的逆定理1:平分弦( )的直径垂直于弦,并且平分
垂径定理的逆定理2:平分弧的直径
8、如图所示,直径CE 垂直于弦AB ,CD=1,且AB+CD=CE ,求圆的半径。
O
C
E
D B
A
9、工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小孔的直径AB 是
10、四边形ABCD 是直角梯形,AB ∥CD ,AB ⊥BC ,且BC=CD=2,AB=3,把梯形ABCD 分别绕直线AB ,CD 旋转
一周,所得几何体的表面积分别为S 1,S 2,则| S 1-S 2|=__________(平方单位)
11、点O 是两个同心圆的圆心,大圆的半径QA, OB 分别交小圆于点C, D .给出下列结论: ①AB CD =、② AB=CD ;
③AB 的度数=CD 的度数; ④AB 的长度=CD 的长度.其中正确的结论有( ) A. 1个 B. 2个 C.3 个 D.4 个
12、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点
P 从原点O 出发,沿这条曲线向右运动,速度为每秒
2
π
个单位长度,则第2015秒时,点P 的坐标是( ) A .(2014,0) B .(2015,-1) C . (2015,1) D . (2016,0)
13、在一个圆中,给出下列命题,其中正确的是( )
A .若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直
B .若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点
C .若两条弦所在直线不平行,则这两条弦可能在圆内有公共点
D .若两条弦平行,则这两条弦之间的距离一定小于圆的半径 【随堂练习】
1、下列命题:① 垂直于弦的直径平分这条弦;② 平分弦的直径垂直于弦;③垂直且平分弦的直线必定经过圆心。
其中正确的有( )
A.0个
B.1个
C.2个
D.3个
2、如图,⊙O 的直径为10cm ,弦AB 为8cm ,P 是弦AB 上一点,若OP 的长是整数,
则满足条件的点P 有( )个
A.2
B.3
C.4
D.5 3、半径为5cm 的圆内有两条互相平行的弦,长度分别为6cm 和8cm ,则这两弦之间的距离为 cm 4、圆的半径等于23cm ,圆内一条弦长23cm ,则弦的中点与弦所对弧的中点的距离等于 5、如图,矩形ABCD 与⊙O 相交于M 、N 、F 、E ,如果AM=2,DE=1,EF=8,那么MN 的长为
6、如图,半径为5的⊙P 与y 轴交于点M (0,-4)、N (0,-10),函数y=
k
x
(x<0)的图象过点P ,则k= 7、如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 8、如图,已知AB 、AC 为弦,OM ⊥AB 于点M , ON ⊥AC 于点N ,BC=4,则MN=
x y O
A
B
C 第5题 O
P M
y x N
第6题
第7题
P
O
第12题
O 1
x
y O 2
O 3
(第11题图)(B)P
F
C A E O 9、已知圆内接△ABC 中,AB=AC ,圆心O 到BC 的距离为3cm ,圆的半径为7cm ,求腰AB 的长
10、如图,已知⊙O 的半径为10cm ,弦AB ⊥CD ,垂足为E ,AE=4cm ,BE=8cm ,求弦CD 的长
11、小敏在作⊙O 的内接正五边形时,先做了如下几个步骤:(1)作⊙O 的两条互相垂直的直径,再作OA 的垂直平分线交OA 于点M ,如图1;
(2)以M 为圆心,BM 长为半径作圆弧,交CA 于点D ,连结BD ,如图2.若⊙O 的半径为1,则由以上作图得到的关于正五边形边长BD 的等式是( )
A .BD 2=
OD B .BD 2=
OD
C .B
D 2=
OD D .BD 2=
OD
12、如图,在平面直角坐标系中,⊙D 与坐标轴分别相交于A (﹣,0),B (,0),C (0,3)三点.
(1)⊙D 的半径是 _________ ;
(2)E 为优弧AB 一动点(不与A ,B ,C 三点重合),EN ⊥x 轴于点N ,M 为半径DE 的中点,连接MN ,求证∠DMN=3∠MNE ;
(3)在(2)的条件下,当∠DMN=45°时,E 点的坐标是 _________ .
13、如图,已知EF 是⊙O 的直径,把∠A 为600的直角三角板ABC 的一条直角边BC 放在直线EF 上,斜边AB
与⊙O 交于点P ,点B 与点O 重合;将三角形ABC 沿OE 方向平移,使得点B 与点E 重合为止.设∠POF=x 0,则x 的取值范围是 ( )
A .30≤x ≤60
B .30≤x ≤90
C .30≤x ≤120
D .60≤x ≤120
14、如图,二次函数44
12
+-=x y 的图象在x 轴上方的一部分,对于这段图象与x 轴所围成的阴影部分的面积,
你认为与其最.接近的值是 ( ) A .16
B .
3
64
C .π8
D .32
15、如图1,抛物线y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的对称轴为y 轴,且经过(0,0)和1
(,
)16
a 两点,点P 在该抛物线上运动,以点P 为圆心的⊙P 总经过定点A (0, 2).
(1)求a 、b 、c 的值;
(2)求证:在点P 运动的过程中,⊙P 始终与x 轴相交;
(3)设⊙P 与x 轴相交于M (x 1, 0)、N (x 2, 0)两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标.
D
C
B
O
A
E
O x y
(第14题图)。