第7章现控理论课件
- 格式:doc
- 大小:823.50 KB
- 文档页数:49
周三多管理学课件_第七章_控制第 7 章控制6 3>. 1 控制概述6 . 2 控制的过程与类型6 . 3 控制的技术与方法【学习目标】1.了解控制的概念及其与计划的关系。
2.明确控制的目的及导致控制更加重要的因素。
3.熟悉控制的过程、类型及关键控制点的使用。
4.掌握行为控制法、预算控制法、生产控制法等控制方法。
引言麦当劳公司以经营快餐闻名遐迩。
1955年,克洛克在美国创办了第一家麦当劳餐厅,其菜单上的品种不多,但食品质量高,价格廉,供应迅速,环境优美。
连锁店迅速发展到每个州,至1983年,国内分店已超过6000家。
1967年,麦当劳在加拿大开办了首家国外分店,以后国外业务发展很快。
到1985年,国外销售额约占它的销售总额的1/5。
在40多个国家里,每天都有1800多万人光顾麦当劳。
目前,在全球拥有超过3万家连锁店,其中在中国有700家。
麦当劳金色的拱门允诺:每个餐厅的菜单基本相同,而且“质量超群,服务优良,清洁卫生,货真价实”。
它的产品、加工和烹制程序乃至厨房布置,都是标准化的,严格控制的。
它撤消了在法国的第一批特许经营权,因为他们尽管盈利可观,但未能达到在快速服务和清洁方面的标准。
麦当劳的各分店都由当地人所有和经营管理。
鉴于在快餐饮食业中维持产品质量和服务水平是其经营成功的关键,因此,麦当劳公司在采取特许连锁经营这种战略开辟分店和实现地域扩张的同时,就特别注意对各连锁店的管理控制。
如果管理控制不当,使顾客吃到不对味的汉堡包或受到不友善的接待,其后果就不仅是这家分店将失去这批顾客及其影响人光顾的问题,还会波及影响到其他分店的生意,乃至损害整个公司的信誉。
为此,麦当劳公司制定了一套全面、周密的控制办法。
麦当劳公司主要是通过授予特许权的方式来开辟连锁分店。
其考虑之一,就是使购买特许经营权的人在成为分店经理人员的同时也成为该分店的所有者,从而在直接分享利润的激励机制中把分店经营得更出色。
特许经营使麦当劳公司在独特的激励机制中形成了对其扩展中的业务的强有力控制。
第六次课小结一、 Lyapunov 意义下的稳定性问题基本概念● 平衡状态的概念● Lyapunov 意义下的稳定性定义(稳定,一致稳定,渐进稳定,一致渐进稳定,大范围渐进稳定等)● 纯量函数的正定性,负定性,正半定性,负半定性,不定性 ● 二次型,复二次型(Hermite 型)二、 Lyapunov 稳定性理论● 第一方法 ● 第二方法三、 线性定常系统的Lyapunov 稳定性分析● 应用Lyapunov 方程Q PA P AH-=+来进行判别稳定性四、 线性定常系统的稳定自由运动的衰减率性能估计● 衰减系数,一旦定出min η,则可定出)(x V 随时间t 衰减上界。
● 计算min η的关系式五、 离散时间系统的状态运动稳定性及其判据● 离散系统的大范围淅近稳定判据,Lyapunov 稳定判据在离散系统中的应用六、 线性多变量系统的综合与设计的基本问题●问题的提法●性能指标的类型●研究的主要内容七、极点配置问题●问题的提出●可配置条件●极点配置算法5.2.5 爱克曼公式(Ackermann ’s Formula) 考虑由式(5.1)给出的系统,重写为Bu Ax x +=假设该被控系统是状态完全能控的,又设期望闭环极点为n s s s μμμ===,,,21 。
利用线性状态反馈控制律Kx u -=将系统状态方程改写为x BK A x )(-=(5.14)定义BK A A -=~则所期望的特征方程为)())((~11121=++++=---=-=+-**--*n n n nn a s a sa s s s s A sI BK A sI μμμ由于凯莱-哈密尔顿定理指出A ~应满足其自身的特征方程,所以0~~~)~(**11*1*=++++=--I a A a A a A A n n n n φ (5.15)我们用式(5.15)来推导爱克曼公式。
为简化推导,考虑n = 3的情况。
需要指出的是,对任意正整数,下面的推导可方便地加以推广。
考虑下列恒等式22333222~~)(~~)(~~ABK A ABK BK A A BK A A A BK ABK A BK A A BKA A I I ---=-=--=-=-== 将上述方程分别乘以)1(,,,*0*0*1*2*3=a a a a a ,并相加,则可得32*1*2*3~~~AA a A a I a +++-+--+-+=32*1*2*3)~()(A A BK ABK A a BK A a I a22~~ABK A ABK BK A --------+++=BK A A BK a ABK a BK a A A a A a I a 2*1*1*232*1*2*3~2~~A BK A ABK -- (5.16)参照式(5.15)可得0)~(~~~*32*1*2*3==+++A A A a A a I a φ也可得到0)(*32*1*2*3≠=+++A A A a A a I a φ将上述两式代入式(5.16),可得BKA A ABK ABK a A BK A BK a BK a A A 2*12*1*2**~~~)()~(------=φφ由于0)~(*=A φ,故BKA A K K a AB A K A K a K a B A 2*12*1*2*)~()~~()(+++++=φ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=K A K K a A K A K a K a B A AB B ~~~][*12*1*22 (5.17)由于系统是状态完全能控的,所以能控性矩阵][2B A AB B Q =的逆存在。
在式(5.17)的两端均左乘能控性矩阵Q 的逆,可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=-K A K K a A K A K a K a A B A AB B ~~~)(][*12*1*2*12φ上式两端左乘[0 0 1],可得KK A K K a A K A K a K a A B A AB B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=-~~~]100[)(]][100[*12*1*2*12φ重写为)(][]100[*12A B A AB B K φ-=从而给出了所需的状态反馈增益矩阵K 。
对任一正整数n ,有)(]][1000[*11A B AAB B K n φ--= (5.18)式(5.18)称为用于确定状态反馈增益矩阵K 的爱克曼方程。
------------------------------------------------- [例5.1] 考虑如下线性定常系统Bu Ax x +=式中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=100,651100010B A利用状态反馈控制Kx u -=,希望该系统的闭环极点为s = -2±j 4和s = -10。
试确定状态反馈增益矩阵K 。
首先需检验该系统的能控性矩阵。
由于能控性矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==316161010][2B A AB B Q所以得出det Q = -1,因此,rank Q = 3。
因而该系统是状态完全能控的,可任意配置极点。
下面,我们来求解这个问题,并用本章介绍的3种方法中的每一种求解。
方法1:第一种方法是利用式(5.13)。
该系统的特征方程为:156651101||3221323=+++=+++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--=-a s a s a s s s s s s sA sI因此1,5,6321===a a a期望的特征方程为2006014)10)(42)(42(*3*22*1323=+++=+++=+++-+a s a s a s s s s s j s j s因此200,60,14*3*2*1===a a a参照式(5.13),可得]855199[]6145601200[=---= K方法2:设期望的状态反馈增益矩阵为][321k k k K =并使||BK A sI +-和期望的特征多项式相等,可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+-651100010000000||s s s BK A sI 321[100k k k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+ 20060141)5()6(65110012312233321+++=++++++=++++--=s s s k s k s k s k s k k ss因此2001,605,146123=+=+=+k k k从中可得8,55,199321===k k k或]855199[=K方法3:第三种方法是利用爱克曼公式。
参见式(5.18),可得)(]][100[*12A B A AB B K φ-=由于I A A A A 2006014)(23*+++=φ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=11743771598855199100010001200651100010606511000101465110001023且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=316161010][2B A AB B可得]855199[11743771598855199001016165]100[117437715988551993161610100]100[1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-K显然,这3种方法所得到的反馈增益矩阵K 是相同的。
使用状态反馈方法,正如所期望的那样,可将闭环极点配置在s = -2±j 4和s = -10处。
------------------------------------------------------------------------------应当注意,如果系统的阶次n 等于或大于4,则推荐使用方法1和3,因为所有的矩阵计算都可由计算机实现。
如果使用方法2,由于计算机不能处理含有未知参数n k k k ,,,21 的特征方程,因此必须进行手工计算。
5.2.6 注释对于一个给定的系统,矩阵K 不是唯一的,而是依赖于选择期望闭环极点的位置(这决定了响应速度与阻尼),这一点很重要。
注意,所期望的闭环极点或所期望状态方程的选择是在误差向量的快速性和干扰、测量噪声的灵敏性之间的一种折衷。
也就是说,如果加快误差响应速度,则干扰和测量噪声的影响通常也随之增大。
如果系统是2阶的,那么系统的动态特性(响应特性)正好与系统期望的闭环极点和零点的位置联系起来。
对于更高阶的系统,期望的闭环极点位置不能和系统的动态特性(响应特性)联系起来。
因此,在决定给定系统的状态反馈增益矩阵K 时,最好通过计算机仿真来检验系统在几种不同矩阵(基于几种不同的期望特征方程)下的响应特性,并且选出使系统总体性能最好的矩阵K 。
5.3 利用MATLAB 求解极点配置问题用MATLAB 易于求解极点配置问题。
现在我们来求解在例5.1中讨论的同样问题。
系统方程为Bu Ax x +=式中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=100651100010B A , 采用状态反馈控制Kx u -=,希望系统的闭环极点为s =μi(i=1,2,3),其中10,42,42321-=--=+-=μμμj j现求所需的状态反馈增益矩阵K 。
如果在设计状态反馈控制矩阵K 时采用变换矩阵P ,则必须求特征方程|s I-A |=0的系数1a 、2a 、和3a 。
这可通过给计算机输入语句P = poly(A )来实现。
在计算机屏幕上将显示如下一组系数:则)4(3),3(2),2(1321P a a P a a P a a ======。
为了得到变换矩阵P ,首先将矩阵Q 和W 输入计算机,其中][2B A AB B Q =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001011112a a a W 然后可以很容易地采用MATLAB 完成Q 和W 相乘。
其次,再求期望的特征方程。
可定义矩阵J ,使得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000042004200000321j j J μμμ从而可利用如下poly(J )命令来完成,即因此,有)4(3),3(2),2(1*3*2*1Q aa a Q aa a Q aa a ======即对于*i a ,可采用aai 。
故状态反馈增益矩阵K 可由下式确定:1112233][-***---=P a a a a a a K或aaaaaaaaa=--K-3[P(inv())3*2]211采用变换矩阵P求解该例题的MATLAB程序如MATLAB Program 5.1所示。
Q=[B A*B A^2*B];%*****Check the rank of matrix Q*****rank(Q)ans=3%*****Since the rank of Q is 3, arbitrary pole placement is% possible *****%*****Obtain the coefficients of the characteristic polynomial%|sI-A|. This can be done by entering statement poly(A)*****JA=poly(A)JA=1.0000 6.0000 5.0000 1.0000a1=JA(2);a2=JA(3);a3=JA(4);%*****Define matrices W and P as follows*****W=[a2 a1 1;a1 1 0;1 0 0];P=Q*W;%*****Obtain the desired chracteristic polynomial by defining%the following matrix J and entering statement poly(J)*****J=[-2+j*4 0 0;0 -2-j*4 0;0 0 -10];JJ=poly(J)JJ=1 14 60 200aa1=JJ(2);aa2=JJ(3);aa3=JJ(4);%*****State feedback gain matrix K can be given by *****K=[aa3-a3 aa2-a2 aa1-a1]*(inv(P))K=199 55 8%*****Hence, k1,k2,and k3 are given by *****k1=K(1),k2=K(2),k3=K(3)如果采用爱克曼公式来确定状态反馈增益矩阵K ,必须首先计算矩阵特征方程φ(A )。