(完整版)全等三角形练习题含答案
- 格式:doc
- 大小:117.01 KB
- 文档页数:3
三角形全等测试题及答案一、选择题1. 两个三角形全等的条件是()A. 有两条边和它们的夹角对应相等B. 三条边对应相等C. 有两条边和其中一条边的对角对应相等D. 有两条边和其中一条边的邻角对应相等答案:B2. 如果两个三角形的对应角相等,那么这两个三角形()A. 一定全等B. 可能相似C. 一定相似D. 无法确定答案:B二、填空题3. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,那么AC=______。
答案:EF4. 如果两个三角形的两边和夹角对应相等,那么这两个三角形是______。
答案:全等三、判断题5. 如果两个三角形的对应边成比例,那么这两个三角形一定全等。
()答案:错误6. 如果两个三角形的两边和夹角对应相等,那么这两个三角形一定相似。
()答案:正确四、解答题7. 如图所示,已知三角形ABC与三角形DEF全等,且AB=5cm,BC=7cm,∠A=∠D=90°,求DE的长度。
答案:DE=7cm8. 已知三角形ABC与三角形DEF相似,且AB=3cm,BC=4cm,DE=6cm,求AC的长度。
答案:AC=8cm五、证明题9. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,证明:AC=EF。
证明:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,对应边相等,所以AC=EF。
10. 已知∠A=∠D,AB=DE,AC=DF,求证:三角形ABC≌三角形DEF。
证明:根据SAS(边角边)判定方法,已知∠A=∠D,AB=DE,AC=DF,所以三角形ABC≌三角形DEF。
全等三角形判断一一、选择题1.△ABC和△中,若AB=,BC=,AC=. 则()A. △ABC≌△B. △ABC≌△C. △ABC≌△D. △ABC≌△2.如图,已知 AB= CD, AD= BC,则以下结论中错误的选项是()∥DC B. ∠B=∠ D C.∠A=∠ C= BC3.以下判断正确的选项是()A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4.如图,AB、CD、EF订交于O,且被O点均分,DF=CE,BF=AE,则图中全等三角形的对数共有()A. 1 对B. 2 对C. 3 对D. 4 对5.如图,将两根钢条,的中点O连在一起,使,能够绕着点O自由转动,就做成了一个测量工件,则的长等于内槽宽AB,那么判断△ OAB≌△的原由是( )A. 边角边B. 角边角C. 边边边D. 角角边6.如图,已知AB⊥BD 于 B,ED⊥BD 于 D, AB=CD, BC= ED,以下结论不正确的选项是()⊥AC= AC+AB=DB D.DC = CB二、填空题7.如图,AB=CD,AC=DB,∠ ABD=25°,∠ AOB=82°,则∠ DCB=_________.8.如图,在四边形 ABCD中,对角线 AC、BD互相均分,则图中全等三角形共有_____对 .9.如图,在△ ABC和△ EFD中,AD=FC,AB=FE,当增加条件_______时,即可得△ ABC≌△ EFD(SSS)10.如图,AC=AD,CB=DB,∠ 2=30°,∠ 3=26°,则∠ CBE=_______.11.如图,点 D在 AB上,点 E 在 AC上, CD与 BE 订交于点 O,且 AD=AE, AB=AC,若∠ B =20°,则∠C =______.12.已知,如图,AB=CD, AC=BD,则△ ABC≌______,△ ADC≌ ______.三、解答题13.已知:如图,四边形 ABCD中,对角线 AC、 BD订交于 O,∠ ADC=∠ BCD, AD=BC,求证: CO= DO.14.已知:如图, AB∥CD, AB=CD.求证: AD∥BC.解析:要证AD∥BC,只要证∠ ______=∠ ______,又需证 ______≌______.证明:∵ AB∥CD (),∴ ∠______=∠ ______ (),在△ ______和△ ______中,∴______≌Δ ______ ().∴∠______=∠ ______ ().∴______ ∥______().15.如图,已知AB=DC, AC= DB, BE= CE求证: AE= DE.答案与解析一. 选择题1.【答案】 B;【解析】注意对应极点写在相应的地址.2.【答案】 D;【解析】连接 AC或 BD证全等 .3.【答案】 D;4.【答案】 C;【解析】△ DOF≌△ COE,△ BOF≌△ AOE,△ DOB≌△ COA.5.【答案】 A;【解析】将两根钢条,的中点O连在一起,说明OA=,OB=,再由对顶角相等可证.6.【答案】 D;【解析】△ ABC≌△ EDC,∠ ECD+∠ ACB=∠ CAB+∠ ACB=90°,所以EC⊥AC, ED + AB = BC+CD = DB.二. 填空题7.【答案】 66°;【解析】可由SSS证明△ ABC≌△ DCB,∠ OBC=∠ OCB=,所以∠ DCB=∠ABC=25°+ 41°= 66°.8.【答案】 4;【解析】△ AOD≌△ COB,△ AOB≌△ COD,△ ABD≌△ CDB,△ ABC≌△ CDA.9.【答案】 BC= ED;10.【答案】 56°;【解析】∠ CBE=26°+ 30°= 56°.11.【答案】 20°;【解析】△ ABE≌△ ACD( SAS)12.【答案】△ DCB,△ DAB;【解析】注意对应极点写在相应的地址上.三. 解答题13. 【解析】证明:在△ ADC 与△ BCD中,14.【解析】3 , 4;ABD,CDB;已知;1, 2;两直线平行,内错角相等;ABD, CDB;AB, CD,已知;∠1=∠ 2,已证;BD= DB,公共边;ABD, CDB, SAS;3, 4,全等三角形对应角相等;AD, BC,内错角相等,两直线平行.15.【解析】证明:在△ ABC 和△ DCB中∴△ ABC≌△ DCB( SSS)∴∠ ABC=∠ DCB,在△ ABE和△ DCE中∴△ ABE≌△ DCE( SAS)∴AE= DE.全等三角形判断二一、选择题1.能确定△ ABC≌△ DEF的条件是()A. AB= DE, BC= EF,∠ A=∠EB. AB= DE, BC= EF,∠ C=∠EC.∠ A=∠ E, AB= EF,∠ B=∠DD.∠ A=∠ D, AB= DE,∠ B=∠E2.如图,已知△ ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()图4- 3A.甲和乙 B .乙和丙 C .只有乙 D .只有丙3. AD是△ ABC的角均分线,作A. DE= DF B . AE= AF DE⊥AB 于 E,DF⊥AC于 C .BD= CDF,以下结论错误的选项是(D.∠ ADE=∠ ADF)4.如图,已知MB=ND,∠ MBA=∠ NDC,以下条件不能够判断△ ABM≌△ CDN的是()A.∠ M=∠N B . AB= CD C .AM= CN D .AM∥CN5.某同学把一块三角形的玻璃打碎成了3块 , 现在要到玻璃店去配一块完满相同的玻璃, 那么最省事的方法是()A. 带①去B. 带②去C. 带③去D.①②③都带去6.如图,∠ 1=∠ 2,∠ 3=∠ 4,下面结论中错误的选项是()A.△ ADC≌△ BCD B .△ ABD≌△ BACC.△ ABO≌△ CDO D .△ AOD≌△ BOC二、填空题7.如图 , ∠1=∠ 2,要使△ ABE≌△ ACE,还需增加一个条件是 _________.( 填上你认为合适的一个条件即可).8.在△ ABC和△中,∠ A=44°,∠ B=67°,∠=69°,∠=44°,且AC=,则这两个三角形 _________全等 . (填“必然”或“不用然”)9.已知,如图,AB∥CD,AF∥DE,AF= DE,且 BE= 2, BC= 10,则 EF= ________.10.如图, AB∥CD,AD∥BC, OE= OF,图中全等三角形共有 ______ 对.11.如图, 已知:∠ 1 =∠ 2 , ∠3 =∠ 4 , 要证BD =CD , 需先证△ AEB ≌△ AEC , 依照是_________ ,再证△ BDE ≌△ ______ ___,依照是_________.12.已知 : 如图,∠ B=∠ DEF, AB= DE,要说明△ ABC≌△ DEF,(1)若以“ ASA”为依照,还缺条件_________(2)若以“ AAS”为依照,还缺条件_________(3)若以“ SAS”为依照,还缺条件_________三、解答题13.阅读下题及一位同学的解答过程:如图,AB和CD订交于点O,且 OA= OB,∠A=∠ C.那么△ AOD与△COB全等吗?若全等,试写出证明过程;若不全等,请说明原由.答:△ AOD≌△ COB.证明:在△ AOD和△ COB中,∴△AOD≌△ COB( ASA).问:这位同学的回答及证明过程正确吗?为什么?14.已知如图, E、 F 在 BD上,且 AB= CD, BF= DE, AE= CF,求证: AC与 BD互相均分 .15.已知:如图, AB∥CD,OA=OD, BC 过 O点 ,点E、F在直线AOD上,且AE=DF.求证: EB∥CF.答案与解析【答案与解析】一.选择题1.【答案】 D;【解析】 A、 B 选项是 SSA,没有这种判断, C 选项字母不对应 .2.【答案】 B;【解析】乙可由 SAS证明,丙可由 ASA证明 .3.【答案】 C;【解析】可由AAS证全等,获取A、 B、 D 三个选项是正确的.4.【答案】 C;【解析】没有 SSA定理判断全等 .5.【答案】 C;【解析】由 ASA定理,能够确定△ ABC.6.【答案】 C;【解析】△ ABO 与△ CDO中,只能找出三对角相等,不能够判断全等.二、填空题7.【答案】∠ B=∠ C;【解析】可由 AAS来证明三角形全等 .8.【答案】必然;【解析】由题意,△ ABC≌△,注意对应角和对应边.9.【答案】 6;【解析】△ ABF≌△ CDE, BE=CF= 2,EF= 10-2- 2= 6.10.【答案】 5;【解析】△ ABO≌△ CDO,△ AFO≌△ CEO,△ DFO≌△ BEO,△ AOD≌△ COB,△ ABD≌△ CDB.11.【答案】 ASA, CDE, SAS;【解析】△ AEB ≌△ AEC 后可得 BE= CE.12.【答案】(1)∠ A=∠D;( 2)∠ ACB=∠F; (3) BC = EF.三、解答题13.【解析】解:这位同学的回答及证明过程不正确.因为∠D 所对的是AO,∠C所对的是OB,证明中用到了OA= OB,这不是一组对应边,所以不能够由ASA去证明全等 .14.【解析】证明:∵ BF= DE,∴B F- EF= DE-EF,即 BE= DF在△ ABE和△ CDF中,∴△ ABE≌△ CDF( SSS)∴∠ B=∠ D,在△ ABO和△ CDO中∴△ ABO≌△ CDO( AAS)∴AO= OC, BO=DO, AC与 BD互相均分 .15.【解析】证明:∵ AB∥CD,∴∠ CDO=∠ BAO在△ OAB和△ ODC中,∴△ OAB≌△ ODC( ASA)∴OC= OB又∵ AE = DF ,∴AE+ OA= DF+ OD,即 OE= OF 在△ OCF和△ OBE中∴△ OCF≌△ OBE( SAS)∴∠ F=∠ E,∴CF∥EB.。
.七年级全等测试一.选择题〔共3 小题〕1.如图, EB 交 AC 于 M,交 FC 于 D,AB 交 FC 于 N,∠E=∠F=90 °,∠B=∠C,AE=AF ,给出以下结论:①∠1= ∠2;② BE=CF ;③△ACN ≌△ABM ;④ CD=DN .其中正确的结论有〔〕A.4 个B.3 个 C. 2 个D.1 个2.如图,△ABC 为等边三角形, D、 E 分别是 AC 、 BC 上的点,且AD=CE ,AE 与 BD 相交于点 P,BF ⊥AE 于点 F.假设 BP=4 ,那么 PF 的长〔〕A.2 B.3 C. 1 D.23.如图,OA=OC ,OB=OD 且 OA ⊥OB ,OC ⊥OD ,以下结论:①△AOD ≌△COB ;② CD=AB ;③∠CDA= ∠ABC ;其中正确的结论是〔〕.A.①②B.①②③C.①③D.②③二.解答题〔共11 小题〕4.如图,四边形ABCD 中,对角线 AC、 BD 交于点 O, AB=AC ,点 E 是 BD 上一点,且 AE=AD ,∠EAD= ∠BAC .(1〕求证:∠ABD= ∠ACD ;(2〕假设∠ACB=65 °,求∠BDC 的度数.5.〔 1〕如图①,在四边形 ABCD 中,AB ∥DC ,E 是 BC 的中点,假设 AE 是∠BAD 的平分线,试探究AB ,AD ,DC 之间的等量关系,证明你的结论;〔 2〕如图②,在四边形ABCD 中, AB ∥DC ,AF 与 DC 的延长线交于点F, E是BC 的中点,假设 AE 是∠BAF 的平分线,试探究 AB ,AF ,CF 之间的等量关系,证明你的结论.6.:在△ABC 中, AB=AC , D 为 AC 的中点, DE⊥AB ,DF ⊥BC,垂足分别为点 E, F,且 DE=DF .求证:△ABC 是等边三角形..7.,在△ABC 中,∠A=90 °, AB=AC ,点 D 为 BC 的中点.(1〕如图①,假设点 E、F 分别为(2〕假设点 E、F 分别为 AB 、CA请利用图②说明理由.AB 、AC 上的点,且 DE ⊥DF ,求证: BE=AF ;延长线上的点,且DE ⊥DF,那么 BE=AF 吗?8.如图,在Rt △ABC ,∠ACB=90 °, AC=BC ,分别过 A、B 作直线 l 的垂线,垂足分别为 M、N.(1〕求证:△AMC ≌△CNB ;(2〕假设 AM=3 ,BN=5 ,求 AB 的长.9.,如图,在等腰直角三角形中,∠ C=90 °,D 是 AB 的中点, DE ⊥DF ,点E、 F 在 AC 、BC 上,求证: DE=DF .10 .如图, OC 是∠MON 内的一条射线, P 为 OC 上一点, PA ⊥OM ,PB ⊥ON ,垂足分别为 A,B, PA=PB ,连接 AB ,AB 与 OP 交于点 E.(1〕求证:△OPA ≌△OPB ;(2〕假设 AB=6 ,求 AE 的长.11 .如图,△ABC 和△ADE 分别是以 BC ,DE 为底边且顶角相等的等腰三角形,点D 在线段 BC 上,AF 平分 DE 交 BC 于点 F,连接 BE,EF.〔 1〕 CD 与 BE 相等?假设相等,请证明;假设不相等,请说明理由;〔 2〕假设∠BAC=90 °,求证: BF 2+CD 2=FD 2.12 .如图, OC 是∠AOB 的角平分线, P 是 OC 上一点, PD ⊥OA , PE⊥OB ,垂足分别为 D,E.F 是 OC 上另一点,连接DF,EF.求证: DF=EF .13 .如图, OP 平分∠AOB , PE⊥OA 于 E,PF ⊥OB 于 F,点 M 在 OA 上,点 N在OB 上,且 PM=PN .求证: EM=FN .14 .如图,△ABC 中,D 为 BC 边上一点, BE ⊥AD 的延长线于 E,CF ⊥AD 于 F,BE=CF .求证: D 为 BC 的中点.答案一.选择题〔共3 小题〕1.如图, EB 交 AC 于 M,交 FC 于 D,AB 交 FC 于 N,∠E=∠F=90 °,∠B=∠C,AE=AF ,给出以下结论:①∠1= ∠2;② BE=CF ;③△ACN ≌△ABM ;④ CD=DN .其中正确的结论有〔〕A.4 个B.3 个 C. 2 个D.1 个【解答】解:∵∠E=∠F=90 °,∠B=∠C,AE=AF∴△ABE ≌△ACF∴BE=CF∠BAE= ∠CAF∠BAE ﹣BAC=∠ ∠CAF ﹣BAC∠∴∠1=∠2△ABE ≌△ACF∴∠B=∠C,AB=AC又∠BAC= ∠CAB△ACN ≌△ABM .④CD=DN 不能证明成立, 3 个结论对.应选: B.2.如图,△ABC 为等边三角形, D、 E 分别是 AC 、 BC 上的点,且AD=CE ,AE 与 BD 相交于点 P,BF ⊥AE 于点 F.假设 BP=4 ,那么 PF 的长〔〕A.2 B.3 C. 1 D.2【解答】解:∵△ABC 是等边三角形,∴AB=AC .∴∠BAC= ∠C.在△ABD 和△CAE 中,,∴∠ABD= ∠CAE .∴∠APD= ∠ABP+ ∠PAB= ∠BAC=60 °.∴∠BPF= ∠APD=60 °.∵∠BFP=90 °,∠BPF=60 °,∴∠PBF=30 °.∴PF=.应选: A.3.如图,OA=OC ,OB=OD 且 OA ⊥OB ,OC ⊥OD ,以下结论:①△AOD ≌△COB ;② CD=AB ;③∠CDA= ∠ABC ;其中正确的结论是〔〕A.①②B.①②③C.①③D.②③【解答】解:∵OA ⊥OB, OC ⊥OD ,∴∠AOB= ∠COD=90 °.∴∠AOB+ ∠AOC= ∠COD+ ∠AOC ,即∠COB= ∠AOD .在△AOB 和△COD 中,,∴AB=CD ,∠ABO= ∠CDO .在△AOD 和△COB 中,∴△AOD ≌△COB 〔SAS 〕∴∠CBO= ∠ADO ,∴∠ABO ﹣CBO=∠ ∠CDO ﹣ADO∠,即∠ABC= ∠CDA .综上所述,①②③都是正确的.应选: B.二.解答题〔共11 小题〕4.如图,四边形ABCD 中,对角线 AC、 BD 交于点 O, AB=AC ,点 E 是 BD 上一点,且 AE=AD ,∠EAD= ∠BAC .(1〕求证:∠ABD= ∠ACD ;(2〕假设∠ACB=65 °,求∠BDC 的度数.【解答】证明:〔1〕∵∠BAC= ∠EAD∴∠BAC ﹣EAC=∠ ∠EAD ﹣EAC∠即:∠BAE= ∠CAD在△ABE 和△ACD 中∴△ABE ≌△ACD∴∠ABD= ∠ACD(2〕∵∠BOC 是△ABO 和△DCO 的外角∴∠BOC= ∠ABD+ ∠BAC ,∠BOC= ∠ACD+ ∠BDC∴∠ABD+ ∠BAC= ∠ACD+ ∠BDC∵∠ABD= ∠ACD∴∠BAC= ∠BDC∵∠ACB=65 °,AB=AC∴∠ABC= ∠ACB=65 °∴∠BAC=180 °﹣ABC∠ ﹣ACB=180∠ °﹣65°﹣65 °=50 °∴∠BDC= ∠BAC=50 °.5.〔 1〕如图①,在四边形 ABCD 中,AB ∥DC ,E 是 BC 的中点,假设 AE 是∠BAD 的平分线,试探究AB ,AD ,DC 之间的等量关系,证明你的结论;〔 2〕如图②,在四边形ABCD 中, AB ∥DC ,AF 与 DC 的延长线交于点F, E是BC 的中点,假设 AE 是∠BAF 的平分线,试探究 AB ,AF ,CF 之间的等量关系,证明你的结论..【解答】解:〔1〕证明:延长 AE 交 DC 的延长线于点 F,∵E 是 BC 的中点,∴CE=BE ,∵AB ∥DC ,∴∠BAE= ∠F,在△AEB 和△FEC 中,,∴△AEB ≌△FEC ,∴AB=FC ,∵AE 是∠BAD 的平分线,∴∠BAE= ∠EAD ,∵AB ∥CD ,∴∠BAE= ∠F,∴∠EAD= ∠F,∴AD=DF ,∴AD=DF=DC+CF=DC+AB,(2〕如图②,延长 AE 交 DF 的延长线于点 G,∵E 是 BC 的中点,∴CE=BE ,∵AB ∥DC ,∴∠BAE= ∠G,在△AEB 和△GEC 中,,∴△AEB ≌△GEC ,∴AB=GC ,∵AE 是∠BAF 的平分线,∴∠BAG= ∠FAG ,∵AB ∥CD ,∴∠BAG= ∠G,∴∠FAG= ∠G,∴FA=FG ,∴AB=CG=AF+CF ,6.:在△ABC 中, AB=AC , D 为 AC 的中点, DE⊥AB ,DF ⊥BC,垂足分别为点 E, F,且 DE=DF .求证:△ABC 是等边三角形.【解答】证明:∵DE ⊥AB ,DF ⊥BC ,垂足分别为点E, F,∴∠AED= ∠CFD=90 °,∵D 为 AC 的中点,∴AD=DC ,在Rt△ADE 和 Rt△CDF 中,,∴Rt△ADE ≌Rt△CDF ,∴∠A=∠C,∴BA=BC ,∵AB=AC ,∴AB=BC=AC ,∴△ABC 是等边三角形.7.,在△ABC 中,∠A=90 °, AB=AC ,点 D 为 BC 的中点.(1〕如图①,假设点 E、F 分别为 AB 、AC 上的点,且 DE ⊥DF ,求证: BE=AF ;(2〕假设点 E、F 分别为 AB 、CA 延长线上的点,且 DE ⊥DF,那么 BE=AF 吗?请利用图②说明理由.【解答】〔1〕证明:连接 AD ,如图①所示..∵∠A=90 °, AB=AC ,∴△ABC 为等腰直角三角形,∠ EBD=45 °.∵点D 为 BC 的中点,∴AD=BC=BD ,∠FAD=45 °.∵∠BDE+ ∠EDA=90 °,∠EDA+ ∠ADF=90 °,∴∠BDE= ∠ADF .在△BDE 和△ADF 中,,∴△BDE ≌△ADF 〔ASA 〕,∴BE=AF ;(2〕 BE=AF ,证明如下:连接 AD ,如图②所示.∵∠ABD=∠BAD=45 °,∴∠EBD=∠FAD=135 °.∵∠EDB+ ∠BDF=90 °,∠BDF+∠FDA=90 °,∴∠EDB= ∠FDA .在△EDB 和△FDA 中,,∴△EDB ≌△FDA 〔ASA 〕,∴BE=AF ...8.如图,在Rt △ABC ,∠ACB=90 °, AC=BC ,分别过 A、B 作直线 l 的垂线,垂足分别为 M、N.(1〕求证:△AMC ≌△CNB ;(2〕假设 AM=3 ,BN=5 ,求 AB 的长.【解答】解:〔1〕∵AM ⊥l,BN ⊥l,∠ACB=90 °,∴∠AMC= ∠ACB= ∠BNC=90 °,∴∠MAC+ ∠MCA=90 °,∠MCA+ ∠NCB=180 °﹣90°=90°,∴∠MAC= ∠NCB ,在△AMC 和△CNB 中,,.∴△AMC ≌△CNB 〔AAS 〕;(2〕∵△AMC ≌△CNB ,∴CM=BN=5 ,∴Rt△ACM 中, AC===,∵Rt△ABC ,∠ACB=90 °, AC=BC=,∴AB===2.9.,如图,在等腰直角三角形中,∠ C=90 °,D 是 AB 的中点, DE ⊥DF ,点E、 F 在 AC 、BC 上,求证: DE=DF .【解答】证明:连接 CD .∵在等腰直角三角形 ABC 中, D 是 AB 的中点.∴CD 为等腰直角三角形ABC 斜边 BC 上的中线.∴CD ⊥AB ,∠ACD= ∠BCD=45 °, CD=BD=AD .又∵DE ⊥DF∴∠EDC= ∠FDB在△ECD 和△FBD 中.∴△ECD ≌△FDB 〔ASA 〕∴DE=DF10 .如图, OC 是∠MON 内的一条射线, P 为 OC 上一点, PA ⊥OM ,PB ⊥ON ,垂足分别为 A,B, PA=PB ,连接 AB ,AB 与 OP 交于点 E.(1〕求证:△OPA ≌△OPB ;(2〕假设 AB=6 ,求 AE 的长.【解答】解:〔1〕∵PA⊥OM , PB⊥ON ,∴∠PAO= ∠PBO=90 °,又∵PA=PB ,PO=PO ,∴Rt△AOP ≌Rt△BOP ;(2〕∵△OPA ≌△OPB ,∴∠APE= ∠BPE ,又∵PA=PB ,∴AE=BE ,∴AE=AB=3 .11 .如图,△ABC 和△ADE 分别是以 BC ,DE 为底边且顶角相等的等腰三角形,点 D 在线段 BC 上,AF 平分 DE 交 BC 于点 F,连接 BE,EF.(1〕 CD 与 BE 相等?假设相等,请证明;假设不相等,请说明理由;(2〕假设∠BAC=90 °,求证: BF 2+CD 2=FD 2.【解答】解:〔1〕CD=BE ,理由如下:∵△ABC 和△ADE 为等腰三角形,∴AB=AC , AD=AE ,∵∠EAD= ∠BAC ,∴∠EAD ﹣BAD=∠ ∠BAC ﹣BAD∠,即∠EAB= ∠CAD ,在△EAB 与△CAD 中,∴△EAB ≌△CAD ,∴BE=CD ,(2〕∵∠BAC=90 °,∴△ABC 和△ADE 都是等腰直角三角形,∴∠ABF= ∠C=45 °,∵△EAB ≌△CAD ,∴∠EBA= ∠C,∴∠EBA=45 °,∴∠EBF=90 °,在Rt△BFE 中, BF 2+BE 2=EF 2,∵AF 平分 DE ,∴AF 垂直平分 DE,∴EF=FD ,由〔 1〕可知, BE=CD ,∴BF 2+CD 2=FD 212 .如图, OC 是∠AOB 的角平分线, P 是 OC 上一点, PD ⊥OA , PE⊥OB ,垂足分别为 D,E.F 是 OC 上另一点,连接DF,EF.求证: DF=EF .【解答】证明:∵OC 是∠AOB 的角平分线, P 是 OC 上一点, PD ⊥OA ,PE⊥OB ,∴∠DOP= ∠EOP ,PD=PE .在 Rt△POD 和 Rt△POE 中,,∴Rt△POD ≌Rt△POE 〔HL 〕,∴OD=OE .在△ODF 和△OEF 中,,∴△ODF ≌△OEF 〔SAS 〕,∴DF=EF .13 .如图, OP 平分∠AOB , PE⊥OA 于 E,PF ⊥OB 于 F,点 M 在 OA 上,点 N 在OB 上,且 PM=PN .求证: EM=FN .【解答】证明:∵点 P 在∠AOB 的平分线上, PE 丄 0A 于 E, PF 丄 OB 于 F,∴PF=PE ,在Rt△PEM 和 Rt△PEN 中,∴Rt△PEM ≌Rt△PEN 〔HL 〕,∴EM=FN .14 .如图,△ABC 中,D 为 BC 边上一点, BE ⊥AD 的延长线于 E,CF ⊥AD 于 F,BE=CF .求证: D 为 BC 的中点.....【解答】证明:∵BE ⊥AD 的延长线于 E,CF ⊥AD 于 F,∴∠CFD= ∠BED=90 °,在△BED 和△CFD 中,∴△CDF ≌△BDE 〔AAS 〕∴CD=BD .∴D 为 BC 的中点.....。
《全等三角形》单元测试题姓名 班级 得分一、填空题(4×10=40分)1、在△ABC 中,AC>BC>AB ,且△ABC ≌△DEF ,则在△DEF 中,______>______>_______(填边)。
2、已知:△ABC ≌△A ′B ′C ′,∠A=∠A ′,∠B=∠B ′,∠C=70°,AB=15cm ,则∠C ′=_________,A ′B ′=__________。
3、如图1,△ABD ≌△BAC ,若AD=BC ,则∠BAD 的对应角是________。
4、如图2,在△ABC 和△FED ,AD=FC ,AB=FE ,当添加条件__________时,就可得到△ABC ≌△FED 。
(只需填写一个你认为正确的条件)5、如图3,在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形________对。
6、如图4,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是 .7、如图5,△ABC 中,∠C=90°,CD ⊥AB 于点D ,AE 是∠BAC 的平分线,点E 到AB 的距离等于3cm ,则CF= cm.8、如图6,在△ABC 中,AD =DE ,AB =BE ,∠A =80°,则∠CED =_____.9、P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD_____P 点到∠AOB 两边距离之和。
(填“>”,“<”或“=”)10、AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则中线AD 的取值范围是二、选择题:(每小题5分,共30分)11、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等, 其中真命题的个数有( )A 、3个B 、2个C 、1个D 、0个12、如图7,已知点E 在△ABC 的外部,点D 在BC 边上,AD ECB图4ABDE 图1 图2 图3图5图6DE 交AC 于F ,若∠1=∠2=∠3,AC=AE ,则有( ) A 、△ABD ≌△AFD B 、△AFE ≌△ADCC 、△AEF ≌△DFCD 、△ABC ≌△ADE13、下列条件中,不能判定△ABC ≌△A ′B ′C ′的是( ) A 、AB=A ′B ′,∠A=∠A ′,AC=A ′C ′B 、AB=A ′B ′,∠A=∠A ′,∠B=∠B ′C 、AB=A ′B ′,∠A=∠A ′,∠C=∠C ′D 、∠A=∠A ′,∠B=∠B ′,∠C=∠C ′14、如图8所示,90E F ∠=∠=,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM △≌△.其中正确的有( )A .1个B .2个C .3个D .4个15、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A →B →C →A ,及A 1→B 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图9),若运动方向相反,则称它们是镜面合同三角形(如图10),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°(如图11),下列各组合同三角形中,是镜面合同三角形的是( )16、如图12,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D , 若BC=64,且BD :CD=9:7,则点D 到AB 边的距离为( ) A 、18 B 、32 C 、28 D 、24三、解答下列各题:(17-18题各8分,19-2280分)17、如图13,点A 、B 、C 、D AB=DC ,AE//DF ,AE=DF ,求证:EC=FB18、如图14,AE 是∠BAC 的平分线,AB=AC 。
全等三角形练习题(含答案)篇一:全等三角形习题选(含)经典三角形证明题选讲(含答案)三角形辅助线做法线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验1.已知:AB=4,AC=2,D是BC中点,AD是整数,求ADD1. 证明:延长AD到E,使DE=AD, 则△ADC≌△EBD ∴BE=AC=2 在△ABE中,AB-BE AE AB+BE ,∴10-2 2AD 10+2 4 AD 6又AD是整数,则AD=5思路点拨:三角形中有中线,延长中线等中线。
2.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠22.证明:连接BF和EF.∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ △BCF≌△EDF(边角边). ∴BF=EF,∠CBF=∠DEF. 连接BE.在△BEF中,BF=EF,∴∠EBF=∠BEF又∵ ∠ABC=∠AED,∴ ∠ABE=∠AEB. ∴ AB=AE在△ABF和△AEF中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF. ∴△ABF≌△AEF∴∠1=∠2.思路点拨:解答本题的关键是能够想到证明AB=AE,而AB、AE在同一个△ABE 中,可利用∠ABE=∠AEB来证明.同一三角形中线段等,可用等角对等边3.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC 证明:过E点,作EG//AC,交AD延长线于G则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴△ADC≌△GDE(AAS)∴EG=AC ∵EF∥AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=EG∴EF=AC 思路点拨:角平分线平行线,等腰三角形来添。
4.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C 证明:延长AC到E使CE=CD,连接 ED,则∠CDE= ∠E∵ AB=AC+CD ∴AB=AC+CE=AE又∵∠BAD=∠EAD,AD=AD∴△BAD≌△EAD ∴∠B=∠E∵∠ACB=∠E+∠CDE,∴∠ACB=2∠B方法二在AC上截取AE=AB,连接ED A∵A D平分∠BAC∴∠EAD=∠BAD又∵AE=AB,AD=AD∴⊿AED≌⊿ABD(SAS)∴∠AED=∠B,DE=DB CBD∵AC=AB+BD ,AC=AE+CE∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C思路点拨:线段等于线段和,理应截长或补短5.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE 证明:过C作CF⊥AD交AD的延长线于F.在△CFA和△CEA中∴∠CFA=∠CEA=90°又∵∠CAF=∠CAE, AC=AC∴△CFA≌△CEA ,∴AE=AF=AD+DF, CE=CF∵∠B+∠ADC=180°,∠FDC+∠ADC=180°∴∠B=∠FDCE在△CEB和△CFD中,CE=CF,∠CEB=∠CFD=90°, ∠B=∠FDCE∴△CEB≌△CFD∴BE=DF∴ AE=AD+BE思路点拨:图中有角平分线,可向两边作垂线。
ir全等三角形练习一、填空题:1.如图,△ABC≌△DEB,AB=DE,∠E=∠ABC,则∠C的对应角为,BD的对应边为 .2.如图,AD=AE,∠1=∠2,BD=CE,则有△ABD≌△,理由是,△ABE≌△,理由是 .(第1题)(第2题)(第4题)3.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是cm.4.如图,AD、A´D´分别是锐角△ABC和△A´B´C´中BC与B´C´边上的高,且AB= A´B´,AD=A´D´,若使△ABC≌△A´B´C´,请你补充条件(只需填写一个你认为适当的条件)5. 若两个图形全等,则其中一个图形可通过平移、或与另一个三角形完全重合.6. 如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=___________度(第6题)(第7题)(第8题)7.已知:如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,则DN+MN的最小值为__________.8.如图,在△ABC中,∠B=90o,D是斜边AC的垂直平分线与BC的交点,连结AD,若∠DAC:∠DAB=2:5,则∠DAC=___________.9.如图,等腰直角三角形ABC中,∠BAC=90o,BD平分∠ABC交AC于点D,若AB+AD=8cm,则底边BC上的高为___________.MNDCBAEDCBAHEDCBAB ′C ′D ′O ′A ′ODC BA(第1410.如图,锐角三角形ABC 中,高AD 和BE 交于点H ,且BH =AC ,则∠ABC =__________度.(第9题) (第10题)13题)二、选择题:11.已知在△ABC 中,AB =AC ,∠A =56°,则高BD 与BC 的夹角为( )A .28°B .34°C .68°D .62°12.在△ABC 中,AB =3,AC =4,延长BC 至D ,使CD =BC ,连接AD ,则AD 的长的取值范围为( )A .1<AD <7B .2<AD <14C .2.5<AD <5.5 D .5<AD <1113.如图,在△ABC 中,∠C =90°,CA =CB ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于点E ,且AB =6,则△DEB 的周长为( )A .4B .6C .8D .1014.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A ′O ′B ′=∠AOB 的依据是A .(S .S .S .)B .(S .A .S .)C .(A .S .A .)D .(A .A .S .15. 对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A.∠α=60º,∠α的补角∠β=120º,∠β>∠αB.∠α=90º,∠α的补角∠β=900º,∠β=∠αC.∠α=100º,∠α的补角∠β=80º,∠β<∠αD.两个角互为邻补角16. △ABC 与△A´B´C ´中,条件①AB =A´B´,②BC = B´C´,③AC=A´C´,④∠A=∠A´,⑤∠B =∠B´,⑥∠C =∠C´,则下列各组条件中不能保证△ABC ≌△A´B´C´的是( )A. ①②③B. ①②⑤C. ①③⑤D. ②⑤⑥17.如图,在△ABC 中,AB =AC ,高BD ,CE 交于点O ,AO 交BC 于点F ,则图中共有全等三角形()A .7对B .6对C .5对D .4对D CBAn h18.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,若△DEB 的周长为10cm ,则斜边AB 的长为( )A .8 cmB .10 cmC .12 cmD . 20 cm19.如图,△ABC 与△BDE 均为等边三角形,AB <BD ,若△ABC 不动,将△BDE 绕点B 旋转,则在旋转过程中,AE 与CD 的大小关系为( )A .AE =CDB .AE >CDC .AE <CD D .无法确定20.已知∠P =80°,过不在∠P 上一点Q 作QM ,QN 分别垂直于∠P 的两边,垂足为M ,N ,则∠Q 的度数等于( )A .10°B .80°C .100°D .80°或100°三、解答题(每小题5分,共30分)21.如图,点E 在AB 上,AC =AD ,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为,你得到的一对全等三角形是 .∆∆≅(第21题)22.如图,EG ∥AF ,请你从下面三个条件中再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况),并给予证明.①AB =AC ,②DE =DF ,③BE =CF ,已知:EG ∥AF , = , = ,求证:证明:(第22题)ECD BAEA BD FC23. 如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件,请你在其中选择3个作为题设,余下的1个作为结论,写一个真命题,并加以证明.①AB =DE ,②AC =DF ,③∠ABC =∠DEF ,④BE =CF(第23题)24. 如图,四边形ABCD 中,点E 在边CD 上.连结AE 、BF ,给出下列五个关系式:①AD ∥BC ;②DE =CE ③. ∠1=∠2 ④. ∠3=∠4 . ⑤AD +BC =AB 将其中的三个关系式作为假设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题,书写形式如:如果……,那么……,并给出证明;(2)用序号再写出三个真命题(不要求证明);(3)真命题不止以上四个,想一想就能够多写出几个真命题25.已知,如图,D 是△ABC 的边AB 上一点,DF 交AC 于点E , DE =FE , AB ∥FC . 问线段AD 、CF 的长度关系如何?请予以证明.(第25题)E DAC4321FB26.如图,已知ΔABC 是等腰直角三角形,∠C =90°.(1)操作并观察,如图,将三角板的45°角的顶点与点C 重合,使这个角落在∠ACB 的内部,两边分别与斜边AB 交于E 、F 两点,然后将这个角绕着点C 在∠ACB 的内部旋转,观察在点E 、F 的位置发生变化时,AE 、EF 、FB 中最长线段是否始终是EF ?写出观察结果.(2)探索:AE 、EF 、FB 这三条线段能否组成以EF 为斜边的直角三角形?如果能,试加以证明.四、探究题 (每题10分,共20分)27.如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F .请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.OPAMNEB CD FACEFBD图①图②图③28.如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?请证明你的结论;(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图a中的△ABC绕点C旋转一定的角度,请你画山一个变换后的图形(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现)ACF BE ACFB图a 图b参考答案一、1.∠DBE, CA 2.△ACE, SAS,△ACD, ASA(或SAS)3. 64.CD=C´D´(或AC=A´C´,或∠C=∠C´或∠CAD=∠C´A´D´)5.平移,翻折6. 907. 10 8. 20º 9. 10. 4548-2二、11. A 12. D 13. B 14.A 15.C 16.C 17.A 18.B 19.A 20.D三、21.可选择等条件中的一个.可得到△ACE≌△ADE∠=、∠=、BDBCDABCABDECE=或△ACB≌△ADB等.22.结合图形,已知条件以及所供选择的3个论断,认真分析它们之间的内在联系可选①AB=AC,②DE=DF,作为已知条件,③BE=CF作为结论;推理过程为:∵EG∥AF,∴∠GED=∠CFD,∠BGE=∠BCA,∵AB=AC,∴∠B=∠BCA,∴∠B=∠BGE∴BE=EG,在△DEG和△DFC中,∠GED=∠CFD,DE=DF,∠EDG=∠FDC,∴△DEG≌△DFC,∴EG=CF,而EG=BE,∴BE=CF;若选①AB=AC,③BE=CF为条件,同样可以推得②DE=DF,23.结合图形,认真分析所供选择的4个论断之间的内在联系由④BE=CF还可推得BC=EF,根据三角形全等的判定方法,可选论断:①AB=DE,②AC=DF,④BE=CF为条件,根据三边对应相等的两个三角形全等可以得到:△ABC≌△DEF,进而推得论断③∠ABC=∠DEF,同样可选①AB=DE,③∠ABC=∠DEF,④BE=CF为条件,根据两边夹角对应相等的两个三角形全等可以得到:△ABC≌△DEF,进而推得论断②AC=DF.24. (1)如果①②③,那么④⑤证明:如图,延长AE交BC的延长线于F因为AD∥BC 所以∠1=∠F又因为∠AED=∠CEF,DE=EC所以△ADE≌△FCE,所以AD=CF,AE=EF因为∠1=∠F,∠1=∠2所以∠2=∠F所以AB=BF.所以∠3=∠4所以AD+BC=CF+BC=BF=AB(2)如果①②④,那么③⑤;如果①③④,那么②⑤;如果①③⑤,那么②④.(3) 如果①②⑤,那么③④;如果②④⑤,那么①③;如果③④⑤,那么①②.25. (1)观察结果是:当45°角的顶点与点C 重合,并将这个角绕着点C 在重合,并将这个角绕着点C 在∠ACB 内部旋转时,AE 、EF 、FB 中最长的线段始终是EF . (2)AE 、EF 、FB 三条线段能构成以EF 为斜边的直角三角形,证明如下:在∠ECF 的内部作∠ECG =∠ACE ,使CG =AC ,连结EG ,FG ,∴ΔACE ≌ΔGCE ,∴∠A =∠1,同理∠B =∠2,∵∠A +∠B =90°,∴∠1+∠2=90°,∴∠EGF =90°,EF 为斜边.四、27.(1)FE 与FD 之间的数量关系为FE =FD (2)答:(1)中的结论FE=FD 仍然成立图① 图②证法一:如图1,在AC 上截取AG =AE ,连接FG∵ ∠1=∠2,AF =AF ,AE =AG ∴ △AEF ≌△AGF∴ ∠AFE =∠AFG ,FG =FE ∵ ∠B=60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线∴ ∠2+∠3=60°,∠AFE =∠CFD =∠AFG =60°∴ ∠CFG =60° ∵ ∠4=∠3,CF =CF ,∴ △CFG ≌△CFD ∴ FG =FD ∴ FE =FD 证法二:如图2,过点F 分别作FG ⊥AB 于点G ,FH ⊥BC 于点H ∵ ∠B =60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线∴ ∠2+∠3=60° ∴ ∠GEF =60°+∠1,FG =FH∵ ∠HDF =∠B +∠1 ∴ ∠GEF =∠HDF ∴ △EGF ≌△DHF ∴ FE =FD28. (1)AF =BE . 证明:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形,∴AC =BC ,CF =CE ,∠ACF =∠BCE =60.∴△AFC ≌△BEC . ∴AF =BE . (2)成立. 理由:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形, ∴AC =BC ,CF =CE ,∠ACB =∠FCE =60°. ∴∠ACB -∠FCB =∠FCE -∠FCB.图⑤ 即∠ACF=∠BCE. ∴△AFC≌△BEC. ∴AF=BE. (3)此处图形不惟一,仅举几例. 如图,(1)中的结论仍成立. (4)根据以上证明、说明、画图,归纳如下:如图a,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE. 。
全等三角形测试题及答案一、选择题1. 下列选项中,哪两个三角形是全等的?A. ∠A=∠B,AB=BCB. ∠A=∠B,AC=BDC. ∠A=∠C,AB=ACD. ∠A=∠B,AB=BC,AC=BD2. 如果两个三角形的对应边成比例,且夹角相等,这两个三角形是:A. 相似但不全等B. 必然全等C. 不一定全等D. 无法判断二、填空题3. 根据全等三角形的性质,如果两个三角形的对应角相等,且对应边成比例,那么这两个三角形是_________。
4. SAS全等条件指的是_________。
三、判断题5. 如果两个三角形的三边对应相等,那么这两个三角形一定全等。
()6. 根据HL全等条件,直角三角形中,如果斜边和一条直角边对应相等,那么这两个直角三角形全等。
()四、解答题7. 已知三角形ABC和三角形DEF,其中∠A=∠D=90°,AB=DE,AC=DF,求证:三角形ABC全等于三角形DEF。
8. 如图所示,三角形ABC和三角形DEF在平面直角坐标系中,点A(2,3),B(4,5),C(1,1),点D(-1,-2),E(1,-1),F(-2,-4)。
若AB=DE,AC=DF,∠BAC=∠EDF,请证明三角形ABC全等于三角形DEF。
五、综合题9. 在三角形ABC中,点D在BC上,若AD平分∠BAC,且BD=DC,求证:AB=AC。
10. 已知三角形ABC和三角形DEF,其中AB=DE,∠B=∠D,∠C=∠E,求证:三角形ABC全等于三角形DEF。
答案:一、选择题1. 答案:D2. 答案:A二、填空题3. 答案:相似4. 答案:边角边三、判断题5. 答案:正确6. 答案:正确四、解答题7. 解:由于∠A=∠D=90°,AB=DE,AC=DF,根据直角三角形的HL全等条件,我们可以得出三角形ABC全等于三角形DEF。
8. 解:由于AB=DE,AC=DF,∠BAC=∠EDF,根据SAS全等条件,我们可以得出三角形ABC全等于三角形DEF。
全等三角形练习题12.1全等三角形1.下列各组的两个图形属于全等图形的是()2.如图,△ABD≌△ACE,则∠B与________,∠AEC与________,∠A与________是对应角;则AB与________,AE与________,EC与________是对应边.第2题图第3题图3.如图,△ABC≌△CDA,∠ACB=30°,则∠CAD的度数为________.4.如图,若△ABO≌△ACD,且AB=7cm,BO=5cm,则AC=________cm.第4题图第5题图5.如图,△ACB≌△DEB,∠CBE=35°,则∠ABD的度数是________.6.如图,△ABC≌△DCB,∠ABC与∠DCB是对应角.(1)写出其他的对应边和对应角;(2)若AC=7,DE=2,求BE的长.12.2三角形全等的判定第1课时“边边边”1.如图,下列三角形中,与△ABC全等的是()A.①B.②C.③D.④2.如图,已知AB=AD,CB=CD,∠B=30°,则∠D的度数是()A.30° B.60° C.20° D.50°第2题图第3题图3.如图,AB=DC,请补充一个条件:________,使其能由“SSS”判定△ABC≌△DCB. 4.如图,A,C,F,D在同一直线上,AF=DC,AB=DE,BC=EF.求证:△ABC≌△DEF.5.如图,AB=AC,AD=AE,BD=CE.求证:∠ADE=∠AED.第2课时“边角边”1.如图,已知点F、E分别在AB、AC上,且AE=AF,请你补充一个条件:________,使其能直接由“SAS”判定△ABE≌△ACF.第1题图第2题图2.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是________.3.如图,AB=AD,∠1=∠2,AC=AE. 求证:△ABC≌△ADE.4.如图,AE∥DF,AE=DF,AB=CD.求证:(1)△AEC≌△DFB;(2)CE∥BF.第3课时“角边角”“角角边”1.如图,已知∠1=∠2,∠B=∠C,若直接推得△ABD≌△ACD,则其根据是() A.SAS B.SSS C.ASA D.AAS第1题图第2题图2.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,直接由“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠CDA=∠BDAC.AB=AC D.BD=CD3.如图,已知MA∥NC,MB∥ND,且MB=ND.求证:△MAB≌△NCD.4.如图,在△ABC中,AD是BC边上的中线,E,F为直线AD上的两点,连接BE,CF,且BE∥CF.求证:(1)△CDF≌△BDE;(2)DE=DF.第4课时“斜边、直角边”1.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是() A.HL B.ASA C.SAS D.AAS第1题图第2题图2.如图,在Rt△ABC与Rt△DCB中,∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是________.3.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:∠AEB=∠F.4.如图,点C,E,B,F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.12.3 角的平分线的性质第1课时 角平分线的性质1.如图,在Rt △ACB 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于点E .若CD =6,则DE 的长为( )A .9B .8C .7D .6第1题图 第2题图2.如图,在△ABC 中,∠C =90°,按以下步骤作图:①以点B 为圆心,以小于BC 的长为半径画弧,分别交AB ,BC 于点E ,F ;②分别以点E ,F 为圆心,以大于12EF 的长为半径画弧,两弧相交于点G ;③作射线BG ,交AC 边于点D .若CD =4,则点D 到斜边AB 的距离为________.3.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,求CD 的长.4.如图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE ,CD 相交于点O ,且AO 平分∠BAC .求证:OB =OC .第2课时角平分线的判定1.如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF.若∠DBC=50°,则∠ABC的度数为()A.50° B.100° C.150° D.200°第1题图第3题图2.在三角形内部,到三角形的三边距离都相等的点是()A.三角形三条高的交点B.三角形三条角平分线的交点C.三角形三条中线的交点D.以上均不对3.如图,∠ABC+∠BCD=180°,点P到AB,BC,CD的距离都相等,则∠PBC+∠PCB 的度数为________.4.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为E,F,AE=AF.求证:(1)PE=PF;(2)AP平分∠BAC.5.如图,B是∠CAF内的一点,点D在AC上,点E在AF上,且DC=EF,△BCD与△BEF的面积相等.求证:AB平分∠CAF.第十二章 全等三角形 12.1 全等三角形1.D 2.∠C ∠ADB ∠A AC AD DB 3.30° 4.7 5.35°6.解:(1)对应边:AB 与DC ,AC 与DB ,BC 与CB .对应角:∠A 与∠D ,∠ACB 与∠DBC .(2)由(1)可知DB =AC =7,∴BE =BD -DE =7-2=5.12.2 三角形全等的判定第1课时 “边边边”1.C 2.A 3.AC =BD4.证明:∵AF =DC ,∴AF -CF =DC -CF ,即AC =DF .在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,∴△ABC ≌△DEF (SSS).5.证明:在△ABD 与△ACE 中,⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE (SSS),∴∠ADB =∠AEC .∵∠ADB +∠ADE =180°,∠AEC +∠AED =180°,∴∠ADE =∠AED .第2课时 “边角边”1.AB =AC 2.SAS3.证明:∵∠1=∠2,∴∠BAC =∠DAE .在△ABC 与△ADE 中,∵⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE (SAS).4.证明:(1)∵AE ∥DF ,∴∠A =∠D .∵AB =CD ,∴AC =DB .在△AEC 与△DFB 中,⎩⎪⎨⎪⎧AE =DF ,∠A =∠D ,AC =DB ,∴△AEC ≌△DFB (SAS). (2)由(1)知△AEC ≌△DFB ,∴∠ECA =∠FBD ,∴CE ∥BF .第3课时 “角边角”“角角边”1.D 2.B3.证明:∵MB ∥ND ,∴∠MBA =∠D .∵MA ∥NC ,∴∠A =∠NCD .在△MAB 与△NCD 中,⎩⎪⎨⎪⎧∠MBA =∠D ,∠A =∠NCD ,MB =ND ,∴△MAB ≌△NCD (AAS). 4.证明:(1)∵AD 是△ABC 的中线,∴BD =CD .∵BE ∥CF ,∴∠FCD =∠EBD .在△CDF 和△BDE 中,⎩⎪⎨⎪⎧ ∠FCD =∠EBD ,CD =BD ,∠CDF =∠BDE ,∴△CDF ≌△BDE (ASA).(2)由(1)知△CDF ≌△BDE ,∴DF =DE .第4课时 “斜边、直角边”1.A 2.AB =DB (答案不唯一)3.证明:∵∠ABC =90°,∴∠CBF =90°.在Rt △ABE 和Rt △CBF 中, ∵⎩⎪⎨⎪⎧AE =CF ,AB =CB ,∴Rt △ABE ≌Rt △CBF (HL).∴∠AEB =∠F .4.证明:∵AB ⊥CF ,DE ⊥CF ,∴∠ABC =∠DEF =90°.在Rt △ABC 和Rt △DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,∴Rt △ABC ≌Rt △DEF (HL),∴BC =EF ,∴BC -BE =EF -BE ,即CE =BF . 12.3 角的平分线的性质第1课时 角平分线的性质1.D 2.43.解:∵S △ABD =15,AB =10,∴点D 到AB 的距离h =2×1510=3.∵AD 平分∠BAC ,∠C =90°,∴DC =h =3. 4.证明:∵CD ⊥AB ,BE ⊥AC ,AO 平分∠BAC ,∴OD =OE ,∠ODB =∠OEC =90°.在△DOB与△EOC 中,⎩⎪⎨⎪⎧∠DOB =∠EOC ,OD =OE ,∠ODB =∠OEC ,∴△DOB ≌△EOC (ASA),∴OB =OC .第2课时 角平分线的判定1.B 2.B 3.90°4.证明:(1)∵PE ⊥AB ,PF ⊥AC ,∴∠AEP =∠AFP =90°.在Rt △AEP 和Rt △AFP 中,⎩⎪⎨⎪⎧AP =AP ,AE =AF ,∴Rt △AEP ≌Rt △AFP (HL),∴PE =PF .(2)∵PE⊥AB,PF⊥AC,PE=PF,∴点P在∠BAC的平分线上,故AP平分∠BAC. 5.证明:∵DC=EF,△DCB和△EFB的面积相等,∴点B到AC,AF的距离相等,∴AB 平分∠CAF.。
全等三角形考试题及答案一、选择题1. 两个三角形全等的条件是:A. 两个角相等B. 三条边相等C. 两边夹一角相等D. 两角夹一边相等答案:D2. 已知△ABC≌△DEF,其中AB=DE,AC=DF,∠A=∠D,那么BC与EF 的关系是:A. BC=EFB. BC>EFC. BC<EFD. 不能确定答案:A二、填空题1. 如果两个三角形的对应边成比例,且对应角相等,则这两个三角形______。
答案:相似2. 在△ABC中,∠A=∠B=50°,则∠C=______。
答案:80°三、解答题1. 已知△ABC≌△DEF,且AB=5cm,BC=7cm,求DE的长度。
答案:DE=5cm2. 已知△ABC≌△DEF,且∠A=∠D=60°,∠B=∠E=50°,求∠C和∠F 的度数。
答案:∠C=∠F=70°四、证明题1. 已知△ABC≌△DEF,且∠A=∠D=90°,AB=DE,AC=DF,证明:BC=EF。
答案:根据直角三角形全等的判定定理HL,因为∠A=∠D,AB=DE,AC=DF,所以△ABC≌△DEF,因此BC=EF。
2. 已知△ABC≌△DEF,且∠A=∠D,∠B=∠E,证明:∠C=∠F。
答案:根据全等三角形对应角相等的性质,因为△ABC≌△DEF,所以∠C=∠F。
五、应用题1. 一块三角形的木板ABC需要与另一块三角形的木板DEF进行拼接,已知AB=DE,BC=EF,∠A=∠D,∠B=∠E,判断两块木板是否可以拼接。
答案:可以拼接,因为根据SAS判定定理,△ABC≌△DEF。
2. 已知一个等腰三角形ABC,其中AB=AC,∠A=50°,求∠B和∠C的度数。
答案:因为AB=AC,所以∠B=∠C,又因为三角形内角和为180°,所以∠B=∠C=(180°-50°)/2=65°。
全等三角形证明题专项练习60题(有答案)1.已知如图,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=105°,求∠BAC的度数.∠BAC=_________.2.已知:如图,四边形ABCD中,AB∥CD,AD∥BC.求证:△ABD≌△CDB.3.如图,点E在△ABC外部,点D在边BC上,DE交AC于F.若∠1=∠2=∠3,AC=AE,请说明△ABC≌△ADE 的道理.4.如图,△ABC的两条高AD,BE相交于H,且AD=BD.试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)△BDH≌△ADC.5.如图,在△ABC中,D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF,则AB=AC,并说明理由.6.如图,AE是∠BAC的平分线,AB=AC,D是AE反向延长线的一点,则△ABD与△ACD全等吗?为什么?7.如图所示,A、D、F、B在同一直线上,AF=BD,AE=BC,且AE∥BC.求证:△AEF≌△BCD.8.如图,已知AB=AC,AD=AE,BE与CD相交于O,△ABE与△ACD全等吗?说明你的理由.9.如图,在△ABC中,AB=AC,D是BC的中点,点E在AD上,找出图中全等的三角形,并说明它们为什么是全等的.10.如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.11.已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,应增加什么条件?并根据你所12.如图,已知AB=AC,BD=CE,请说明△ABE≌△ACD.13.如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C,连接BB1.设CB1交AB于D,A1B1分别交AB,AC于E,F,在图中不再添加其他任何线段的情况下,请你找出一对全等的三角形,并加以证明.(△ABC与△A1B1C1全等除外)14.如图,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.15.如图,AB=AC,AD=AE,AB,DC相交于点M,AC,BE相交于点N,∠DAB=∠EAC.求证:△ADM≌△AEN.16.将两个大小不同的含45°角的直角三角板如图1所示放置在同一平面内.从图1中抽象出一个几何图形(如图2),B、C、E三点在同一条直线上,连接DC.求证:△ABE≌△ACD.17.如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.请在图中找出所有全等的三角形,用符号“≌”表示,并选择一对加以证明.18.如图,已知∠1=∠2,∠3=∠4,EC=AD.(1)求证:△ABD≌△EBC.(2)你可以从中得出哪些结论?请写出两个.19.等边△ABC边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)求当AD取何值时,DE=EF.20.巳知:如图,AB=AC,D、E分别是AB、AC上的点,AD=AE,BE与CD相交于G.(Ⅰ)问图中有多少对全等三角形?并将它们写出来.(Ⅱ)请你选出一对三角形,说明它们全等的理由(根椐所选三角形说理难易不同给分,即难的说对给分高,易的说对给分低)21.已知:如图,AB=DC,AC=BD,AC、BD相交于点E,过E点作EF∥BC,交CD于F,(1)根据给出的条件,可以直接证明哪两个三角形全等?并加以证明.(2)EF平分∠DEC吗?为什么?22.如图,己知∠1=∠2,∠ABC=∠DCB,那么△ABC与△DCB全等吗?为什么?23.如图,B,F,E,D在一条直线上,AB=CD,∠B=∠D,BF=DE.试证明:(1)△DFC≌△BEA;(2)△AFE≌△CEF.24.如图,AC=AE,∠BAF=∠BGD=∠EAC,图中是否存在与△ABE全等的三角形?并证明.25.如图,D是△ABC的边BC的中点,CE∥AB,E在AD的延长线上.试证明:△ABD≌△ECD.26.如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.27.如图,已知AB∥DE,AB=DE,AF=DC.(1)求证:△ABF≌△DEC;(2)请你找出图中还有的其他几对全等三角形.(只要直接写出结果,不要证明)28.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:△ABD≌△GCA;(2)请你确定△ADG的形状,并证明你的结论.29.如图,点D、F、E分别在△ABC的三边上,∠1=∠2=∠3,DE=DF,请你说明△ADE≌△CFD的理由.30.如图,在△ABC中,∠ABC=90°,BE⊥AC于点E,点F在线段BE上,∠1=∠2,点D在线段EC上,给出31.如图,在△ABC中,点D在AB上,点E在BC上,AB=BC,BD=BE,EA=DC,求证:△BEA≌△BDC.32.阅读并填空:如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.请说明△ADC≌△CEB的理由.解:∵BE⊥CE于点E(已知),∴∠E=90°_________,同理∠ADC=90°,∴∠E=∠ADC(等量代换).在△ADC中,∵∠1+∠2+∠ADC=180°_________,∴∠1+∠2=90°_________.∵∠ACB=90°(已知),∴∠3+∠2=90°,∴_________.在△ADC和△CEB中,.∴△ADC≌△CEB (A.A.S)33.已知:如图所示,AB∥DE,AB=DE,AF=DC.(1)写出图中你认为全等的三角形(不再添加辅助线);(2)选择你在(1)中写出的全等三角形中的任意一对进行证明.34.如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3,AC=AE.试说明下列结论正确的理由:(1)∠C=∠E;(2)△ABC≌△ADE.35.如图,在Rt△ABC中,∠ACB=90°,AC=BC,D是斜边AB上的一点,AE⊥CD于E,BF⊥CD交CD的延长线于F.求证:△ACE≌△CBF.36.如图,在△ABC中,D是BC的中点,DE∥CA交AB于E,点P是线段AC上的一动点,连接PE.探究:当动点P运动到AC边上什么位置时,△APE≌△EDB?请你画出图形并证明△APE≌△EDB.37.已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.38.如图,D为AB边上一点,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,CA=CB,CD=CE,图中有全等三角形吗?指出来并说明理由.39.如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:△ABD≌△ACE.40.如图,已知D是△ABC的边BC的中点,过D作两条互相垂直的射线,分别交AB于E,交AC于F,求证:BE+CF>EF.41.如图所示,在△MNP中,H是高MQ与NE的交点,且QN=QM,猜想PM与HN有什么关系?试说明理由.42.如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥GF,交AB于点E,连接EG.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并证明你的结论.43.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.44.如图,小明在完成数学作业时,遇到了这样一个问题,AB=CD,BC=AD,请说明:∠A=∠C的道理,小明动手测量了一下,发现∠A确实与∠C相等,但他不能说明其中的道理,你能帮助他说明这个道理吗?试试看.45.如图,AD是△ABC的中线,CE⊥AD于E,BF⊥AD,交AD的延长线于F.求证:CE=BF.46.如图,已知AB∥CD,AD∥BC,F在DC的延长线上,AM=CF,FM交DA的延长线上于E.交BC于N,试说明:AE=CN.47.已知:如图,△ABC中,∠C=90°,CM⊥AB于M,AT平分∠BAC交CM于D,交BC于T,过D作DE∥AB 交BC于E,求证:CT=BE.48.如图,已知AB=AD,AC=AE,∠BAE=∠DAC.∠B与∠D相等吗?请你说明理由.49.D是AB上一点,DF交AC于点E,DE=EF,AE=CE,求证:AB∥CF.50.如图,M是△ABC的边BC上一点,BE∥CF,且BE=CF,求证:AM是△ABC的中线.51.如图,在△ABC中,AC⊥BC,AC=BC,D为AB上一点,AF⊥CD交于CD的延长线于点F,BE⊥CD于点E,求证:EF=CF﹣AF.52.如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于D,EC⊥MN于E.(1)求证:BD=AE;(2)若将MN绕点A旋转,使MN与BC相交于点O,其他条件都不变,BD与AE边相等吗?为什么?(3)BD、CE与DE有何关系?53.已知:如图,△ABC中,AB=AC,BD和CE为△ABC的高,BD和CE相交于点O.求证:OB=OC.54.在△ABC中,∠ACB=90°,D是AB边的中点,点F在AC边上,DE与CF平行且相等.试说明AE=DF的理由.55.如图,在△ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连接DE,已知DE=2cm,BD=3cm,求线段BC的长.56.如图:已知∠B=∠C,AD=AE,则AB=AC,请说明理由.57.如图△ABC中,点D在AC上,E在AB上,且AB=AC,BC=CD,AD=DE=BE.(1)求证△BCE≌△DCE;(2)求∠EDC的度数.58.已知:∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E.求证:BD=2CE.59.如图,已知:AB=CD,AD=BC,过BD上一点O的直线分别交DA、BC的延长线于E、F.(1)求证:∠E=∠F;(2)OE与OF相等吗?若相等请证明,若不相等,需添加什么条件就能证得它们相等?请写出并证明你的想法.60.如下图,AD是∠BAC的平分线,DE垂直AB于点E,DF垂直AC于点F,且BD=DC.求证:BE=CF.全等三角形证明题专项练习60题参考答案:1.∵△ABC≌△ADE 且∠B≠∠E,∴∠C=∠E,∠B=∠D;∴∠BAC=180°﹣∠B﹣∠C=180°﹣30°﹣20°=130°.2.∵AB∥CD,AD∥BC,∴∠ABD=∠CDB、∠ADB=∠CBD.又BD=DB,∴△ABD≌△CDB(ASA).3.△ADF与△AEF中,∵∠2=∠3,∠AFE=∠CFD,∴∠E=∠C.∵∠1=∠2,∴∠BAC=∠DAE.∵AC=AE,∴△ABC≌△ADE.4.(1)∵∠BHD=∠AHE,∠BDH=∠AEH=90°∴∠DBH+∠BHD=∠HAE+∠AHE=90°∴∠DBH=∠HAE∵∠HAE=∠DAC∴∠DBH=∠DAC;(2)∵AD⊥BC∴∠ADB=∠ADC在△BDH与△ADC中,∴△BDH≌△ADC.5.∵DE⊥AB,DF⊥AC,∴△DBE与△DCF是直角三角形,∵BD=CD,DE=DF,∴Rt△DBE≌Rt△DCF(HL),∴∠B=∠C,∴AB=AC.6.∵AE是∠BAC的平分线,∴∠BAE=∠CAE;∴180°﹣∠BAE=180°﹣∠CAE,即∠DAB=∠DAC;又∵AB=AC,AD=AD,∴在△ABD和△ACD中,∴△ABD≌△ACD(SAS)7.∵AE∥BC,∴∠B=∠C.∵AF=BD,AE=BC,∴△AEF≌△BCD(SAS).8.△ABE与△ACD全等.理由:∵AB=AC,∠A=∠A(公共角),AE=AD,∴△ABE≌△ACD.9.图中的全等三角形有:△ABD≌△ACD,△ABE≌△ACE,△BDE≌△CDE.理由:∵D是BC的中点,∴BD=DC,AB=AC,AD=AD∴△ABD≌△ACD(SSS);∵AE=AE,∠BAE=∠CAE,AB=AC,∴△ABE≌△ACE(SAS);∵BE=CE,BD=DC,DE=DE,∴△BDE≌△CDE(SSS).10.:∵∠1=∠2,∴∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS)11. 增加AB=DF.在△ABC和△FDE 中,∴△ABC≌△FDE(SSS).12.∵AB=AC,BD=CE,∴AD=AE.又∵∠A=∠A,∴△ABE≌△ACD(SAS).13.△CBD≌△CA1F证明如下:∵AC=BC,∴∠A=∠ABC.∵△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C1,∴∠A1=∠A,A1C=AC,∠ACA1=∠BCB1=α.∴∠A1=∠ABC(1分),A1C=BC.∴△CBD≌△CA1F(ASA)14.∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠F=∠ACB.∵BE=CF,∴BE+CE=CF+EC.∴BC=EF.∴△ABC≌△DEF (ASA).15.∵AB=AC,AD=AE,∠DAB=∠EAC,∴∠DAC=∠AEB,∴△ACD≌△ABE,∴∠D=∠E,又AD=AE,∠DAB=∠EAC,∴△ADM≌△AEN16.∵△ABC和△ADE均为等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90,即∠BAC+∠CAE=∠DAE+∠CAE,∴∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD17.答:△BDE≌△FEC,△BCE≌△FDC,△ABE≌△ACF;证明:(以△BDE≌△FEC为例)∵△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵CD=CE,∴△EDC是等边三角形,∴∠EDC=∠DEC=60°,∴∠BDE=∠FEC=120°,∵CD=CE,∴BC﹣CD=AC﹣CE,∴BD=AE,又∵EF=AE,∴BD=FE,在△BDE与△FEC中,∵,∴△BDE≌△FEC(SAS).18.(1)证明如下:∵∠ABD=∠1+∠EBC,∠CBE=∠2+∠EBC,∠1=∠2.∴∠ABD=∠CBE.在△ABD和△EBC中∴△ABD≌△EBC(AAS);(2)从中还可得到AB=BC,∠BAD=∠BEC19.(1)∵AB=8,AD=2∴BD=AB﹣AD=6在Rt△BDE中∠BDE=90°﹣∠B=30°∴BE=BD=3∴CE=BC﹣BE=5在Rt△CFE中∠CEF=90°﹣∠C=30°∴CF=CE=∴AF=AC﹣FC=;(2)在△BDE和△EFC中,∴△BDE≌△CFE(AAS)∴BE=CF∴BE=CF=EC∴BE=BC=∴BD=2BE=∴AD=AB﹣BD=∴AD=时,DE=EF20.(1)图中全等的三角形有四对,分别为:①△DBG≌△EGC,②△ADG≌△AEG,③△ABG≌△ACG,④△ABE≌△ACD;(4分)(Ⅱ)∵AB=AC,AD=AE,∠A是公共角,∴△ABE≌△ACD(SAS)④;∵AB=AC,AD=AE,∴AB﹣AD=AC﹣AE,即BD=CE;由④得∠B=∠C,又∵∠DGB=∠EGC(对顶角相等),BD=CE(已证),∴△DBG≌△EGC(AAS)①;由①得BG=CG,由④得∠B=∠C,又∵AB=AC,∴△ABG≌△ACG(SAS)③;由①得BG=CG,且AD=AE,AG为公共边,∴△ADG≌△AEG(SSS)②;21.(1)△ABC≌△DCB.证明:∵AB=CD,AC=BD,BC=CB,∴△ABC≌△DCB.(SSS)(2)EF平分∠DEC.理由:∵EF∥BC,∴∠DEF=∠EBC,∠FEC=∠ECB;由(1)知:∠EBC=∠ECB;∴∠DEF=∠FEC;∴FE平分∠DEC22.△ABC≌△DCB.理由如下:∵∠ABC=∠DCB,∠1=∠2,∴∠DBC=∠ACB.∵BC=CB,∴△ABC≌△DCB23.(1)∵BF=DE,∴BF+EF=DE+EF.即BE=DF.在△DFC和△BEA中,∵,∴△DFC≌△BEA(SAS).(2)∵△DFC≌△BEA,∴CF=AE,∠CFD=∠AEB.∵在△AFE与△CEF中,∵,∴△AFE≌△CEF(SAS)24.△ABF与△DFG中,∠BAF=∠BGD,∠BFA=∠DFG,∴∠B=∠D,∵∠BAF=∠EAC,∴∠BAE=∠DAC,∵AC=AE,∠BAE=∠DAC,∠B=∠D,∴△BAE≌△DAC.答案:有.△BAE≌△DAC25.∵CE∥AB,∴∠ABD=∠ECD.在△ABD和△ECD中,,∴△ABD≌△ECD(ASA)26.(1)证明:在△AOB和△COD中∵∴△AOB≌△COD(AAS)(2)解:∵△AOB≌△COD,∴AO=DO∵E是AD的中点∴OE⊥AD∴∠AEO=90°27.1)证明:∵AB∥DE,∴∠A=∠D.∵AB=DE,AF=DC,∴△ABF≌△DEC.(2)解:全等三角形有:△ABC和△DEF;△CBF和△FEC28.证明:(1)∵BE、CF分别是AC、AB两边上的高,∴∠AFC=∠AEB=90°(垂直定义),∴∠ACG=∠DBA(同角的余角相等),又∵BD=CA,AB=GC,∴△ABD≌△GCA;(2)连接DG,则△ADG是等腰三角形.证明如下:∵△ABD≌△GCA,∴AG=AD,∴△ADG是等腰三角形.29.解:∵∠4+∠6=180°﹣∠3,∠5+∠6=180°﹣∠2,∠3=∠2,∴∠4+∠6=∠5+∠6,∴∠4=∠5,∵在△ADE和△CFD中,,∴△ADE≌△CFD(AAS).30.①DF∥BC.证明:∵BE⊥AC,∴∠BEC=90°,∴∠C+∠CBE=90°,∵∠ABC=90°,∴∠ABF+∠CBE=90°,∴∠C=∠ABF,∵DF∥BC,∴∠C=∠ADF,∴∠ABF=∠ADF,在△AFD和△AFB中∴△AFD≌△AFB(AAS).31.在△BEA和△BDC中:,故△BEA≌△BDC(SSS).32.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.请说明△ADC≌△CEB的理由.解:∵BE⊥CE于点E(已知),∴∠E=90°(垂直的意义),同理∠ADC=90°,∴∠E=∠ADC(等量代换).在△ADC中,∵∠1+∠2+∠ADC=180°(三角形的内角和等于180°),∴∠1+∠2=90°(等式的性质).∵∠ACB=90°(已知),∴∠3+∠2=90°,∴∠1=∠3(同角的余角相等).在△ADC和△CEB中,.∴△ADC≌△CEB (A.A.S)33.(1)△ABF≌△DEC,△ABC≌△DEF,△BCF≌△EFC;(2分)(2)△ABF≌△DEC,证明:∵AB∥DE,∴∠A=∠D,(3分)在△ABF和△DEC中,(4分)∴△ABF≌△DEC.(5分)34.(1)△ADF与△AEF中,∵∠2=∠3,∠AFE=∠CFD,∴∠C=∠E;(2)∵∠1=∠2,∴∠BAC=∠DAE.∵AC=AE,又∠C=∠E,∴△ABC≌△ADE.35.∵AE⊥CD,∴∠AEC=90°,∴∠ACE+∠CAE=90°,(直角三角形两个锐角互余)∵∠ACE+∠BCF=90°,∴∠CAE=∠BCF,(等角的余角相等)∵AE⊥CD,BF⊥CD,∴∠AEC=∠BFC=90°,在△ACE与△CBF中,∠CAE=∠BCF,∠AEC=∠BFC,AC=BC,36.当动点P运动到AC边上中点位置时,△APE≌△EDB,∵DE∥CA,∴△BED∽△BAC,∴=,∵D是BC的中点,∴=,∴=,∴E是AB中点,∴DE=AC,BE=AE,∵DE∥AC,∴∠A=∠BED,要使△APE≌△EDB,还缺少一个条件DE=AP,又有DE=AC,∴P必须是AC中点.37.(1)∵AE=AB,∴∠B=∠AEB,又∵AD∥BC,∴∠AEB=∠DAE,∴∠DAE=∠B;(2)∵∠DAE=∠B,AD=BC,AE=AB,∴△ABC≌△EAD.38.△ACE≌△BCD.∵△ABC和△ECD都是等腰直角三角形,∴∠ECD=∠ACB=90°,∴∠ACE=∠BCD(都是∠ACD的余角),在△ACE和△BCD中,∵,∴△ACE≌△BCD.39.∵∠BAC=∠DAE,即∠BAD=∠EAC,在△ABD和△ACE中,∴△ABD≌△ACE.40.证明:延长FD到M使MD=DF,连接BM,EM.∵D为BC中点,∴BD=DC.∵∠FDC=∠BDM,∴△BDM≌△CDF.∴BM=FC.∵ED⊥DF,∴EM=EF.∵BE+BM>EM,∴BE+FC>EF.41.PM=HN.理由:∵在△MNP中,H是高MQ与NE的交点,∴∠MEH=∠NQH=90°,∠MQP=∠NQH=90°∵∠MHE=∠NHQ(对顶角相等),∴∠EMH=∠QNH(等角的余角相等)在△MPQ和△NHQ中,,∴△MPQ≌△NHQ(ASA),∴MP=NH.42.(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.43.∵BE⊥CE于E,AD⊥CE于D∴∠E=∠ADC=90°∵∠BCE+∠ACE=∠DAC+∠ACE=90°∴∠BCE=∠DAC∵AC=BC∴△ACD≌△CBE∴CE=AD,BE=CD=2.5﹣1.7=0.8(cm)44.∵AB=CD,BC=AD,又∵BD=DB,在△ABD和△CDB中,∴△ABD≌△CDB,∴∠A=∠C.45.∵AD是△ABC中BC边上的中线,∴BD=CD.∵CE⊥AD于E,BF⊥AD,∴∠BFD=∠CED.在△BFD和△CED中,∴△BFD≌△CED(AAS).∴CE=BF46.∵AD∥BC,∴∠E=∠ENB,∵∠ENB=∠CNF,∴∠E=∠CNF,∵AB∥CD,∴∠A=∠B,∵∠C=∠B,∴∠EAB=∠DCB,∵AM=CF,∴AE=CN.47.证明:过T作TF⊥AB于F,∵AT平分∠BAC,∠ACB=90°,∴CT=TF(角平分线上的点到角两边的距离相等),∵∠ACB=90°,CM⊥AB,∴∠ADM+∠DAM=90°,∠A TC+∠CA T=90°,∵AT平分∠BAC,∴∠DAM=∠CA T,∴∠ADM=∠ATC,∴∠CDT=∠CTD,∴CD=CT,又∵CT=TF(已证),∴CD=TF,∵CM⊥AB,DE∥AB,∴∠CDE=90°,∠B=∠DEC,在△CDE和△TFB中,,∴△CDE≌△TFB(AAS),∴CE=TB,∴CE﹣TE=TB﹣TE,即CT=BE.48.∵∠BAE=∠DAC∴∠BAE+∠CAE=∠DAC+∠CAE即∠BAC=∠DAE又∵AB=AD,AC=AE,∴△ABC≌△ADE(SAS)∴∠B=∠D(全等三角形的对应角相等)49.∵DE=EF,AE=CE,∠AED=∠FEC,∴△AED≌△FEC.∴∠ADE=∠CFE.∴AD∥FC.∵D是AB上一点,∴AB∥CF50.∵BE∥CF,∴∠CMF=∠BME,∠FCM=∠EBM.∴△CFM≌△BEM.∴CM=BM.即AM是△ABC的中线51.∵AC⊥BC,BE⊥CD,∴∠ACF+∠FCB=∠FCB+∠CBE=90°.∴∠FCA=∠EBC.∵∠BEC=∠CFA=90°,AC=BC,∴△BEC≌△CFA.∴CE=AF.∴EF=CF﹣CE=CF﹣AF52.解:(1)证明:由题意可知,BD⊥MN与D,EC⊥MN与E,∠BAC=90°,则△ABD与△CEA是直角三角形,∠DAB=∠ECA,在△ABD与△CEA中,∵,∴△ABD≌△CEA,∴BD=AE;(2)若将MN绕点A旋转,与BC相交于点O,则BD,CE与MN垂直,∴△ABD与△CEA仍是直角三角形,两个三角形仍全等,∴BD与AE边仍相等;(3)∵△ABD≌△CEA,∴BD=AE,AD=EC,∴DE=BD+EC或DE=CE﹣BD或DE=BD﹣CE.53.∵AB=AC,∴∠ABC=∠ACB,∵BD、CE分别为△ABC的高,∴∠BEC=∠BDC=90°,∴在△BEC和△CDB中,∴△BEC≌△CDB,∴∠1=∠2,∴OB=OC解:连接CD,∵∠ACB=90°,D是AB边的中点∴CD=AD,∠DAC=∠DCF∵DE与CF平行且相等∴∠EDA=∠DAC∴∠EDA=∠DCF在△AED和△CFD中CD=AD,∠EDA=∠DCF,DE=CF∴△AED≌△CFD∴AE=DF.55.∵AD平分∠BAC∴∠BAD=∠CAD在△ADE和△ADC中∵∴△ADE≌△ADC(SAS)∴DE=DC∴BC=BD+DC=BD+DE=2+3=5(cm)56.在△AEB与△ADC中,.∴△AEB≌△ADC(AAS).∴AB=AC(全等三角形,对应边相等)57.(1)证明:在△BCE和△DCE中∴△BCE≌△DCE(SSS).(2)解:∵AD=DE,∴∠A=∠AED;∴∠EDC=∠A+∠AED=2∠A,设∠A=x,根据题意得,5x=180°,解得x=36°∴∠EDC=2∠A=72°证明:延长CE、BA交于点F.∵CE⊥BD于E,∠BAC=90°,∴∠ABD=∠ACF.又AB=AC,∠BAD=∠CAF=90°,∴△ABD≌△ACF,∴BD=CF.∵BD平分∠ABC,∴∠CBE=∠FBE.有BE=BE,∴△BCE≌△BFE,∴CE=EF,∴CE=BD,∴BD=2CE.59.(1)证明:在△ABD和△CDB中∵AB=CD,AD=BC,BD=DB,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∴DE∥BF.∴∠E=∠F.(2)答:当O是BD中点时,OE=OF.证明如下:∵O是BD中点,∴OB=OD.又∵∠ADB=∠DBC,∠E=∠F,∴△ODE≌△OBF(AAS).∴OE=OF.(当AE=CF时也可证得60.∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°.∵AD平分∠EAC,∴DE=DF.在Rt△DBE和Rt△DCF中,∴Rt△DBE≌Rt△CDF(HL).∴BE=CF.。
全等三角形练习题
一、选择题:
1、以两条边长为10和3及另一条边组成边长都是整数的三角形一共有()。
A.3个B.4个C.5个D.无数多个
2、若一个三角形的一个角等于其它两个角的差,则这个三角形一定是()
A.锐角三角形B.直角三角形
C.钝角三角形D.以上都有可能
3、具备下列条件的两个三角形,全等的是()
A.两个角分别相等,且有一边相等
B.一边相等,且这边上的高也相等
C.两边分别相等,且第三边上的中线也相等
D.两边且其中一条对应边的对角对应相等
4、等腰三角形中有一个角是50︒,它的一条腰上的高与底边的夹角是()
A.25︒B.40︒C.25︒或40︒D.大小无法确定
5、一个三角形的一边为2,这边的中线为1,另两边之和为31
+,那么这个三角形的面积为()
A.1 B.
3
2
C.3D.不能确定
二、解答题、
1已知:如图,∆ABC中,AB=AC,AD=BD,AC=DC
求:∠B的度数
2、已知:Rt ABC
∆中,∠BAC=90︒,AD是BC边上的高,BF
平分∠ABC,交AD于E。
求证:∆AEF是等腰三角形
3、已知:如图AB=CD,AC和BD的垂直平分线相交于O点。
求证:∠ABO=∠CDO
4、已知:如图∆ABC中,BC边中垂线DE交∠BAC的平分线于D,DM⊥AB于M,DN⊥AC于N。
求证BM=CN
5、已知:如图,∆ABC中,∠ACB=90︒,M为AB的中点,DM⊥AB于M,CD平分∠ACB,交AB于E 求证:MD=AM
6、在△ABC中,∠C=90°,AC=BC,AD=BD,PE⊥AC于点E,PF⊥BC于点F。
求证:DE=DF
参考答案
一、选择题:
1、C
2、B
3、C
4、C
5、B
二、解答题
1 ∠B为36︒。
2、提示:根据等角的余角相等,可证∠AFE=∠BED,又因为∠BED=∠AEF,
所以∠AFE=∠AEF。
3、提示:连结OA,OC,证∆AOB≌∆COD
5、提示:连结DB、DC。
根据线段中垂线的性质,可得DB=DC,根据角平分线的性质,可得DM=DN,因此,可得
6、提示:连结CM,作CF⊥AB于F。
根据直角三角形斜边中线等于斜边一半,可知CM=AM,所以,只需证CM=DM,再证∠D=∠MCE。
因为∠BCF=∠A=∠ACM,∠ACE=∠BCE
所以∠MCE=∠FCE 再证∠FCE=∠D
7、提示:连接CD 证明ΔAED与ΔCFD全等。