频率特性的几种表示方法
- 格式:ppt
- 大小:173.01 KB
- 文档页数:6
频率特性的基本概念大中小在稳定的线性系统(或线性环节)的输入端作用一个正弦信号,当系统相对稳定后,系统的稳态输出也必定是一个同频率的正弦信号。
稳态输出与输入的振幅比值以及它们之间的相位差取决于系统本身的结构和输入信号的频率。
这种现象在如图5-1所示的强迫振动实验中可以观察得到。
(图5-1)图中的系统为稳定的线性定常系统。
当输入信号R为时,输出C在稳态时也为正弦信号两者的频率相同,但振幅和相位角不同。
当输入信号的频率改变时,输出信号的振幅和相位角会发生变化。
一、频率特性的数学本质以上介绍的是频率响应特性(简称频率特性)的实验现象,下面我们将证明频率特性和传递函数之间的数学关系,以便可以很方便地由系统传递函数得到频率特性,反之也能够由频率特性得到传递函数。
输出的拉普拉斯变换式为设输入R(t)为正弦函数,表示为由拉普拉斯变换表查得故部分分式中及B、D均为待定系数。
对于一个稳定的系统,由于特征方程的所有特征根均具有负实数部分,的第一个分量总是随着t的增长逐渐消失,系统最终将以作稳态运动。
上式恰恰是我们需要求解的,其中系数由上式得到同理将系数B、D代入,则式中Im为G(jω)的虚部,Re为G(jω)的实部。
而输出端响应的振幅和输入端的振荡之比为输出端响应和输入端的相位差为由此可见,作用有正弦输入时的稳定线性定常系统,输出响应具有与输入同一频率的正弦稳定信号。
但是输出的振幅和相位角通常不等于输入量的振幅和相角,输出响应的振幅是输入量的倍,输出响应和输入量相位差为。
因此,系统的频率特性可以直接由G(jω)表示,系统的频率特性为式中是ω的函数,称为幅频特性,也是频率特性的模;是ω的函数,称为相频特性。
在上述数学推导中,我们可以清楚地看到所以,在已知系统或环节的传递函数时,只要令,就可以很方便地得到系统或环节的频率特性。
为了进一步说明频率特性的意义,现以图5-2所示的R-C电路为例。
图5-2频率特性可通过传递函数来求取,当电容两端电压uc为输出量,输入电压ui为输入量时,传递函数可用复阻抗串联的知识求取式中 T=RC频率特性只要将S以jω代替,频率特性为幅频特性(模)为相频特性(幅角)为当ui以低频信号输入时();这表明,当输入正弦电压ui的频率很低,则输出电压uc的振幅与的振幅几乎相等,相位近似同相。
第四章系统的频率特性分析第四章系统的频率特性分析时间响应分析:主要用于分析线性系统的过渡过程,以时间t为独立变量,通过阶跃或脉冲输入作用下系统的瞬态时间响应来研究系统的性能;依据的数学模型为G(s)频率特性分析:以频率ω为独立变量,通过分析不同的谐波输入时系统的稳态响应来研究系统的性能;依据的数学模型为G(jω)频域分析的基本思想:把系统输入看成由许多不同频率的正弦信号组成,输出就是系统对不同频率信号响应的总和。
4.1频率特性概述1.频率响应与频率特性(1)频率响应:线性定常系统对谐波输入的稳态响应。
(frequencyresponse)对稳定的线性定常系统输入一谐波信号xi(t)=Xisin?t稳态输出(频率响应):xo(t)=Xo(?)sin[ωt+?(ω)]【例】设系统的传递函数为输入谐波信号xi(t)=Xisin?t 则稳态输出(频率响应)与输入信号的幅值成正比与输入同频率,相位不同进行laplace逆变换,整理得同频率?幅值比A(?)相位差?(?)ω的非线性函数(揭示了系统的频率响应特性)输入:xi(t)=Xisinωt稳态输出(频率响应):xo(t)=XiA(?)sin[ωt+?(ω)]幅频特性:稳态输出与输入谐波的幅值比相频特性:稳态输出与输入谐波的相位差?(?)[s]A(?)?(?)(2)频率特性:对系统频率响应特性的描述(frequencycharacteristic)频率特性定义为ω的复变函数,幅值为A(?),相位为?(?)。
输入谐波函数xi(t)=Xisin?t,其拉式变换为2.频率特性与传递函数的关系设系统的微分方程为:则系统的传递函数为:则由数学推导可得出系统的稳态响应为根据频率特性定义,幅频特性和相频特性分别为故G(j?)=?G(j?)?ej?G(j?)就是系统的频率特性如例1,系统的传递函数为所以3.频率特性的求法(1)频率响应→频率特性稳态输出(频率响应)故系统的频率特性为或表示为(2)传递函数→频率特性将传递函数G(s)中的s换成jω,得到频率特性G(jω)。