浅谈混凝土的施工温度与裂缝详细内容(新版)
- 格式:docx
- 大小:64.96 KB
- 文档页数:10
混凝土的施工温度与裂缝内容提要通过多年的现场观察,对混凝土温度裂缝产生的原因、现场混凝土温度的控制和预防裂缝的措施进行等进行阐述。
关键词混凝土温度应力裂缝控制在大体积混凝土中,温度应力及温度控制具有重要意义。
这主要是由于两方面的原因。
首先,在施工中混凝土常常出现温度裂缝,影响到结构的整体性和耐久性。
其次,在运转过程中,温度变化对结构的应力状态具有显著的不容忽视的影响。
我们遇到的主要是施工中的温度裂缝,因此本文仅对施工中混凝土裂缝的成因和处理措施做一探讨。
1. 裂缝的原因混凝土中产生裂缝有多种原因,主要是温度和湿度的变化,混凝土的脆性和不均匀性,以及结构不合理,原材料不合格(如碱骨料反应),模板变形,基础不均匀沉降等。
混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。
后期在降温过程中,由于受到基础或老混凝上的约束,又会在混凝土内部出现拉应力。
气温的降低也会在混凝土表面引起很大的拉应力。
当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝。
许多混凝土的内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化。
如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。
由于原材料不均匀,水灰比不稳定,及运输和浇筑过程中的离析现象,在同一块混凝土中其抗拉强度又是不均匀的,存在着许多抗拉能力很低,易于出现裂缝的薄弱部位。
2. 温度应力的分析根据温度应力的形成过程可分为以下三个阶段:(1)早期:自浇筑混凝土开始至水泥放热基本结束,一般约30天。
这个阶段的两个特征,一是水泥放出大量的水化热,二是混凝上弹性模量的急剧变化。
由于弹性模量的变化,这一时期在混凝土内形成残余应力。
(2)中期:自水泥放热作用基本结束时起至混凝土冷却到稳定温度时止,这个时期中,温度应力主要是由于混凝土的冷却及外界气温变化所引起,这些应力与早期形成的残余应力相叠加,在此期间混凝上的弹性模量变化不大。
(3)晚期:混凝土完全冷却以后的运转时期。
浅谈混凝土的施工温度与裂缝控制混凝土是一种常见的建筑材料,在建筑工程中使用广泛。
混凝土的施工温度是混凝土在浇筑和养护过程中的温度。
混凝土施工温度对混凝土的力学性能、耐久性以及裂缝控制起着重要的作用。
一、混凝土施工温度对混凝土性能的影响混凝土的强度及其它力学性能受施工温度的影响较大。
施工温度过高或过低均会影响混凝土的强度和耐久性。
1.施工温度过高当混凝土浇筑时,由于施工温度过高,混凝土内部的水分蒸发过快,使混凝土失去一定的流动性,使混凝土浇筑成型品质降低,甚至会导致表面龟裂、脱落等现象。
当混凝土在热天时间内浇筑施工时,混凝土表面干燥速度过快,由于混凝土内部空隙温度差异而产生的收缩留下很强的甚至是深层龟裂,好比新鲜的面团刚刚加水和发酵,如果太阳直射整个盆,开裂就是不可避免的。
同时,高温还会降低混凝土的强度和耐久性,减缓和延长混凝土的硬化时间,以及增加混凝土表面和内部的温度差异。
这些问题都会对混凝土的性能造成负面影响。
2.施工温度过低当混凝土浇筑时,如果温度过低,将会延缓混凝土的硬化时间,影响混凝土的强度的形成。
还会影响混凝土的耐久性,导致混凝土易龟裂、渗漏、变形等现象的产生,降低混凝土的使用寿命。
施工温度过高或过低,均会影响混凝土的强度和耐久性,因此,在混凝土的施工中,需要注意施工温度的控制。
二、混凝土的裂缝控制混凝土的裂缝问题一直是一个难解决的问题,在施工中常常因为温度问题而导致混凝土裂缝,这种问题会降低混凝土的强度和水密性。
在混凝土浇筑时,需要注意以下几点,从而控制混凝土的裂缝。
1. 控制施工温度在混凝土施工中,需要适当控制施工温度。
混凝土的施工温度应该在适宜的范围内,户外施工建议在混凝土浇筑前,首先确定好混凝土温度,以便掌握室内水泥浆料温度。
混凝土表层蒸发记录、养护天数以及养护时段都是需要记录的任务。
2. 减少温度温跃变化在混凝土浇筑时,避免热、冷交替引起的温度温跃变化,可以采用以下几种方式:确保混凝土内温度均匀,使用适当的混凝土配合比例控制水灰比,加有机物超塑剂、熟石灰等减少水泥对混凝土的影响,以减少液体表面张力。
浅谈混凝土的施工温度与裂缝中铁二十三局一公司滕州项目部王金山内容提要通过多年的施工现场观察和借鉴有关混凝土内部应力方面的专著,对混凝土温度裂缝产生的原因,现场混凝土温度的控制和预防裂缝的措施等进行阐述。
关键词混凝土温度应力裂缝控制混凝土在现代工程建设中占有重要地位。
而在今天,混凝土的裂缝较为普遍,在桥梁工程中裂缝几乎无所不在。
尽管我们在施工中采取各种措施,但裂缝仍然时有出现。
究其原因,我们对混凝土温度应力的变化注意不够是其中之一。
尤其在大体积混凝土中,温度应力及温度控制具有重要意义。
这主要是由于两方面的原因。
首先,在施工中混凝土常常出现温度裂缝,影响到结构的整体性和耐久性。
其次,在运转过程中,温度变化对结构的应力状态具有显著的不容忽视的影响。
我们遇到的主要是施工中的温度裂缝,因此本文仅对施工中混凝土裂缝的成因和处理措施做一探讨。
借鉴有关混凝土内部应力的资料和现场施工实践,主要应从以下几个方面进行分析。
1 温度裂缝产生的原因1.1水泥水化热水泥在水化过程中放出大量的热,且主要集中在浇筑后的7d左右,大量的水泥水化热使混凝土内部温度升高,在表面引起拉应力;后期在降温过程中,由于受到基础或表面已经凝固的混凝土的约束,因降温收缩的砼又会在混凝土内部引起拉应力,尤其对于大体积混凝土来讲,混凝土内部和表面的散热条件不同,内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化,这种内外温差巨大的现象更加严重,当拉应力超过混凝土的极限抗拉强度时,就会在混凝土表面就会产生裂缝。
1.2混凝土的收缩混凝土在空气中硬结时体积减小的现象称为混凝土收缩。
混凝土在不受外力的情况下这种自发变形不会产生应力,但在受到外部约束时(支承条件、钢筋等),变形受限,在混凝土中产生拉应力,使得混凝土开裂。
混凝土的裂缝主要由塑性收缩、干燥收缩和温度收缩这三种情况引起的。
在硬化初期主要是水泥石在水化凝固结硬过程中产生的体积变化,后期主要是混凝土内部自由水分蒸发而引起的干缩变形。
浅谈混凝土的施工温度与裂缝随着时代的不断地发展进步,我过建筑行业不断地发展壮大,因此,混凝土在工程建设中占据了十分重要的作用,无论是建筑物还是桥梁工程建设等,其裂缝无处不在,由此可见,混凝土的裂缝在当今的工程建设中存在普遍性。
然而,温度裂缝是工程施工中最常见的一种现象,因此,本文主要就施工过程中的混凝土出现裂缝的成因展开分析,并对其提出相应的处理措施。
标签:混凝土;建筑施工;温度裂缝;处理一、引言在目前的工程建设中,混凝土出现裂缝的现象是比较普遍的,而对于混凝土在现代工程建设中占据了十分重要的地位,因此,需要对其裂缝形成的原因引起高度的重视,当前引起混凝土出现裂缝主要是由于混凝土在施工建设中,对其温度变化的掌握不到位。
在工程建设中,对于体积较大的混凝土,需要相关的工作人员高度重视温度对混凝土所造成的影响,对此,这就需要施工人员把握好温度应力并且控制好相应的温度。
二、出现裂缝的原因混凝土裂缝的形成主要有多方面的原因,例如,原材料不合格、施工中模板变形以及混凝土的脆性和不均匀性等等,都是造成混凝土开裂的原因。
在工程建设中,在对混凝土进行硬化期间,其水泥在硬化前期会放出大量的水化热,使得混凝土内部的温度不断上升,并在其表面形成一定的拉应力。
在混凝土处于不断降温的过程中,由于受到冷却混凝土的约束,则会在混凝土内部出现相应的拉应力,而随着气温的不断降低,拉应力会随之而加大,当拉应力大于混凝土抗裂能力时,混凝土表面便会出现相应的裂缝。
然而,当混凝土的内部湿度变化不大,相对而言,其表面湿度又可能发生很大的变化,对此,也是造成裂缝形成的原因之一。
混凝土的材料本身具有一定的脆性,其抗拉强度与抗压强度的比例是1:10,因此又由于原材料在运输途中或浇筑过程中出现离析现象,加之原材料的不均匀和当中的水灰比例具有不稳定性,对于同一块混凝土其相应的抗拉能力是不同的,许多地方抗拉能力达不到标准,因此造成混凝土出现诸多裂缝。
对于这些导致混凝土出现裂缝的情况,需要施工组在工程建设中引起高度重视,并且需要相关的工作人员掌握好温度应力的变化规律,结构设计、施工的合理性对于工程建设是十分重要的。
浅谈混凝土的施工温度与裂缝通过多年的现场观察,通过查阅有关混凝土内部应力方面的专著,对混凝土温度裂缝产生的原因、现场混凝土温度的控制和预防裂缝的措施进行等进行阐述。
标签:混凝土温度应力裂缝控制在大体积混凝土中,温度应力及温度控制具有重要意义。
这主要是由于两方面的原因。
首先,在施工中混凝土常常出现温度裂缝,影响到结构的整体性和耐久性。
其次,在运转过程中,温度变化对结构的应力状态具有顯著的不容忽视的影响。
我们遇到的主要是施工中的温度裂缝,因此本文仅对施工中混凝土裂缝的成因和处理措施做一探讨。
1裂缝的原因混凝土中产生裂缝有多种原因,主要是温度和湿度的变化,混凝土的脆性和不均匀性,以及结构不合理,原材料不合格(如碱骨料反应),模板变形,基础不均匀沉降等。
混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。
后期在降温过程中,由于受到基础或老混凝上的约束,又会在混凝土内部出现拉应力。
气温的降低也会在混凝土表面引起很大的拉应力。
当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝。
许多混凝土的内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化。
如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。
混凝土是一种脆性材料,抗拉强度是抗压强度的1/10左右,短期加荷时的极限拉伸变形只有(0.6~1.0)×104,长期加荷时的极限位伸变形也只有(1.2~2.0)×104.由于原材料不均匀,水灰比不稳定,及运输和浇筑过程中的离析现象,在同一块混凝土中其抗拉强度又是不均匀的,存在着许多抗拉能力很低,易于出现裂缝的薄弱部位。
在钢筋混凝土中,拉应力主要是由钢筋承担,混凝土只是承受压应力。
在素混凝土内或钢筋混凝上的边缘部位如果结构内出现了拉应力,则须依靠混凝土自身承担。
一般设计中均要求不出现拉应力或者只出现很小的拉应力。
但是在施工中混凝土由最高温度冷却到运转时期的稳定温度,往往在混凝土内部引起相当大的拉应力。
浅谈混凝土的施工温度与裂缝第一篇:浅谈混凝土的施工温度与裂缝浅谈混凝土的施工温度与裂缝中铁二十三局一公司滕州项目部王金山内容提要通过多年的施工现场观察和借鉴有关混凝土内部应力方面的专著,对混凝土温度裂缝产生的原因,现场混凝土温度的控制和预防裂缝的措施等进行阐述。
关键词混凝土温度应力裂缝控制混凝土在现代工程建设中占有重要地位。
而在今天,混凝土的裂缝较为普遍,在桥梁工程中裂缝几乎无所不在。
尽管我们在施工中采取各种措施,但裂缝仍然时有出现。
究其原因,我们对混凝土温度应力的变化注意不够是其中之一。
尤其在大体积混凝土中,温度应力及温度控制具有重要意义。
这主要是由于两方面的原因。
首先,在施工中混凝土常常出现温度裂缝,影响到结构的整体性和耐久性。
其次,在运转过程中,温度变化对结构的应力状态具有显著的不容忽视的影响。
我们遇到的主要是施工中的温度裂缝,因此本文仅对施工中混凝土裂缝的成因和处理措施做一探讨。
借鉴有关混凝土内部应力的资料和现场施工实践,主要应从以下几个方面进行分析。
温度裂缝产生的原因1.1水泥水化热水泥在水化过程中放出大量的热,且主要集中在浇筑后的7d左右,大量的水泥水化热使混凝土内部温度升高,在表面引起拉应力;后期在降温过程中,由于受到基础或表面已经凝固的混凝土的约束,因降温收缩的砼又会在混凝土内部引起拉应力,尤其对于大体积混凝土来讲,混凝土内部和表面的散热条件不同,内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化,这种内外温差巨大的现象更加严重,当拉应力超过混凝土的极限抗拉强度时,就会在混凝土表面就会产生裂缝。
1.2混凝土的收缩混凝土在空气中硬结时体积减小的现象称为混凝土收缩。
混凝土在不受外力的情况下这种自发变形不会产生应力,但在受到外部约束时(支承条件、钢筋等),变形受限,在混凝土中产生拉应力,使得混凝土开裂。
混凝土的裂缝主要由塑性收缩、干燥收缩和温度收缩这三种情况引起的。
在硬化初期主要是水泥石在水化凝固结硬过程中产生的体积变化,后期主要是混凝土内部自由水分蒸发而引起的干缩变形。
浅析混凝土的施工温度与裂缝0.引言混凝土在现代工程建设中占有重要地位。
而在今天,混凝土的裂缝较为普遍,在桥梁工程中裂缝几乎无所不在。
尽管我们在施工中采取各种措施,小心谨慎,但裂缝仍然时有出现。
究其原因,我们对混凝土温度应力的变化注意不够是其中之一。
在大体积混凝土中,温度应力及温度控制具有重要意义。
这主要是由于两方面的原因。
首先,在施工中混凝土常常出现温度裂缝,影响到结构的整体性和耐久性。
其次,在运转过程中,温度变化对结构的应力状态具有显著的不容忽视的影响。
我们遇到的主要是施工中的温度裂缝,因此本文仅对施工中混凝土裂缝的成因和处理措施做一探讨。
1.裂缝的原因混凝土中产生裂缝有多种原因,主要是温度和湿度的变化,混凝土的脆性和不均匀性,以及结构不合理,原材料不合格(如碱骨料反应),模板变形,基础不均匀沉降等。
混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。
后期在降温过程中,由于受到基础或老混凝上的约束,又会在混凝土内部出现拉应力。
气温的降低也会在混凝土表面引起很大的拉应力。
当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝。
许多混凝土的内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化。
如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。
混凝土是一种脆性材料,抗拉强度是抗压强度的1/10左右,短期加荷时的极限拉伸变形只有(0.6~1.0)×104,长期加荷时的极限位伸变形也只有(1.2~2.0)×104.由于原材料不均匀,水灰比不稳定,及运输和浇筑过程中的离析现象,在同一块混凝土中其抗拉强度又是不均匀的,存在着许多抗拉能力很低,易于出现裂缝的薄弱部位。
在钢筋混凝土中,拉应力主要是由钢筋承担,混凝土只是承受压应力。
在素混凝土内或钢筋混凝上的边缘部位如果结构内出现了拉应力,则须依靠混凝土自身承担。
一般设计中均要求不出现拉应力或者只出现很小的拉应力。
混凝土的施工温度与裂缝混凝土是一种常用的建筑材料,用于各种建筑工程中,包括房屋、桥梁、路面等。
在混凝土施工过程中,温度是一个重要的因素,它对混凝土的性能和质量有着直接的影响。
特别是在高温或低温环境中施工,容易出现裂缝问题。
本文将从混凝土施工温度的影响、裂缝的形成机制和预防措施等方面进行详细介绍。
首先,混凝土施工温度对混凝土的性能有着直接的影响。
在混凝土浇筑后,水泥水化反应会产生热量,这将导致混凝土的温度升高。
当施工温度过高时,水泥的水化反应速度加快,混凝土的凝固和硬化过程加快,浇筑后的混凝土容易出现开裂的问题。
而当施工温度过低时,水泥的水化反应速度减慢,混凝土的凝固和硬化时间延长,容易导致混凝土的强度不够,造成混凝土强度不达标的问题。
其次,混凝土施工温度对裂缝的形成有着重要的影响。
温度变化会导致混凝土的体积发生变化,当温度升高时,混凝土膨胀,当温度降低时,混凝土收缩。
而由于混凝土的强度和刚度有限,当温度变化较大时,混凝土与支撑结构之间的约束会造成应力的集中,从而导致混凝土表面产生裂缝。
此外,混凝土的收缩和膨胀还会导致内部产生应力,这些应力也可能引起混凝土的裂缝。
那么,如何预防混凝土在施工过程中出现裂缝呢?首先,在施工前要进行充分的设计和计算,确定混凝土的配合比和施工方案。
根据具体环境温度和材料特性,合理控制施工温度,选择合适的水泥和控制混凝土的浇筑温度。
其次,在施工过程中要进行良好的施工管理和控制。
尽量减少混凝土的温度变化,避免突然的温度变化对混凝土的影响。
合理安排施工时间,尽量避免在高温或低温时段进行混凝土施工,减少温度差异的产生。
此外,可以采取一些技术措施,如混凝土表面覆盖保护、预应力等,来减少混凝土裂缝的产生和扩展。
在施工结束后,及时进行保养和养护,控制混凝土的干燥速度和温度变化,避免混凝土出现表面开裂。
总的来说,混凝土施工温度与裂缝是密切相关的。
合理控制施工温度,进行施工方案设计和施工管理,采取适当的技术措施,可以有效预防混凝土裂缝的产生。
摘要:混凝土裂缝威胁着工程质量,文章通过阐述裂缝产生的原因,分析温度应力,提出控制温度和预防裂缝的措施,以及防止裂缝对混凝土进行早期养护,从混凝土裂缝的角度为工程安全提出参考依据。
关键词:温度裂缝养护0引言长期以来,混凝土在建筑施工中始终发挥着举足轻重的作用。
但是混凝土裂缝问题也是长期困扰建筑、施工单位的一大难题,桥梁工程裂缝问题尤为严重。
尽管在施工阶段已采取了防治措施,但裂缝仍时有发生。
在混凝土施工中,温度应力和温度控制对裂缝防治意义重大,具体体现在:一是混凝土结构的整体性和耐久性受温度产生的裂缝的影响较大;另一方面结构的应力状态受温度变化的影响明显。
1裂缝产生的原因在混凝土施工中,原材料的选择、温湿度变化、混凝土的脆性和不均匀性、地基发生不均匀沉陷等等诸多因素都有可能引发混凝土裂缝,因此在施工中要加强各环节、各工序的质量控制。
由于混凝土水花作用会产生大量水化热,致使混凝土内、外部形成温度差,进而导致混凝土表面产生拉应力。
降温时,基础混凝土与旧混凝土相互制约,导致混凝土的内部出现大于混凝土本身抗裂能力的拉应力,进而引发结构裂缝。
混凝土作为一种脆性材料,抗拉强度不均匀,在混凝土的内部存在许多抗拉能力低、极易出现裂缝的薄弱部位。
另外,由于原材料拌合不均匀,水灰比不稳定,以及混凝土出现离析现象,在混凝土内部由钢筋承担拉应力,混凝土只承受压应力。
但是在钢筋混凝土的边缘和素混凝土内部,这部分拉应力职能由混凝土本身承担。
因此,浇筑过程中,要严格控制浇筑质量,尽量避免混凝土构件产生拉应力。
但是在施工过程中,由于混凝土温度的变化,导致混凝土内部产生拉应力。
为了确保结构设计的合理性,熟悉温度应力的变化规律。
2温度应力的分析形成温度应力过程分为早期、中期、晚期三个阶段:①早期:大约需要30天,是指从开始浇筑混凝土到水泥完成放热。
此时混凝土表现出两个特征:一是弹性模量发生急剧变化;二是水泥产生大量水化热。
②中期:从水泥完成放热到混凝土温度基本稳定,在这个阶段受外界温度的变化以及混凝土的冷却影响产生温度应力,并且与上阶段的残余应力彼此迭加,但是,弹性模量中期的变化不大。
浅析混凝土施工过程中的温度及裂缝控制混凝土是施工中常用的一种材料,它在施工中需要控制的一个关键因素就是温度及裂缝。
混凝土对于温度的敏感度较高,在施工过程中温度的变化可能造成材料本身的变形或者不均匀收缩,导致混凝土内部产生应力,甚至出现裂缝,影响结构的使用寿命和安全性。
本文将从温度和裂缝控制两个方面浅析混凝土施工过程中的相关问题。
一、温度控制混凝土施工过程中的温度控制是非常重要的,可以从以下两个角度来考虑:1. 混凝土的配合比混凝土的配合比直接关系到混凝土的性能,包括强度、抗渗、抗裂和耐久性等。
但不同的配合比所需使用的水泥和混凝土内含量可能不同,因而在施工中受温度影响的程度也会不同。
通常情况下,水泥含量较高的混凝土抗温度变化强,但其施工时的温度变形也相对较大;而水泥含量较少的混凝土则变形较小,但受温度变化的影响较大。
因此,确定合理的配合比可以有效地控制混凝土的温度问题。
2. 施工环境施工环境是影响混凝土施工中温度变化的另一个重要因素。
气温、湿度以及风、日等外界因素都会对混凝土的温度产生影响。
在施工过程中,应根据气候条件和当地的季节特点,采取一些措施来减小温度变化的影响。
例如,在高温季节,可以在混凝土表面覆盖遮光布防止晒伤、适当增加养护时间等措施。
二、裂缝控制混凝土在施工中容易出现裂缝现象,其发生原因多种多样,包括混凝土内部收缩、外部荷载作用以及温度变化等。
控制混凝土裂缝有以下几种方法:1. 控制施工温度如前所述,在施工过程中合理控制温度,避免温度变化对混凝土的影响,是控制裂缝发生的有效手段之一。
2. 采用高强度的混凝土采用高强度的混凝土可以提高混凝土的抗裂性能,降低混凝土出现裂缝的可能性。
3. 施工中掌握好浇筑时间混凝土从浇筑到硬化需要一定的时间,如果在硬化初期就接受外界荷载,容易导致混凝土内部产生应力,从而出现裂缝问题。
通常在浇筑完成后,应等待混凝土达到一定的强度后再进行下一步施工或荷载作用。
4. 在混凝土中加入适量的缩微剂合理加入缩微剂可以有效地减小混凝土收缩率,从而降低混凝土出现裂缝的可能性。
浅析混凝土施工过程中的温度及裂缝控制混凝土作为建筑工程中常用的材料,其施工过程中温度和裂缝控制是十分重要的环节。
温度的控制对混凝土的强度和耐久性有着直接的影响,而裂缝的产生则直接关系到混凝土结构的安全和使用寿命。
本文将从温度和裂缝两个方面对混凝土施工过程中的控制进行浅析,希望对相关行业有所帮助。
一、温度控制1. 温度对混凝土的影响混凝土在温度变化的环境下会产生体积变化,这对混凝土的强度和耐久性都有着直接的影响。
在混凝土初凝和硬化过程中,如果受到较大的温度影响,就容易产生裂缝和变形,从而影响混凝土结构的使用性能。
控制混凝土施工过程中的温度十分重要。
2. 控制方法(1)选择合适的季节和时间进行施工,避免在高温或寒冷的环境下进行混凝土浇筑。
(2)采用冷却水对混凝土进行降温处理,可以有效控制混凝土温度的升高。
(3)可以在混凝土配合比中加入缓凝剂,延长混凝土的凝固时间,从而减缓温度的升高。
(4)在混凝土初凝和硬化过程中可以采用覆盖材料对混凝土进行保温处理,防止温度急剧下降。
3. 温度监测在混凝土施工过程中需要对温度进行及时监测,一方面可以及时采取措施控制温度的变化,另一方面也可以为后续施工工序提供参考。
常用的温度监测方法有表面温度监测和内部温度监测两种,根据具体施工情况选择合适的监测手段进行温度控制。
二、裂缝控制1. 裂缝的产生原因混凝土结构在施工和使用过程中会受到各种外部力的作用,从而产生应力,当应力超过混凝土的承受能力时就容易产生裂缝。
在混凝土的龄期初期和末期都容易出现裂缝,因为这两个阶段混凝土的强度较低,抗裂性也较弱。
(1)合理设计和施工,避免因为结构设计不合理或者施工缺陷等原因导致裂缝的产生。
(2)采用预应力混凝土结构,提高混凝土结构的抗裂性能。
(3)在混凝土配合比中加入裂缝控制剂,改善混凝土的抗裂性能。
(4)在混凝土结构中设置缝隙,避免裂缝的产生对整体结构的影响。
3. 裂缝监测和修补在混凝土结构施工完毕后需要对裂缝进行监测,一旦发现裂缝需要及时进行修补,防止裂缝扩大影响结构的安全性。
浅析混凝土施工过程中的温度及裂缝控制1. 引言1.1 介绍混凝土作为建筑工程中常见的一种建筑材料,在施工过程中温度及裂缝控制问题一直备受关注。
温度是影响混凝土施工质量的重要因素之一,合理控制混凝土在施工过程中的温度,可以有效避免裂缝的生成,从而保证工程的安全和持久性。
深入研究混凝土施工过程中的温度及裂缝控制问题,对于提高工程质量具有重要的意义。
1.2 研究背景混凝土施工是建筑工程中非常重要的一环,而在混凝土施工过程中,温度及裂缝控制是一个十分关键的问题。
温度的控制不仅影响着混凝土的强度和耐久性,还与混凝土裂缝的产生有着密切的关系。
深入研究混凝土施工过程中的温度及裂缝控制对于保证工程质量和安全具有重要意义。
在实际施工中,由于混凝土在硬化过程中会释放热量,在环境温度变化的影响下混凝土会发生体积变化,这些因素都会对混凝土结构造成影响。
而裂缝的出现往往是由于温度变化引起的混凝土内部应力造成的。
合理控制混凝土施工过程中的温度,有效预防裂缝的产生,对于保证工程质量至关重要。
通过深入研究混凝土施工过程中的温度及裂缝控制,可以为工程施工提供指导,提高工程质量,降低工程风险。
对于混凝土施工中的温度及裂缝控制进行深入的研究具有重要的现实意义。
1.3 目的本文的目的是探讨混凝土施工过程中的温度及裂缝控制问题,分析温度和裂缝控制之间的关系,总结不同方法对温度和裂缝的影响,以及解决施工中常见的温度及裂缝控制问题。
通过对这些问题深入了解和分析,能够帮助施工人员更好地掌握混凝土施工过程中的技术要点,提高施工质量,确保工程的稳定性和耐久性。
本文也旨在引起施工行业人员对温度及裂缝控制的重视,促进更多关于此方面的研究和实践,为混凝土施工的发展和改进提供有益参考。
通过本文的研究,希望能够为混凝土施工中的温度及裂缝控制问题提供一定的解决思路和方法,推动施工行业的不断发展和进步。
2. 正文2.1 混凝土施工过程中的温度控制混凝土施工过程中的温度控制是非常重要的一环。
浅析混凝土施工过程中的温度及裂缝控制混凝土是建筑工程中常用的一种材料,其施工过程中温度和裂缝控制是非常重要的环节。
在混凝土施工过程中,由于混凝土的收缩和温度变化等因素,容易产生裂缝,影响工程质量和使用性能。
合理控制施工过程中的温度和裂缝对于保障工程质量和延长工程寿命具有重要意义。
本文将对混凝土施工过程中的温度和裂缝控制进行浅析。
一、混凝土施工过程中的温度控制(一)温度对混凝土的影响在混凝土的施工过程中,温度是直接影响混凝土性能的重要因素之一。
一方面,随着温度的升高,混凝土的抗压强度和抗拉强度会逐渐降低;温度的变化会导致混凝土产生收缩,从而引起裂缝的产生。
合理控制混凝土施工过程中的温度,对于保障混凝土的强度和防止裂缝的产生具有非常重要的意义。
(二)温度控制的方法1.控制混凝土的初始温度:混凝土的初始温度是指混凝土拌合完毕后的温度。
控制混凝土的初始温度,可以通过在拌合前对原材料进行预冷或预热的处理,以及在拌合过程中控制水泥浆的温度等方式进行。
在夏季高温施工时,可以考虑采用低温水稀释控制混凝土浆体温度的方法,以减缓混凝土的初凝和凝结速度,降低混凝土温度。
2.控制混凝土的散热速度:混凝土的散热速度是指混凝土在施工后逐渐散发热量并冷却的速度。
一般来说,混凝土的散热速度与环境温度、风速、湿度等因素有关。
为了控制混凝土的散热速度,可以采用覆盖保温、喷水养护等方法,延缓混凝土的温度下降速度,减缓混凝土的收缩。
3.控制混凝土的环境温度:在混凝土浇筑后,应尽量避免混凝土受到外界高温或低温的影响。
一般来说,当环境温度较高时,可以采用遮阳、喷水等方式进行降温;当环境温度较低时,可以采用加热、覆盖等方式进行保温。
这样可以有效地减缓混凝土的温度变化速度,降低混凝土的收缩和裂缝的产生。
二、混凝土施工过程中的裂缝控制(一)裂缝的产生原因1.混凝土的收缩:混凝土在凝固和硬化的过程中会发生收缩,由于混凝土的收缩会受到外界约束而产生拉应力,从而引起裂缝的产生。
混凝土的施工温度与裂缝混凝土的施工温度对于混凝土的质量和性能有着重要影响,特别是在温度较高或者较低的环境下,可能会导致混凝土产生裂缝。
下面将从施工温度对混凝土性能的影响、裂缝的形成机理以及预防裂缝的方法等几个方面进行详细阐述。
一、施工温度对混凝土性能的影响1. 混凝土强度:混凝土的强度与固化过程中的温度密切相关。
施工时如果温度太高,会导致水分的过早蒸发,影响混凝土的固化过程,从而降低强度。
如果温度太低,则会延缓混凝土的固化速度,也会影响强度的发展。
2. 混凝土收缩性:混凝土在固化过程中会发生收缩,而收缩产生的应力可能会引起裂缝。
高温下混凝土的水分蒸发速度加快,收缩速度增大,容易发生裂缝。
低温下水分困在混凝土中,无法蒸发,也容易引起收缩应力,从而导致裂缝的形成。
3. 混凝土抗冻性:混凝土的抗冻性是指在低温环境下,混凝土的抵抗冻融循环的能力。
如果在混凝土的施工过程中,温度过低,可能导致混凝土内部形成大量的冰晶,破坏混凝土的结构,进而降低混凝土的抗冻性,产生裂缝。
4. 混凝土的耐久性:施工温度对混凝土的耐久性也有一定影响。
温度过高会导致混凝土内部的气孔增多,水泥石中的水化产物减少,从而影响混凝土的耐久性。
而温度过低则会降低混凝土的抗渗性和抗碳化性。
二、裂缝的形成机理1. 温度应力引起的裂缝:混凝土在固化过程中会发生收缩,而收缩会产生应力。
当混凝土内部的应力超过其强度时,就会发生裂缝。
在温度变化过程中,混凝土由于热胀冷缩,产生的温度应力也会导致裂缝的形成。
2. 冻融应力引起的裂缝:在低温环境下,混凝土中的水分会结冰膨胀,形成冻融应力。
如果混凝土的抗冻性不足,就会产生裂缝。
尤其是在高含水率的混凝土中,当冻融应力超过混凝土强度时,就容易发生裂缝。
3. 混凝土干缩引起的裂缝:在混凝土的固化过程中,由于水分的蒸发,会使混凝土收缩。
特别是在高温环境下,混凝土的干缩速度较快,容易产生裂缝。
另外,混凝土的不均匀干缩也会引起裂缝的形成。
Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention.(安全管理)单位:___________________姓名:___________________日期:___________________浅谈混凝土的施工温度与裂缝详细内容(新版)浅谈混凝土的施工温度与裂缝详细内容(新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。
显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。
混凝土在现代工程建设中占有重要地位。
而在今天,混凝土的裂缝较为普遍,在桥梁工程中裂缝几乎无所不在。
尽管我们在施工中采取各种措施,小心谨慎,但裂缝仍然时有出现。
究其原因,我们对混凝土温度应力的变化注意不够是其中之一。
在大体积混凝土中,温度应力及温度控制具有重要意义。
这主要是由于两方面的原因。
首先,在施工中混凝土常常出现温度裂缝,影响到结构的整体性和耐久性。
其次,在运转过程中,温度变化对结构的应力状态具有显著的不容忽视的影响。
我们遇到的主要是施工中的温度裂缝,因此本文仅对施工中混凝土裂缝的成因和处理措施做一探讨。
1裂缝的原因混凝土中产生裂缝有多种原因,主要是温度和湿度的变化,混凝土的脆性和不均匀性,以及结构不合理,原材料不合格(如碱骨料反应),模板变形,基础不均匀沉降等。
混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。
后期在降温过程中,由于受到基础或老混凝上的约束,又会在混凝土内部出现拉应力。
气温的降低也会在混凝土表面引起很大的拉应力。
当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝。
许多混凝土的内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化。
如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。
混凝土是一种脆性材料,抗拉强度是抗压强度的1/10左右,短期加荷时的极限拉伸变形只有(0.6~1.0)×104,长期加荷时的极限位伸变形也只有(1.2~2.0)×104。
由于原材料不均匀,水灰比不稳定,及运输和浇筑过程中的离析现象,在同一块混凝土中其抗拉强度又是不均匀的,存在着许多抗拉能力很低,易于出现裂缝的薄弱部位。
在钢筋混凝土中,拉应力主要是由钢筋承担,混凝土只是承受压应力。
在素混凝土内或钢筋混凝上的边缘部位如果结构内出现了拉应力,则须依靠混凝土自身承担。
一般设计中均要求不出现拉应力或者只出现很小的拉应力。
但是在施工中混凝土由最高温度冷却到运转时期的稳定温度,往往在混凝土内部引起相当大的拉应力。
有时温度应力可超过其它外荷载所引起的应力,因此掌握温度应力的变化规律对于进行合理的结构设计和施工极为重要。
2温度应力的分析根据温度应力的形成过程可分为以下三个阶段:(1)早期:自浇筑混凝土开始至水泥放热基本结束,一般约30天。
这个阶段的两个特征,一是水泥放出大量的水化热,二是混凝上弹性模量的急剧变化。
由于弹性模量的变化,这一时期在混凝土内形成残余应力。
(2)中期:自水泥放热作用基本结束时起至混凝土冷却到稳定温度时止,这个时期中,温度应力主要是由于混凝土的冷却及外界气温变化所引起,这些应力与早期形成的残余应力相叠加,在此期间混凝上的弹性模量变化不大。
(3)晚期:混凝土完全冷却以后的运转时期。
温度应力主要是外界气温变化所引起,这些应力与前两种的残余应力相迭加。
根据温度应力引起的原因可分为两类:(1)自生应力:边界上没有任何约束或完全静止的结构,如果内部温度是非线性分布的,由于结构本身互相约束而出现的温度应力。
例如,桥梁墩身,结构尺寸相对较大,混凝土冷却时表面温度低,内部温度高,在表面出现拉应力,在中间出现压应力。
(2)约束应力:结构的全部或部分边界受到外界的约束,不能自由变形而引起的应力。
如箱梁顶板混凝土和护栏混凝土。
这两种温度应力往往和混凝土的干缩所引起的应力共同作用。
要想根据已知的温度准确分析出温度应力的分布、大小是一项比较复杂的工作。
在大多数情况下,需要依靠模型试验或数值计算。
混凝土的徐变使温度应力有相当大的松驰,计算温度应力时,必须考虑徐变的影响,具体计算这里就不再细述。
3温度的控制和防止裂缝的措施为了防止裂缝,减轻温度应力可以从控制温度和改善约束条件两个方面着手。
控制温度的措施如下:(1)采用改善骨料级配,用干硬性混凝土,掺混合料,加引气剂或塑化剂等措施以减少混凝土中的水泥用量;(2)拌合混凝土时加水或用水将碎石冷却以降低混凝土的浇筑温度;(3)热天浇筑混凝土时减少浇筑厚度,利用浇筑层面散热;(4)在混凝土中埋设水管,通入冷水降温;(5)规定合理的拆模时间,气温骤降时进行表面保温,以免混凝土表面发生急剧的温度梯度;(6)施工中长期暴露的混凝土浇筑块表面或薄壁结构,在寒冷季节采取保温措施;改善约束条件的措施是:(1)合理地分缝分块;(2)避免基础过大起伏;(3)合理的安排施工工序,避免过大的高差和侧面长期暴露;此外,改善混凝土的性能,提高抗裂能力,加强养护,防止表面干缩,特别是保证混凝土的质量对防止裂缝是十分重要,应特别注意避免产生贯穿裂缝,出现后要恢复其结构的整体性是十分困难的,因此施工中应以预防贯穿性裂缝的发生为主。
在混凝土的施工中,为了提高模板的周转率,往往要求新浇筑的混凝土尽早拆模。
当混凝土温度高于气温时应适当考虑拆模时间,以免引起混凝土表面的早期裂缝。
新浇筑早期拆模,在表面引起很大的拉应力,出现“温度冲击”现象。
在混凝土浇筑初期,由于水化热的散发,表面引起相当大的拉应力,此时表面温度亦较气温为高,此时拆除模板,表面温度骤降,必然引起温度梯度,从而在表面附加一拉应力,与水化热应力迭加,再加上混凝土干缩,表面的拉应力达到很大的数值,就有导致裂缝的危险,但如果在拆除模板后及时在表面覆盖一轻型保温材料,如泡沫海棉等,对于防止混凝土表面产生过大的拉应力,具有显著的效果。
加筋对大体积混凝土的温度应力影响很小,因为大体积混凝土的含筋率极低。
只是对一般钢筋混凝土有影响。
在温度不太高及应力低于屈服极限的条件下,钢的各项性能是稳定的,而与应力状态、时间及温度无关。
钢的线胀系数与混凝土线胀系数相差很小,在温度变化时两者间只发生很小的内应力。
由于钢的弹性模量为混凝土弹性模量的7~15倍,当内混凝土应力达到抗拉强度而开裂时,钢筋的应力将不超过100~200kg/cm2……因此,在混凝土中想要利用钢筋来防止细小裂缝的出现很困难。
但加筋后结构内的裂缝一般就变得数目多、间距小、宽度与深度较小了。
而且如果钢筋的直径细而间距密时,对提高混凝土抗裂性的效果较好。
混凝土和钢筋混凝土结构的表面常常会发生细而浅的裂缝,其中大多数属于干缩裂缝。
虽然这种裂缝一般都较浅,但它对结构的强度和耐久性仍有一定的影响。
为保证混凝土工程质量,防止开裂,提高混凝土的耐久性,正确使用外加剂也是减少开裂的措施之一。
例如使用减水防裂剂,笔者在实践中总结出其主要作用为:(1)混凝土中存在大量毛细孔道,水蒸发后毛细管中产生毛细管张力,使混凝土干缩变形。
增大毛细孔径可降低毛细管表面张力,但会使混凝土强度降低。
这个表面张力理论早在六十年代就已被国际上所确认。
(2)水灰比是影响混凝土收缩的重要因素,使用减水防裂剂可使混凝土用水量减少25%。
(3)水泥用量也是混凝土收缩率的重要因素,掺加减水防裂剂的混凝土在保持混凝土强度的条件下可减少15%的水泥用量,其体积用增加骨料用量来补充。
(4)减水防裂剂可以改善水泥浆的稠度,减少混凝土泌水,减少沉缩变形。
(5)提高水泥浆与骨料的粘结力,提高的混凝土抗裂性能。
(6)混凝土在收缩时受到约束产生拉应力,当拉应力大于混凝土抗拉强度时裂缝就会产生。
减水防裂剂可有效的提高的混凝土抗拉强度,大幅提高混凝土的抗裂性能。
(7)掺加外加剂可使混凝土密实性好,可有效地提高混凝土的抗碳化性,减少碳化收缩。
(8)掺减水防裂剂后混凝土缓凝时间适当,在有效防止水泥迅速水化放热基础上,避免因水泥长期不凝而带来的塑性收缩增加。
(9)掺外加剂混凝土和易性好,表面易摸平,形成微膜,减少水分蒸发,减少干燥收缩。
许多外加剂都有缓凝、增加和易性、改善塑性的功能,我们在工程实践中应多进行这方面的实验对比和研究,比单纯的靠改善外部条件,可能会更加简捷、经济。
4混凝土的早期养护实践证明,混凝土常见的裂缝,大多数是不同深度的表面裂缝,其主要原因是温度梯度造成寒冷地区的温度骤降也容易形成裂缝。
因此说混凝土的保温对防止表面早期裂缝尤其重要。
从温度应力观点出发,保温应达到下述要求:1)防止混凝土内外温度差及混凝土表面梯度,防止表面裂缝。
2)防止混凝土超冷,应该尽量设法使混凝土的施工期最低温度不低于混凝土使用期的稳定温度。
3)防止老混凝土过冷,以减少新老混凝土间的约束。
混凝土的早期养护,主要目的在于保持适宜的温湿条件,以达到两个方面的效果,一方面使混凝土免受不利温、湿度变形的侵袭,防止有害的冷缩和干缩。
一方面使水泥水化作用顺利进行,以期达到设计的强度和抗裂能力。
适宜的温湿度条件是相互关联的。
混凝上的保温措施常常也有保湿的效果。
从理论上分析,新浇混凝土中所含水分完全可以满足水泥水化的要求而有余。
但由于蒸发等原因常引起水分损失,从而推迟或防碍水泥的水化,表面混凝土最容易而且直接受到这种不利影响。
因此混凝土浇筑后的最初几天是养护的关键时期,在施工中应切实重视起来。
5结束语以上对混凝土的施工温度与裂缝之间的关系进行了理论和实践上的初步探讨,虽然学术界对于混凝土裂缝的成因和计算方法有不同的理论,但对于具体的预防和改善措施意见还是比较统一,同时在实践中的应用效果也是比较好的,具体施工中要靠我们多观察、多比较,出现问题后多分析、多总结,结合多种预防处理措施,混凝土的裂缝是完全可以避免的。
XX设计有限公司Your Name Design Co., Ltd.。