齿轮结构及设计
- 格式:ppt
- 大小:1.99 MB
- 文档页数:72
第六章齿轮机构及其设计基本要求了解齿轮机构的应用及其分类以及齿廓啮合的基本定律、共轭齿廓等概念。
熟练掌握渐开线直齿圆柱齿轮几何尺寸的计算以及一对轮齿的啮合过程、正确啮合条件、连续传动条件、渐开线齿轮传动的特点等。
了解渐开线齿轮的切制原理。
掌握标准齿轮不发生根切的最少齿数以及最小变位系数的计算和变位齿轮几何尺寸的计算。
了解斜齿圆柱齿轮传动的特点、齿廓的形成。
掌握端面和法面参数之间的关系转换及基本尺寸的计算。
了解圆锥齿轮和蜗轮蜗杆传动的特点以及主要几何尺寸的计算。
基本概念题和答案1.什么是齿廓啮合基本定律,什么是定传动比的齿廓啮合基本定律?齿廓啮合基本定律的作用是什么?答:一对齿轮啮合传动,齿廓在任意一点接触,传动比等于两轮连心线被接触点的公法线所分两线段的反比,这一规律称为齿廓啮合基本定律。
若所有齿廓接触点的公法线交连心线于固定点,则为定传动比齿廓啮合基本定律。
作用;用传动比是否恒定对齿廓曲线提出要求。
2.什么是节点、节线、节圆?节点在齿轮上的轨迹是圆形的称为什么齿轮?答:齿廓接触点的公法线与连心线的交点称为节点,一对齿廓啮合过程中节点在齿轮上的轨迹称为节线,节线是圆形的称为节圆。
具有节圆的齿轮为圆形齿轮,否则为非圆形齿轮。
3.什么是共轭齿廊?答:满足齿廓啮合基本定律的一对齿廓称为共轭齿廓。
4.渐开线是如何形成的?有什么性质?答:发生线在基圆上纯滚动,发生线上任一点的轨迹称为渐开线。
性质:(1)发生线滚过的直线长度等于基圆上被滚过的弧长。
(2)渐开线上任一点的法线必切于基圆。
(3)渐开线上愈接近基圆的点曲率半径愈小,反之则大,渐开线愈平直。
(4)同一基圆上的两条渐开线的法线方向的距离相等。
(5)渐开线的形状取决于基圆的大小,在展角相同时基圆愈小,渐开线曲率愈大,基圆愈大,曲率愈小,基圆无穷大,渐开线变成直线。
(6)基圆内无渐开线。
5.请写出渐开线极坐标方程。
答:r k = r b/ cos αk θk= inv αk= tgαk一αk6.渐开线齿廓满足齿廓啮合基本定律的原因是什么?答;(1)由渐开线性质中,渐开线任一点的法线必切于基圆(2)两圆的同侧内公切线只有一条,并且两轮齿廓渐开线接触点公法线必切于两基圆,因此节点只有一个,即i12=ω1/ ω2=O2P / O1P =r2′/ r1′= r b2/ r b1= 常数7.什么是啮合线?答:两轮齿廓接触点的轨迹。
某船用齿轮结构拓扑优化设计随着现代工程领域的不断发展,越来越多的机械结构开始采用拓扑优化设计的方式,以实现更高效、更节能的工作方式。
而在船舶工程中,齿轮结构作为传动装置的重要组成部分,也需要进行拓扑优化设计,以提高其性能和可靠性。
齿轮是一种常见的机械传动机构,在船舶工程中被广泛应用于各种动力传动系统中。
在齿轮结构的设计中,拓扑优化是一种有效的方法,它可以通过优化齿轮的结构形式,达到降低材料使用量、减轻重量、提高耐久性等效果。
在齿轮结构的拓扑优化设计中,首先需要进行的是结构分析。
通过分析齿轮结构的载荷条件和工作环境,确定其所需的强度、刚度、耐久性等性能参数。
然后,根据确定的性能指标,通过拓扑优化算法对齿轮结构进行优化设计。
在具体的拓扑优化设计过程中,可以采用宽度优先搜索(BFS)算法等基于图论和拓扑排序的方法,对齿轮结构进行优化排布。
BFS算法可以通过逐层优化设计,逐渐逼近最优方案,实现对齿轮结构的拓扑优化设计。
此外,还可以采用有限元方法分析齿轮结构在不同工况下的受力情况,进一步优化设计。
在齿轮结构的优化设计中,需要注意以下几点:首先,要确保齿轮结构的强度和稳定性。
在优化设计时,需要考虑齿轮结构的材料性能、载荷条件、工作环境等因素,保证齿轮结构在使用中具有足够的强度和稳定性。
其次,要注意拓扑优化所需的材料成本和加工成本。
在优化设计中,需要综合考虑材料成本和加工成本,避免设计过于复杂,造成不必要的成本浪费。
最后,需要进行齿轮结构的模拟试验和实验验证。
在完成优化设计后,需要进行模拟试验和实验验证,检验齿轮结构的性能和稳定性,及时调整和优化设计方案。
总体来说,齿轮结构的拓扑优化设计可以提高其性能和可靠性,降低成本和重量,实现更高效、更节能的传动方式。
在未来的船舶工程中,拓扑优化方法将会成为一种重要的设计技术,为船舶工程的发展和进步提供强有力的支持。
在进行数据分析前,需要明确分析的具体内容和数据来源。
以下是一些可能涉及到的数据来源和内容:1. 公司财务报告:包括营收、利润、资产负债表等数据。
齿轮(设计手册)(一)引言概述:齿轮是一种常见的机械传动装置,广泛应用于各个领域。
本文旨在介绍齿轮的设计原理和应用,涵盖了齿轮的基本知识以及设计过程中需要考虑的要点。
正文:1. 齿轮的类型1.1 直齿轮1.1.1 直齿轮的结构及工作原理1.1.2 直齿轮的优缺点1.1.3 直齿轮的应用领域1.2 锥齿轮1.2.1 锥齿轮的结构及工作原理1.2.2 锥齿轮的优缺点1.2.3 锥齿轮的应用领域1.3 内啮合齿轮1.3.1 内啮合齿轮的结构及工作原理1.3.2 内啮合齿轮的优缺点1.3.3 内啮合齿轮的应用领域1.4 行星齿轮1.4.1 行星齿轮的结构及工作原理1.4.2 行星齿轮的优缺点1.4.3 行星齿轮的应用领域1.5 正、斜面齿轮1.5.1 正、斜面齿轮的结构及工作原理 1.5.2 正、斜面齿轮的优缺点1.5.3 正、斜面齿轮的应用领域2. 齿轮设计的要点2.1 齿轮的几何参数设计2.1.1 模数的选择2.1.2 齿数的计算方法2.1.3 齿轮的齿宽设计2.2 齿轮的材料选择2.2.1 常见的齿轮材料2.2.2 材料选择的考虑因素2.3 齿轮的强度计算2.3.1 齿轮强度的基本概念2.3.2 强度计算方法的选择2.4 齿轮的齿面硬度设计2.4.1 齿面硬度的作用2.4.2 齿面硬度设计的方法2.5 齿轮的润滑与噪声控制2.5.1 齿轮的润滑方式2.5.2 齿轮噪声的控制方法3. 齿轮设计实例分析3.1 某机械装置的齿轮传动设计3.1.1 设计目标和要求3.1.2 齿轮的选择和设计参数计算 3.1.3 材料选择和强度计算3.1.4 润滑和噪声控制策略3.2 另一款机械设备的齿轮传动设计 3.2.1 设计目标和要求3.2.2 齿轮的选择和设计参数计算 3.2.3 材料选择和强度计算3.2.4 润滑和噪声控制策略4. 齿轮制造工艺4.1 制造齿轮的常见方法4.1.1 铸造法4.1.2 切削法4.1.3 成形法4.2 齿轮加工的主要工序4.2.1 齿轮的车削加工4.2.2 齿轮的磨削加工4.2.3 齿轮的热处理4.3 齿轮质量检测方法4.3.1 齿轮的检测要点4.3.2 常用的齿轮检测方法总结:本文简要介绍了齿轮的基本原理和分类,并详细阐述了齿轮设计过程中需要考虑的要点,包括几何参数设计、材料选择、强度计算、齿面硬度设计以及润滑和噪声控制。
齿轮模具设计及制作标准(一)
一:内模部分由齿片、齿座、镶针(或司筒)等组成,结构如下图:
(1)
1.齿片的厚度一般要做到4-6MM,齿轮的厚度在4MM以上,齿片厚度与齿轮的厚
度相同即可,如图(2)所示;若齿胶位厚度低于4MM,则齿片要加厚到6MM,以便与模胚的内孔配合良好,封胶位要做到3-5MM(图3中为4.29MM),结构形式、配合公差参考图(3);若齿形需要定位或齿片有顶针穿过时,齿片需止转;
2.齿座结构形式、配合公差参考图(4);
(4)
3.镶针的结构形式、配合公差参考图(5)
4.齿片的排气设计,排气一般开在齿片的底面,对于流动性较好PA、PPS等料建议先不要开排气,具体结构如图(6);
齿片底部排气
(6)
5.进胶点的设计,一般齿根圆直径在8MM以上时,采用三点进胶;小于8MM时可采用一点进胶;为保证进浇点压力对齿形的影响,浇口的位置可稍远离齿形,具体设计请参考图(7);
(71
A、B板的模仁孔
加工时A、B板装夹后,一同加工,下图为A板的模仁孔及定位器孔重点寸法的尺寸公差、形位公差,B板的标注与A板相同;
二、齿轮产品模具的基本结构:。
齿轮设计方案一、设计背景齿轮作为一种重要的传动元件,广泛应用于各种机械设备中。
为了满足不同工况下的使用需求,我们需要对齿轮进行精心设计。
本方案旨在提出一套高效、可靠、经济的齿轮设计方案,以提高设备的整体性能。
二、设计目标1. 确保齿轮传动平稳,降低噪音;2. 提高齿轮的承载能力,延长使用寿命;3. 优化齿轮结构,减轻重量,降低成本;三、设计原则1. 符合国家和行业标准,确保设计合理、安全;2. 充分考虑生产实际,提高生产效率;3. 注重产品可靠性,降低故障率;4. 兼顾美观与实用性,提高产品竞争力。
四、齿轮设计要点1. 齿轮材料选择根据工作环境和载荷特点,选用合适的齿轮材料,如优质碳钢、合金钢或铸铁等,确保齿轮的耐磨性和强度。
考虑齿轮的热处理工艺,以提高其硬度和使用寿命。
2. 齿轮参数设计精确计算齿轮的模数、齿数、压力角等基本参数,确保齿轮的传动性能。
合理设计齿轮的齿宽和齿高,以平衡强度、刚度与重量。
3. 齿轮结构设计采用斜齿或人字齿等结构,提高齿轮的平稳性和承载能力。
考虑齿轮的润滑和散热需求,设计合适的油槽和油孔。
五、设计方案详细说明1. 齿轮啮合设计通过优化齿轮的啮合线,减少啮合冲击,降低噪音。
确保齿轮啮合时的侧隙,避免因热膨胀导致的卡滞。
2. 齿轮强度计算对齿轮进行详细的强度计算,包括接触强度、弯曲强度和齿根强度,确保齿轮在复杂工况下的可靠性。
采用有限元分析方法,对齿轮进行强度校核,优化设计。
3. 齿轮加工工艺制定合理的齿轮加工工艺流程,确保齿轮的加工精度。
选择合适的加工设备和刀具,提高齿轮的加工质量和效率。
六、设计验证与优化1. 模型分析利用三维建模软件,建立齿轮模型,进行干涉检查和运动仿真。
分析齿轮在实际工作中的受力情况,为优化设计提供依据。
2. 实验验证制作齿轮样件,进行台架试验,验证齿轮的传动性能和可靠性。
根据试验结果,对齿轮设计方案进行优化调整。
3. 用户反馈收集用户在使用过程中的意见和建议,不断改进齿轮设计。
第十章齿轮机构及其设计1.填空题:(1)采用法切制渐开线齿廓时发生根切的原因是。
(2)渐开线齿廓这所以能保证一定传动比传动,其传动比不仅与半径成反比,也与其半径成反比,还与半径成反比。
(3)一对渐开线齿廓啮合传动时,它们的接触点在线上,它的理论啮合线长度为。
(4)生产上对齿轮传动的基本要求是。
(5)一对渐开线直齿圆柱齿轮啮合时,最多只有对轮齿在同时啮合。
当安装时的实际中心距大于标准中心距时,啮合角变,重合度变,传动比。
(6)用同一把刀具加工模数、齿数和压力角均相同的标准齿轮和变位齿轮,它们的分度圆、基圆、齿距均。
(7)一对斜齿圆柱齿轮传动的重合度由和两部分组成。
(8)若重合度 =1.6,则表示实际啮合线上有长度属于双啮啮合区。
(9)直齿圆锥齿轮的背锥是与相切的圆锥,把背锥展开补齐的齿轮称为,其齿数称为,它有以下用途、和。
(10)渐开线直齿圆柱齿轮的正确啮合条件是。
(11)一对渐开线直齿圆柱齿轮啮合传动时,两轮的圆总是相切并相互作纯滚动的,而两轮的中心距不一定总等于两轮的圆半径之和。
(12)共轭齿廓是指一对的齿廓。
(13)标准齿轮除模数和压力角为标准直外,还应当满足的条件是。
(14)用齿条刀具加工标准齿轮时,齿轮分度圆与齿条刀具中线,加工变位齿轮时,中线与分度圆。
被加工齿轮与齿条刀具相“啮合”时,齿轮节圆与分度圆 .(15)有两个模数,压力角,齿顶高系数及齿数相等的直齿圆柱齿轮,一个为标准齿轮1,另一个为正变位齿轮2,试比较这两个齿轮的下列尺寸,何者较大,较小或相等:d b1 d b2;d a1 d a2;d1 d2;d f1 d f2;s a1 s a2;s1 s2。
(16)一对渐开线齿廓啮合时,啮合点处两者的压力角,而在节点啮合时则。
A.一定相等 B.一定不相等 C.一般不相等(17)渐开线齿轮齿条啮合时,其齿条相对齿轮作远离圆心的平移时,其啮合角。
A. 加大B. 不变C.减小(18)斜齿轮在上具有标准模数和标准压力角。
齿轮结构设计涉及到多个方面,包括齿轮的类型选择、齿轮参数设计、齿轮的强度和耐用性分析等。
下面是一些常见的齿轮结构设计要点:
1. 齿轮类型选择:根据应用需求和传动方式,选择合适的齿轮类型,常见的有圆柱齿轮、斜齿轮、锥齿轮、内齿轮等。
2. 齿轮参数设计:确定齿轮的模数、齿轮齿数、齿廓形状等参数。
这些参数的选择要根据传动功率、传动比、转速等因素进行综合考虑。
3. 齿轮宽度设计:齿轮宽度是指齿轮齿面的宽度,在设计时需要考虑到传递的力矩和受力情况来确定合适的宽度,以确保齿轮的强度和刚性。
4. 齿轮齿形设计:齿轮的齿形设计要考虑到传递功率和噪音等因素。
合理的齿形设计可以提高齿轮的传动效率和平稳性,减少振动和噪音。
5. 齿轮强度和耐用性分析:通过强度计算和寿命评估来验证齿轮设计的可靠性。
考虑到载荷、材料属性和制造精度等因素,进行强度校核和疲劳分析,确保齿轮在使用过程中不会
断裂或失效。
6. 齿轮润滑和冷却设计:齿轮在运动过程中会产生热量,需要适当的润滑和冷却措施来降低摩擦和磨损。
设计时考虑到合适的润滑方式和冷却通道,确保齿轮系统的稳定性和寿命。
7. 齿轮安装和对中设计:齿轮的安装和对中对于传动系统的正常运行至关重要。
设计时要考虑合适的轴向间隙、法兰设计和轴向定位等,以确保齿轮的正确配合和传动效果。
上述只是齿轮结构设计的一些基本要点,实际设计时还需要根据具体应用和需求进行更详细的设计和分析。
在进行齿轮结构设计时,可以借助计算机辅助设计软件和相关标准进行辅助和验证。
齿轮传动机构设计及强度校核一、概述1.优点:传动效率高;工作可靠、寿命长;传动比准确;结构紧凑;功率和速度适用范围很广。
2.缺点:制造成本高;精度低时振动和噪声较大;不宜用于轴间距离较大的传动。
3.设计齿轮——设计确定齿轮的主要参数以及结构形式主要参数有:模数m、齿数z、螺旋角β以及齿宽b、中心距a、直径(分度圆、齿顶圆、齿根圆)、变位系数、力的大小。
齿轮类型:—外形及轴线:—根据装置形式:开式齿轮:齿轮完全外露,润滑条件差,易磨损,用于低速简易设备的传动中闭式齿轮:齿轮完全封闭,润滑条件好半开式齿轮有简单的防护罩—根据齿面硬度(hardness):硬度:金属抵抗其它更硬物体压入其表面的能力;硬度越高,耐磨性越好硬度检测方法:布氏硬度法(HBS)洛氏硬度法(HRC)软齿面齿面硬度≤350HBS 或≤38HRC硬齿面齿面硬度>350HBS或>38HRC二.齿轮传动的失效形式和设计准则齿轮传动的失效形式1)轮齿折断(Tooth breakage)疲劳折断齿根受弯曲应力-初始疲劳裂纹-裂纹不断扩展-轮齿折断2)过载折断短时过载或严重冲击,静强度不够全齿折断—齿宽较小的齿轮局部折断—斜齿轮或齿宽较大的直齿轮措施:增大模数(主要方法)、增大齿根过渡圆角半径、增加刚度(使载荷分布均匀)、采用合适的热处理(增加芯部的韧性)、提高齿面精度、正变位等。
备注:疲劳折断是闭式硬齿面的主要失效形式!疲劳折断产生机理:齿面受交变的接触应力-齿面受交变的接触应力-润滑油进入裂纹并产生挤压-表层金属剥落-麻点状凹坑注意:凹坑先出现在节线附近的齿根表面上,再向其它部位扩展;其形成与润滑油的存在密切相关;常发生于闭式软齿面(HBS≤350)传动中;开式传动中一般不会出现点蚀现象(磨损较快);措施:提高齿面硬度和质量、增大直径(主要方法)等。
3、齿面胶合产生机理:高速重载-摩擦热使油膜破裂-齿面金属直接接触并粘接-齿面相对滑动-较软齿面金属沿滑动方向被撕落。
机械原理课程教案—齿轮机构及其运动设计一、教学目标:1. 知识与技能:(1)理解齿轮机构的定义、分类和应用;(2)掌握齿轮的基本参数和计算方法;(3)学会分析齿轮机构的运动特性;(4)能够设计简单的齿轮传动系统。
2. 过程与方法:(1)通过实例分析,掌握齿轮机构的结构特点;(2)利用图表和计算公式,分析齿轮机构的运动规律;(3)运用设计软件或手绘,完成齿轮传动系统的设计。
3. 情感态度与价值观:(1)培养学生对机械原理学科的兴趣和热爱;(2)培养学生动手实践能力和创新精神;(3)使学生认识到齿轮机构在工程中的重要性。
二、教学内容:1. 齿轮机构的定义、分类和应用;2. 齿轮的基本参数和计算方法;3. 齿轮机构的运动特性分析;4. 齿轮传动系统的设计方法。
三、教学重点与难点:1. 教学重点:齿轮机构的特点、应用、基本参数计算、运动特性分析、设计方法。
2. 教学难点:齿轮机构的运动特性分析,齿轮传动系统的设计方法。
四、教学准备:1. 教学材料:教材、课件、模型、设计软件等;2. 教学工具:投影仪、计算机、绘图板等。
五、教学过程:1. 导入新课:通过展示实例图片,引导学生了解齿轮机构的应用,激发学生兴趣。
2. 知识讲解:讲解齿轮机构的定义、分类和应用,引导学生掌握齿轮机构的基本概念。
3. 参数计算:讲解齿轮的基本参数和计算方法,让学生学会如何计算齿轮的参数。
4. 运动分析:分析齿轮机构的运动特性,让学生理解齿轮机构的运动规律。
5. 设计实践:运用设计软件或手绘,让学生完成齿轮传动系统的设计。
6. 课堂讨论:引导学生探讨齿轮机构在实际工程中的应用,提高学生的实践能力。
六、教学评估:1. 课堂问答:通过提问方式检查学生对齿轮机构基本概念的理解程度。
2. 练习题:布置相关练习题,检查学生对齿轮参数计算和运动分析的掌握情况。
3. 设计作业:评估学生对齿轮传动系统设计方法的掌握,通过评阅设计方案和计算过程进行。