2012高考试题—数学理(湖北A卷)word版
- 格式:doc
- 大小:429.50 KB
- 文档页数:5
湖北省2012年理科高考数学选择题和填空题答案详解(A 卷)一:选择题1.A 利用一元二次方程求根公式即可得到答案(21i =-)此题考求根公式及复数定义。
2.D 有定义即可得3.B 易求得图像中二次函数的为21y x =-+,故所围图形的面积为: 12311114(1)()33x dx x x ---+=-+=⎰ 此题考定积分的计算。
4.B 一个底面直径为2,高为4的圆柱体,被切除14的部分,剩余的34部分即为该几何体,所以其体积为3434ππ⋅=考三视图,新课标内容。
5.D ()20122012201212011120111201120122012515215252(1)52(1)1a a C C a +=-+=+-+⋅⋅⋅+-++因为52是13的倍数,所以只需1a +是13的倍数即可,故12a =此题考二项式展开公式。
6.C 设向量(,,)a b c α=,(,,)x y z β=,由柯西不等式αβαβ≤⋅得,2+++a x b y y z ≤由已知知等号刚好成立,此时向量α与β成线性关系,设=αλβ,即=,=,=a x b y c z λλλ,所以()2222222++=++a b c x y z λ,解得1=2λ,所以++1==++2a b c x y z λ 此题考柯西不等式的应用。
7.C 设原等比数列公比为q ,则①222+1+12==n n n n a a q a a ⎛⎫ ⎪⎝⎭(定值),所以①是对的,③,所以③是对的。
考等比数列与函数的结合应用。
8.A 设OA=2,则A O B -22==1-S S πππ阴影扇形,这里计算阴影部分面积是属于小学六年级的内容,这里就不具体计算了此题考几何概型的应用9.C 零点的个数即是方程2cos =0x x 的解的个数。
因为2cos =0x x ,所以=0x 或2cos =0x 。
由2cos =0x 得2=k +2x ππ ,即=x ±又因为[]0,4x ∈,所以04≤≤,解得=0,1,2,3,4k ,一共5个解。
○…………装…………○………学校:___________姓名:___________班级:_____○…………装…………○………2012年高考理数真题试卷(湖北卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题) A.﹣3+2i B.3+2i C.﹣2+3i D.2+3i2.命题“∃x 0∈∁R Q ,x 03∈Q”的否定是( ) A.∃x 0∉∁R Q ,x 03∈Q B.∃x 0∈∁R Q ,x 03∉Q C.∀x 0∉∁R Q ,x 03∈Q D.∀x 0∈∁R Q ,x 03∉Q3.已知某几何体的三视图如图所示,则该几何体的体积为( )A.8π3 B.3π C.10π3D.6π4.设a ,b ,c ,x ,y ,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax+by+cz=20,则 a+b+cx+y+z =( ) A.14 B.13 C.12 D.345.定义在(﹣∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },答案第2页,总8页○…………外…………○…………※※请※※不※○…………内…………○…………(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x ;③f (x )= √|x| ;④f (x )=ln|x|.则其中是“保等比数列函数”的f (x )的序号为( ) A.①② B.③④ C.①③ D.②④6.函数f (x )=xcosx 2在区间[0,4]上的零点个数为( ) A.4 B.5 C.6 D.77.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式d≈ √169V 3 .人们还用过一些类似的近似公式.根据π=3.14159…..判断,下列近似公式中最精确的一个是( ) A.d≈ √169V 3 B.d≈ √2V 3 C.d≈ √300157V 3 D.d≈ √2111V 3第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)8.阅读如图所示的程序框图,运行相应的程序,输出的结果s=…○…………订…………○…………线…………○…___班级:___________考号:___________…○…………订…………○…………线…………○…9.如图,双曲线 x 2a 2−y 2b2 =1(a ,b >0)的两顶点为A 1 , A 2 , 虚轴两端点为B 1 , B 2 , 两焦点为F 1 , F 2 . 若以A 1A 2为直径的圆内切于菱形F 1B 1F 2B 2 , 切点分别为A ,B ,C ,D .则: (Ⅰ)双曲线的离心率e= ;(Ⅱ)菱形F 1B 1F 2B 2的面积S 1与矩形ABCD 的面积S 2的比值 S1S 2= .10.如图,点D 在⊙O 的弦AB 上移动,AB=4,连接OD ,过点D 作OD 的垂线交⊙O 于点C ,则CD 的最大值为 .三、解答题(题型注释)11.已知向量 a →=(cosωx﹣sinωx,sinωx), b →=(﹣cosωx﹣sinωx,2 √3 cosωx),设函数f (x )= a →• b →+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈( 12 ,1) (1)求函数f (x )的最小正周期;(2)若y=f (x )的图象经过点( π4 ,0)求函数f (x )在区间[0, 3π5 ]上的取值范围.答案第4页,总8页………○…………装…………○……※※请※※不※※要※※在※※装※※订※※………○…………装…………○……参数答案1.A【解析】1.解:∵方程x 2+6x+13=0中, △=36﹣52=﹣16<0, ∴ x =−6±√16i2=﹣3±2i,故选A .【考点精析】根据题目的已知条件,利用复数相等的相关知识可以得到问题的答案,需要掌握如果两个复数实部相等且虚部相等就说这两个复数相等. 2.D【解析】2.解:∵命题“∃x 0∈C R Q , x 03 ∈Q”是特称命题,而特称命题的否定是全称命题,∴“∃x 0∈C R Q , x 03 ∈Q”的否定是∀x 0∈C R Q , x 03 ∉Q故选D 3.B【解析】3.解:由三视图可知几何体是圆柱底面半径为1高为6的圆柱,被截的一部分,如图所求几何体的体积为: 12×π×12×6 =3π. 故选B .【考点精析】通过灵活运用由三视图求面积、体积,掌握求体积的关键是求出底面积和高;求全面积的关键是求出各个侧面的面积即可以解答此题. 4.C【解析】4.解:由柯西不等式得,(a 2+b 2+c 2)( 14 x 2+ 14 y 2+ 14 z 2)≥( 12 ax+ 12 by+ 12 cz )2,当且仅当 a12x=b12y=x12z时等号成立∵a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax+by+cz=20,…………外…………○…………装………○…………订…………○………线…………○…学校:___________姓名:_______班级:___________考号:___________…………内…………○…………装………○…………订…………○………线…………○…∴等号成立 ∴ a 12x=b 12y=x12z∴ a+b+c x+y+z = 12故选C .【考点精析】认真审题,首先需要了解一般形式的柯西不等式(一般形式的柯西不等式:).5.C【解析】5.解:由等比数列性质知 a n a n+2=a n+12 ,① =f 2(a n+1),故正确; ② ≠ 22a n+1=f 2(a n+1),故不正确;③= √|a n+1|2 =f 2(a n+1),故正确;④f(a n )f (a n+2)=ln|a n |ln|a n+2|≠ ln|a n+1|2 =f 2(a n+1),故不正确;故选C【考点精析】认真审题,首先需要了解等比关系的确定(等比数列可以通过定义法、中项法、通项公式法、前n 项和法进行判断). 6.C【解析】6.解:令f (x )=0,可得x=0或cosx 2=0 ∴x=0或x 2= kπ+π2 ,k∈Z∵x∈[0,4],则x 2∈[0,16], ∴k 可取的值有0,1,2,3,4, ∴方程共有6个解∴函数f (x )=xcosx 2在区间[0,4]上的零点个数为6个 故选C【考点精析】解答此题的关键在于理解函数的极值与导数的相关知识,掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值,以及对函数的零点与方程根的关系的理解,了解二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.答案第6页,总8页7.D【解析】7.解:由V= 43π(d 2)3,解得d= √6V π3 设选项中的常数为 a b ,则π= 6ba选项A 代入得π= 6×916 =3.375;选项B 代入得π= 62 =3; 选项C 代入得π=6×157300=3.14;选项D 代入得π=6×1121=3.142857 由于D 的值最接近π的真实值 故选D . 8.9【解析】8.解:循环前,S=1,a=3,第1次判断后循环,n=2,s=4,a=5, 第2次判断并循环n=3,s=9,a=7,第3次判断退出循环, 输出S=9.所以答案是:9. 【考点精析】利用算法的循环结构对题目进行判断即可得到答案,需要熟知在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,循环结构可细分为两类:当型循环结构和直到型循环结构.9.√5+12;√5+22【解析】9.解:(Ⅰ)直线B 2F 1的方程为bx ﹣cy+bc=0,所以O 到直线的距离为 √b 2+c 2∵以A 1A 2为直径的圆内切于菱形F 1B 1F 2B 2 , ∴√b 2+c 2=a∴(c 2﹣a 2)c 2=(2c 2﹣a 2)a 2 ∴c 4﹣3a 2c 2+a 4=0 ∴e 4﹣3e 2+1=0 ∵e>1 ∴e=√5+12(Ⅱ)菱形F 1B 1F 2B 2的面积S 1=2bc 设矩形ABCD ,BC=2n ,BA=2m ,∴ mn =cd ∵m 2+n 2=a 2 , ∴ m =√b 2+c2, n =√b 2+c 2∴面积S 2=4mn=4a 2bc b 2+c 2∴ S 1S 2= b 2+c 22a 2= b 2+c 22bc∵bc=a 2=c 2﹣b 2………订…………○…………___________考号:___________………订…………○…………∴ b =−1+√52c∴ S1S 2=√5+22所以答案是:√5+12,√5+2210.2【解析】10.解:由题意可得△OCD 为直角三角形,故有CD 2=OC 2﹣OD 2 , 故当半径OC 最大且弦心距OD 最小时,CD 取得最大值.故当AB 为直径、且D 为AB 的中点时,CD 取得最大值,为AB 的一半,由于AB=4,故CD 的最大值为2, 所以答案是2.11.(1)解:∵f (x )= a →• b →+λ=(cosωx﹣sinωx)×(﹣cosωx﹣sinωx)+sinωx×2 √3 cosωx+λ=﹣(cos 2ωx﹣sin 2ωx)+ √3 sin2ωx+λ = √3 sin2ωx﹣cos2ωx+λ=2sin(2ωx﹣ π6 )+λ ∵图象关于直线x=π对称,∴2πω﹣ π6 = π2 +kπ,k∈z ∴ω= k 2 + 13 ,又ω∈( 12 ,1) ∴k=1时,ω= 56∴函数f (x )的最小正周期为 2π2×56= 6π5(2)解:∵f( π4 )=0∴2sin(2× 56 × π4 ﹣ π6 )+λ=0 ∴λ=﹣ √2答案第8页,总8页∴f(x )=2sin ( 53 x ﹣ π6 )﹣ √2 由x∈[0, 3π5 ]∴ 53 x ﹣ π6 ∈[﹣ π6 , 5π6 ] ∴sin( 53 x ﹣ π6 )∈[﹣ 12 ,1]∴2sin( 53 x ﹣ π6 )﹣ √2 =f (x )∈[﹣1﹣ √2 ,2﹣ √2 ] 故函数f (x )在区间[0, 3π5 ]上的取值范围为[﹣1﹣ √2,2﹣ √2【解析】11.(1)先利用向量数量积运算性质,求函数f (x )的解析式,再利用二倍角公式和两角差的余弦公式将函数f (x )化为y=Asin (ωx+φ)+k 型函数,最后利用函数的对称性和ω的范围,计算ω的值,从而得函数的最小正周期;(2)先将已知点的坐标代入函数解析式,求得λ的值,再求内层函数的值域,最后将内层函数看做整体,利用正弦函数的图象和性质即可求得函数f (x )的值域.。
2012 年普通高等学校招生全国统一考试(湖北卷)数学(理工类)试卷解析一、选择题:本大题共 10 小题,每小题 5 分,共 50 分. 在每小题给出的四个选项中,只有一项是符合题目要求的 . 1.方程2 6 13 0x x 的一个根是 A . 3 2i B .3 2iC . 2 3iD .2 3i考点分析: 本题考察复数的一元二次方程求根 .难易度 :★解析: 根据复数求根公式:26 6 13 4 x 3 2i ,所以方程的一个根为3 2i2答案为 A.2.命题“ x 0 e R Q , 3x Q ”的否定是0 A . x 0 e R Q , 3x Q B . x 0 e R Q ,0 3xQ 0 C . x e R Q ,3x Q D . x e R Q , 3x Q考点分析: 本题主要考察常用逻辑用语,考察对命题的否定和否命题的区别 . 难易度 :★ 解析: 根据对命题的否定知, 是把谓词取否定, 然后把结论否定。
因此选 D y1 1 3.已知二次函数 y f (x) 的图象如图所示,则它与 x 轴所围图形的面积为1 O x1A .2π 5 B . 4 3第3 题图 11 C .3 2D .π2考点分析: 本题考察利用定积分求面积 . 难易度 :★ 4解析: 根据图像可得:2 y f ( x) x1,再由定积分的几何意 24 义,可求得面积为114 23 1 S( x 1)dx ( x x). 11332 正视图2 侧视图4.已知某几何体的三视图如图所示,则该几何体的体积为A .8π3B.3π俯视图第 1 页共 15 页第 4 题图C .10π3D. 6π考点分析:本题考察空间几何体的三视图.难易度:★解析:显然有三视图我们易知原几何体为一个圆柱体的一部分,并且有正视图知是一个1/2 的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B.5.设a Z ,且0 a 13,若2012 51 a 能被13 整除,则aA.0 B.1C.11 D.12考点分析:本题考察二项展开式的系数.难易度:★解析:由于2012 C0 2012 C1 2011 C2011 1 , 51=52-1,(52 1) 52 52 ... 52 12012 2012 2012 又由于13|52,所以只需13|1+a,0≤a<13, 所以a=12选D.6.设a,b, c, x, y, z是正数,且2 2 210a bc ,2 2 2 40x y z , ax by cz 20 ,则a b cx y zA.14 B.13C.12 D.34考点分析:本题主要考察了柯西不等式的使用以及其取等条件.难易度:★★解析:由于(22 )( 2 2 2 )( )22a b c x y z ax by cza b c等号成立当且仅当t,x y z2 x2 y2 z2则a=t x b=t y c=t z ,t ( ) 10a b c a b c a b c所以由题知t 1/ 2 , 又, 所以t 1/ 2,答案选C.x y z x y z x y z7.定义在(,0) (0, )上的函数 f (x) ,如果对于任意给定的等比数列{a } ,{ f (a )} 仍n n是等比数列,则称f ( x) 为“保等比数列函数”.现有定义在(,0) (0, ) 上的如下函数:① 2 xf (x) x ;②f (x) 2 ;③f (x) | x |;④f(x) ln | x|.第2页共15 页则其中是“保等比数列函数”的 f ( x) 的序号为A.①②B.③④C.①③D.②④考点分析:本题考察等比数列性质及函数计算.难易度:★解析:等比数列性质,22 2 2 2 2a n a a ,① f a n f a a a a f a1 ;n2 n 1 n 2 n n 2 n 1n②f a a a a 2a 2a n f a 2 2 2 2 2 f a nn n n1 ;③n n 2n 2 12 2f a n f a a a a f a ;n 2 n n 2 n 1n 1④ 2 2f n f a a a a f a .选Ca 2 ln n ln n ln n nn 2 1 18.如图,在圆心角为直角的扇形OAB 中,分别以OA,OB 为直径作两个半圆. 在扇形 OAB 内随机取一点,则此点取自阴影部分的概率是A. 1 2πB.1 12 πC.2πD.1π考点分析:本题考察几何概型及平面图形面积求法. 难易度:★解析:令OA 1,扇形 OAB 为对称图形, ACBD 围成面积为S ,围成 OC 为S2 ,1作对称轴OD,则过 C 点。
湖北省教育考试院 保留版权 数学(文史类)试卷A 型 第1页(共9页)2012年普通高等学校招生全国统一考试(湖北卷)数学(文科)本试题卷共4页,共22题。
满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
3.填空题和解答题的作答:用统一提供的签字笔将答案直接答在答题卡上对应的答题区域内。
答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2{|320,}A x x x x =-+=∈R ,{|05,}B x x x =<<∈N ,则满足条件A C B ⊆⊆的集合C 的个数为A .1B .2C .3D .42.容量为20的样本数据,分组后的频数如下表:则样本数据落在区间[10,40)的频率为A .0.35B .0.45C .0.55D .0.65 3.函数()cos2f x x x =在区间[0,2π]上的零点的个数为A .2B .3C .4D .54.命题“存在一个无理数,它的平方是有理数”的否定是A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数 5.过点(1,1)P 的直线,将圆形区域22{(,)|4}x y x y +≤分为两部分,使得这两部分的面积之差最大,则该直线的方程为A .20x y +-=B .10y -=C .0x y -=D .340x y +-=数学(文史类)试卷A型 第2页(共9页) 6.已知定义在区间[0,2]上的函数()y f x =的图象如图所示,则(2)y f x =--的图象为7.定义在(,0)(0,)-∞+∞ 上的函数()f x ,如果对于任意给定的等比数列{}n a ,{()}n f a 仍是等比数列,则称()f x 为“保等比数列函数”. 现有定义在(,0)(0,)-∞+∞ 上的如下函数:①2()f x x =; ②()2x f x =;③()f x = ④()ln ||f x x =. 则其中是“保等比数列函数”的()f x 的序号为 A .① ②B .③ ④C .① ③D .② ④8.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . 若三边的长为连续的三个正整数,且A B C >>,320cos b a A =,则sin :sin :sin A B C 为 A .4:3:2B .5:6:7C .5:4:3D .6:5:49.设,,a b c +∈R ,则“1abc =a b c ≤++”的A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件10.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB内随机取一点,则此点取自阴影部分的概率是A .112π- B .1πC .21π- D .2π第6题图ABC D第10题图数学(文史类)试卷A型 第3页(共9页) 侧视图正视图俯视图第15题图二、填空题:本大题共7小题,每小题5分,共35分. 请将答案填在答题卡对应题号的位置上. 答错位置,书写不清,模棱两可均不得分.11.一支田径运动队有男运动员56人,女运动员42人. 现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有 人. 12.若3ii 1ib a b +=+-(a ,b 为实数,i 为虚数单位),则a b += . 13.已知向量(1,0)=a ,(1,1)=b ,则(Ⅰ)与2+a b 同向的单位向量的坐标表示为 ; (Ⅱ)向量3-b a 与向量a 夹角的余弦值为 .14.若变量,x y 满足约束条件1,1,33,x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩ 则目标函数23z x y =+的最小值是 .15.已知某几何体的三视图如图所示,则该几何体的体积为 .16.阅读如图所示的程序框图,运行相应的程序,输出的结果s = .17.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数. 他们研究过如图所示的三角形数:将三角形数1,3,6,10, 记为数列{}n a ,将可被5整除的三角形数按从小到大的顺序组成一个新数列{}n b . 可以推测: (Ⅰ)2012b 是数列{}n a中的第________项; (Ⅱ)21k b -=________.(用k 表示)第16题图第17题图 10 6 3 1 ···数学(文史类)试卷A型 第4页(共9页) 三、解答题:本大题共5小题,共65分. 解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)设函数22()sin cos cos f x x x x x ωωωωλ=+⋅-+()x ∈R 的图象关于直线πx =对称,其中ω,λ为常数,且1(,1)2ω∈.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若()y f x =的图象经过点π(,0)4,求函数()f x 的值域.19.(本小题满分12分)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台1111A B C D ABCD -,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱2222ABCD A B C D -. (Ⅰ)证明:直线11B D ⊥平面22ACC A ;(Ⅱ)现需要对该零部件表面进行防腐处理. 已知10AB =,1120A B =,230AA =,113AA =(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?20.(本小题满分13分)已知等差数列{}n a 前三项的和为3-,前三项的积为8.(Ⅰ)求等差数列{}n a 的通项公式;(Ⅱ)若2a ,3a ,1a 成等比数列,求数列{||}n a 的前n 项和. 21.(本小题满分14分)设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足||||(0,1)DM m DA m m =>≠且. 当点A 在圆上运动时,记点M 的轨迹为曲线C . (Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标; (Ⅱ)过原点斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,且它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H . 是否存在m ,使得对任意的0k >,都有PQ PH ⊥?若存在,求m 的值;若不存在,请说明理由.22.(本小题满分14分)设函数()(1) (0)n f x ax x b x =-+>,n 为正整数,a ,b 为常数. 曲线()y f x =在(1,(1))f 处的切线方程为1x y +=. (Ⅰ)求a ,b 的值; (Ⅱ)求函数()f x 的最大值; (Ⅲ)证明:1()ef x n <. A 2B 2C 2D 2 CBADA 1B 1C 1D 1第19题图数学(文史类)试卷A型 第5页(共9页) 2012年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:A 卷:1.D 2.B 3.D 4.B 5.A 6.B 7.C 8.D 9.A 10.C 二、填空题:11. 6 12. 3 13.(Ⅰ);(Ⅱ) 14. 2 15.12π 16. 9 17.(Ⅰ)5030;(Ⅱ)()5512k k -三、解答题:18.解:(Ⅰ)因为22()sin cos cos f x x x x x ωωωωλ=-+⋅+cos22x x ωωλ=-+π2sin(2)6x ωλ=-+.由直线πx =是()y f x =图象的一条对称轴,可得πsin(2π)16ω-=±,所以ππ2ππ()62k k ω-=+∈Z ,即1()23k k ω=+∈Z . 又1(,1)2ω∈,k ∈Z ,所以1k =,故56ω=.所以()f x 的最小正周期是6π5. (Ⅱ)由()y f x =的图象过点π(,0)4,得π()04f =,即5πππ2sin()2sin 6264λ=-⨯-=-=,即λ=故5π()2sin()36f x x =-()f x的值域为[22-.19.解:(Ⅰ)因为四棱柱2222ABCD A B C D -的侧面是全等的矩形,所以2AA AB ⊥,2AA AD ⊥. 又因为AB AD A = ,所以2AA ⊥平面ABCD . 连接BD ,因为BD ⊂平面ABCD ,所以2AA BD ⊥.数学(文史类)试卷A型 第6页(共9页) 因为底面ABCD 是正方形,所以AC BD ⊥. 根据棱台的定义可知,BD 与B 1 D 1共面.又已知平面ABCD ∥平面1111A B C D ,且平面11BB D D 平面ABCD BD =, 平面11BB D D 平面111111A B C D B D =,所以B 1 D 1∥BD . 于是由2AA BD ⊥,AC BD ⊥,B 1 D 1∥BD ,可得211AA B D ⊥,11AC B D ⊥. 又因为2AA AC A = ,所以11B D ⊥平面22ACC A .(Ⅱ)因为四棱柱2222ABCD A B C D -的底面是正方形,侧面是全等的矩形,所以2221222()410410301300(cm )S S S A B AB AA =+=+⋅=+⨯⨯=四棱柱上底面四棱柱侧面. 又因为四棱台1111A B C D ABCD -的上、下底面均是正方形,侧面是全等的等腰梯形,所以2211111()42S S S A B AB A B h =+=+⨯+四棱台下底面四棱台侧面等腰梯形的高()221204(101120(cm )2=+⨯+.于是该实心零部件的表面积为212130*********(cm )S S S =+=+=, 故所需加工处理费为0.20.22420484S =⨯=(元).20.解:(Ⅰ)设等差数列{}n a 的公差为d ,则21a a d =+,312a a d =+,由题意得1111333,()(2)8.a d a a d a d +=-⎧⎨++=⎩ 解得12,3,a d =⎧⎨=-⎩或14,3.a d =-⎧⎨=⎩所以由等差数列通项公式可得23(1)35n a n n =--=-+,或43(1)37n a n n =-+-=-.故35n a n =-+,或37n a n =-. (Ⅱ)当35n a n =-+时,2a ,3a ,1a 分别为1-,4-,2,不成等比数列;当37n a n =-时,2a ,3a ,1a 分别为1-,2,4-,成等比数列,满足条件. 故37,1,2,|||37|37, 3.n n n a n n n -+=⎧=-=⎨-≥⎩记数列{||}n a 的前n 项和为n S .当1n =时,11||4S a ==;当2n =时,212||||5S a a =+=; 当3n ≥时,234||||||n nS S a a a=++++5(337)(347)(37)n=+⨯-+⨯-++-2(2)[2(37)]311510222n nn n-+-=+=-+. 当2n=时,满足此式.综上,24,1,31110, 1.22nnSn n n=⎧⎪=⎨-+>⎪⎩21.解:(Ⅰ)如图1,设(,)M x y,00(,)A x y,则由||||(0,1)DM m DA m m=>≠且,可得x x=,||||y m y=,所以x x=,1||||y ym=. ①因为A点在单位圆上运动,所以22001x y+=. ②将①式代入②式即得所求曲线C的方程为2221 (0,1)yx m mm+=>≠且.因为(0,1)(1,)m∈+∞,所以当01m<<时,曲线C是焦点在x轴上的椭圆,两焦点坐标分别为(0),0);当1m>时,曲线C是焦点在y轴上的椭圆,两焦点坐标分别为(0,,(0,.(Ⅱ)解法1:如图2、3,0k∀>,设11(,)P x kx,22(,)H x y,则11(,)Q x kx--,1(0,)N kx,直线QN的方程为12y kx kx=+,将其代入椭圆C的方程并整理可得222222211(4)40m k x k x x k x m+++-=.依题意可知此方程的两根为1x-,2x,于是由韦达定理可得21122244k xx xm k-+=-+,即212224m xxm k=+.因为点H在直线QN上,所以2121222224km xy kx kxm k-==+.于是11(2,2)PQ x kx=--,22112121222242(,)(,)44k x km xPH x x y kxm k m k=--=-++.而PQ PH⊥等价于2221224(2)4m k xPQ PHm k-⋅==+,即220m-=,又0m>,得m=故存在m=2212yx+=上,对任意的0k>,都有PQ PH⊥.图2 (01)m<<图3 (1)m>图1数学(文史类)试卷A型 第8页(共9页)解法2:如图2、3,1(0,1)x ∀∈,设11(,)P x y ,22(,)H x y ,则11(,)Q x y --, 1(0,)N y ,因为P ,H 两点在椭圆C 上,所以222211222222,,m x y m m x y m ⎧+=⎪⎨+=⎪⎩ 两式相减可得 222221212()()0m x x y y -+-=. ③依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合, 故1212()()0x x x x -+≠. 于是由③式可得212121212()()()()y y y y m x x x x -+=--+. ④又Q ,N ,H 三点共线,所以QN QH k k =,即1121122y y y x x x +=+. 于是由④式可得211212121121212()()12()()2PQ PHy y y y y y y m k k x x x x x x x --+⋅=⋅=⋅=---+. 而PQ PH ⊥等价于1PQ PH k k ⋅=-,即212m -=-,又0m >,得m =故存在m =2212y x +=上,对任意的0k >,都有PQ PH ⊥.22.解:(Ⅰ)因为(1)f b =,由点(1,)b 在1x y +=上,可得11b +=,即0b =.因为1()(1)n n f x anx a n x -'=-+,所以(1)f a '=-.又因为切线1x y +=的斜率为1-,所以1a -=-,即1a =. 故1a =,0b =. (Ⅱ)由(Ⅰ)知,1()(1)n n n f x x x x x +=-=-,1()(1)()1n nf x n x x n -'=+-+.数学(文史类)试卷A型 第9页(共9页) 令()0f x '=,解得1n x n =+,即()f x '在(0,)+∞上有唯一零点01n x n =+. 在(0,)1nn +上,()0f x '>,故()f x 单调递增; 而在(,)1nn +∞+上,()0f x '<,()f x 单调递减. 故()f x 在(0,)+∞上的最大值为1()()(1)111(1)nn n n n n n f n n n n +=-=++++. (Ⅲ)令1()ln 1+(0)t t t t ϕ=->,则22111()= (0)t t t t t tϕ-'=->. 在(0,1)上,()0t ϕ'<,故()t ϕ单调递减; 而在(1,)+∞上()0t ϕ'>,()t ϕ单调递增.故()t ϕ在(0,)+∞上的最小值为(1)0ϕ=. 所以()0(1)t t ϕ>>,即1ln 1(1)t t t >->.令11t n =+,得11ln 1n n n +>+,即11ln()ln e n n n++>, 所以11()e n n n++>,即11(1)e n n n n n +<+. 由(Ⅱ)知,11()(1)en n n f x n n +≤<+,故所证不等式成立.。
2012年高考数学试卷及解析湖北卷(理科)2012年高考湖北理科数学试卷选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.方程2x +6x +13 =0的一个根是( )A .-3+2i B.3+2i C.-2 + 3i D.2 + 3i2.命题“?x 0∈C R Q ,30x ∈Q ”的否定是( )A.?x 0?C R Q ,30x ∈QB.?x 0∈C R Q ,30x ?QC.?x 0?C R Q ,30x ∈QD.?x 0∈C R Q ,30x ?Q3. 已知二次函数y =f(x)的图像如图所示,则它与X 轴所围图形的面积为( )A.25πB.43C.32D.2π 4.已知某几何体的三视图如图所示,则该几何体的体积为( ) A.83π B.3π C. 103π D.6π 5.设a ∈Z ,且0≤a≤13,若512012+a 能被13整除,则a=( )A.0B.1C.11D.126.设a,b,c,x,y,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax+by+cz=20,则a b c x y z++=++( ) A. 14 B. 13 C. 12 D,347.定义在(-∞,0)∈(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”。
现有定义在(-∞,0)∈(0,+∞)上的如下函数:①f (x )=x2;②f (x )=2x ;③;④f (x )=ln|x |。
则其中是“保等比数列函数”的f(x)的序号为()A.①②B.③④C.①③D.②④8.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆。
在扇形OAB内随机取一点,则此点取自阴影部分的概率是( )A.21π- B.112π-. C.2πD.1π9.函数f(x)=2cosx x在区间[0,4]上的零点个数为( )A.4B.5C.6D.710.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d人们还用过一些类似的近似公式。
2012年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的2+6x+13=0的一个根是(湖北)方程x)1.(2012? A.﹣3+2i B.3+2i C.﹣2+3i D.2+3i,∈Q”的否定是(“?x∈CQ)2.(2012?湖北)命题R0,?CQQQ ∈D.?xQ,?Q C.?x?CQ∈,C A.?x?Q.,∈Q B?x∈C R0R0RR003.(2012?湖北)已知二次函数y=f(x)的图象如图所示,则它与X轴所围图形的面积为().. C AD.B.4.(2012?湖北)已知某几何体的三视图如图所示,则该集合体的体积为().D.6π.B.3πAC2012+a能被13整除,则a=()51Z(2012?湖北)设a∈,且0≤a≤13,若5.A.0 B.1 C.11 D.12222222,则=()x=10,+y+zax+by+cz=20=40,azyxcba?(6.2012湖北)设,,,,,是正数,且+b+cCBA ....D1}a),{f(f(0,+∞)上的函数(x),如果对于任意给定的等比数列{a}.7(2012?湖北)定义在(﹣∞,0)∪nn)x①f(+.现有定义在(﹣∞,0)∪(0,∞)上的如下函数:f仍是等比数列,则称(x)为“保等比数列函数”x2)=ln|x|).则其中是“保等比数列函数”的f(=2;②f(x)x;③f(x))的序号为(=;④f(x=x D.②④B.③④C.①③.A①②内随机为直径作两个半圆.在扇形OAB(2012?湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB8.)取一点,则此点取自阴影部分的概率是(.D﹣A.1C﹣B..2)在区间[0,4]上的零点个数为(湖北)函数9.(2012?f(x)=xcosx7 .5 C.6 D.A.4 B曰:置积尺数,以十六乘之,九而一,所得开立方2012?湖北)我国古代数学名著《九章算术》中“开立圆术”(10..人们还用过一≈的一个近似公式,求其直径dd除之,即立圆径,“开立圆术”相当于给出了已知球的体积V )判断,下列近似公式中最精确的一个是(些类似的近似公式.根据x=3.14159…..≈≈C.d.≈Dd A.d≈B.d分.请将答案5分,共25二、填空题:(一)必考题(11-14题)本大题共4小题,考试共需作答5小题,每小题填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.,则角_________C=.cb所对的边分别是a,,c.若(a+b﹣)(a+b+c)=ab,,△201211.(?湖北)设ABC的内角AB,C_________.(2012?湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果s=12.位回2等.显然,3443,942492213.(2012?湖北)回文数是指从左到右与从右到左读都一样的正整数.如,,11 999,.则:191,202,…,个:,22,,33…99.3位回文数有90101,111121,…,119文数有个:_________位回文数有个;Ⅰ()4(Ⅱ)2n+1(n∈N)位回文数有_________个.+2,,两焦点为F.(2012?B湖北)如图,双曲线﹣=1(a,b>0)的两顶点为A,A,虚轴两端点为,B1411122 D为直径的圆内切于菱形F.若以AAFBFB,切点分别为A,B,C,.则:2112221;(Ⅰ)双曲线的离心率_________e=(Ⅱ)菱形FBFB的面积S与矩形ABCD的面积S的比值=_________.212211二、填空题:(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分.)15.(2012?湖北)(选修4﹣1:几何证明选讲)如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交⊙O于点C,则CD的最大值为_________.16.(2012?湖北)(选修4﹣4:坐标系与参数方程):在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线_________.来两点,则线段AB的中点的直角坐标为(t为参数)相较于A,B75分.解答应写出文字说明、证明过程或演算步骤.三、解答题:本大题共6小题,共λ?+)f(x=,设函数cos,(﹣=cosωx﹣sinωx2ωx)xxx=(17.2012?湖北)已知向量(cos ω﹣sinω,sinω),,1)(λπ∈(xR)的图象关于直线x=对称,其中ω,为常数,且ω∈)的最小正周期;f(1)求函数(x上的取值范围.,)在区间(,)的图象经过点(0)求函数fx[0]xy=f2()若(18.(2012?湖北)已知等差数列{a}前三项的和为﹣3,前三项的积为8.n(1)求等差数列{a}的通项公式;n 3项和.|}的前naa,,a成等比数列,求数列{|a(2)若n213,AB上且异于点B,连接⊥BC,垂足D在线段BC1,∠ACB=45°,BC=3,过动点A作AD(19.2012?湖北)如图,(如图2所示)ABD折起,使∠BDC=90°沿AD将△的体积最大;A﹣BCD(1)当BD的长为多少时,三棱锥,BMEN⊥CD上确定一点N,使得设点E,M分别为棱BC,AC 的中点,试在棱(2)当三棱锥A﹣BCD的体积最大时,所成角的大小.与平面BMN并求EN20.(2012?湖北)根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:X≥900 降水量X X<300 300≤X<700 700≤X<900工期延误天数Y 02610历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:(I)工期延误天数Y的均值与方差;(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率.22=1上的任意一点,i是过点A与x轴垂直的直线,D是直线i湖北)设21.(2012?A是单位圆x与+yx轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.r+(1﹣r)(x>0),其中r为有理数,且0<r<1.求f(x=rxf湖北).22(2012?(I)已知函数(x)﹣x)的最小值;b1b2≤ab+aab;a+b为正有理数,若b≥≥I(II)试用()的结果证明如下命题:设a0,a0,,bb=1,则222121121112(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求r1﹣αα.α道公式(x)=x42012年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(2012?湖北)考点:复数相等的充要条件。
绝密*启用前2012年普通高等学校招生全国统一考试(新课标)科数学理注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第一卷一.选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6()C 8 ()D 10【解析】选D5,1,2,3,x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( )1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)iz i ii i--===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点,P 为直线32a x =上一点,∆21F P F 是底角为30 的等腰三角形,则E 的离心率为( )()A 12()B23()C 34()D 45【解析】选C∆21F P F 是底角为30 的等腰三角形221332()224c P F F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B +为12,,...,n a a a 的算术平均数()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2012年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的2,知=3,,∉3.(5分)(2012•湖北)已知二次函数y=f(x)的图象如图所示,则它与X轴所围图形的面积为()B轴所围图形的面积为)+1﹣=4.(5分)(2012•湖北)已知某几何体的三视图如图所示,则该几何体的体积为()B=32012+6.(5分)(2012•湖北)设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,则=()Bx y ax+by+cz 当且仅当=7.(5分)(2012•湖北)定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=;,①②≠③8.(5分)(2012•湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()﹣﹣的面积为﹣∴此点取自阴影部分的概率是.210.(5分)(2012•湖北)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈.人们还用过一些类似的近似公式.根据π=3.14159…..≈≈,表示出V=,解得设选项中的常数为,则==3.375=3=3.14=3.142857二、填空题:(一)必考题(11-14题)本大题共4小题,考试共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)(2012•湖北)设△ABC的内角A,B,C,所对的边分别是a,b,c.若(a+b﹣c)(a+b+c)=ab,则角C=.cosC==.故答案为:12.(5分)(2012•湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果s=9.13.(5分)(2012•湖北)回文数是指从左到右与从右到左读都一样的正整数.如22,11,3443,94249等.显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则:(Ⅰ)4位回文数有90个;(Ⅱ)2n+1(n∈N+)位回文数有9×10n个.14.(5分)(2012•湖北)如图,双曲线﹣=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:(Ⅰ)双曲线的离心率e=;(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值=.到直线的距离为,根据以,到直线的距离为,∴,==故答案为:二、填空题:(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分.)15.(5分)(2012•湖北)如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交⊙O于点C,则CD的最大值为2.16.(2012•湖北)(选修4﹣4:坐标系与参数方程):在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线(t为参数)相交于A,B来两点,则线段AB的中点的直角坐标为(2.5,2.5).=,曲线三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2012•湖北)已知向量=(cosωx﹣sinωx,sinωx),=(﹣cosωx﹣sinωx,2cosωx),设函数f(x)=•+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1)(1)求函数f(x)的最小正周期;(2)若y=f(x)的图象经过点(,0)求函数f(x)在区间[0,]上的取值范围.•2)=+,又()的最小正周期为(××﹣)(﹣)﹣,x∈,x),x)﹣=f﹣﹣,,18.(12分)(2012•湖北)已知等差数列{a n}前三项的和为﹣3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.,由题意可得,,根据等差数列的求和公式可求或=综上可得19.(12分)(2012•湖北)如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD 上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.××××(=((,且,则=,•=0,+=,DN=的一个法向量为,由及,,取==(﹣,﹣,>|=|=20.(12分)(2012•湖北)根据以往的经验,某工程施工期间的将数量X(单位:mm)对0.9,求:(I)工期延误天数Y的均值与方差;(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率..21.(13分)(2012•湖北)设A是单位圆x2+y2=1上的任意一点,i是过点A与x轴垂直的直线,D是直线i与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.|y|上,可得,从而可得可得在圆上运动,∴的方程为()上,∴可得,∴,∴,使得在其对应的椭圆上,对任意22.(14分)(2012•湖北)(I)已知函数f(x)=rx﹣x r+(1﹣r)(x>0),其中r为有理数,且0<r<1.求f(x)的最小值;(II)试用(I)的结果证明如下命题:设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2;(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求导公式(xα)r=αxα﹣1.,a中令a+≤+a•。
2012年普通高等学校招生全国统一考试(湖北卷)数学(理工类)试卷解析一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程26130x x ++=的一个根是A .32i -+B .32i +C .23i -+D .23i + 考点分析:本题考察复数的一元二次方程求根. 难易度:★解析:根据复数求根公式:6x 322i -==-±,所以方程的一个根为32i -+ 答案为A.2.命题“0x ∃∈R Q ð,30x ∈Q ”的否定是A .0x ∃∉R Q ð,30x ∈QB .0x ∃∈R Q ð,30x ∉QC .x ∀∉R Q ð,3x ∈QD .x ∀∈R Q ð,3x ∉Q考点分析:本题主要考察常用逻辑用语,考察对命题的否定和否命题的区别. 难易度:★解析:根据对命题的否定知,是把谓词取否定,然后把结论否定。
3.已知二次函数()y f x =的图象如图所示,则它与xA .2π5B .43C .32D .π2考点分析:本题考察利用定积分求面积. 难易度:★解析:根据图像可得: 2()1y f x x ==-+,再由定积分的几何意义,可求得面积为12311114(1)()33S x dx x x --=-+=-+=⎰.4.已知某几何体的三视图如图所示,则该几何体的体积为 A .8π3B .3π俯视图侧视图正视图第4题图C .10π3D .6π考点分析:本题考察空间几何体的三视图. 难易度:★解析:显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B.5.设a ∈Z ,且013a ≤<,若201251a +能被13整除,则a = A .0B .1C .11D .12考点分析:本题考察二项展开式的系数. 难易度:★ 解析:由于51=52-1,152...5252)152(1201120122011120122012020122012+-+-=-C C C ,又由于13|52,所以只需13|1+a ,0≤a<13,所以a=12选D.6.设,,,,,a b c x y z 是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=,则a b cx y z++=++A .14B .13C .12D .34考点分析:本题主要考察了柯西不等式的使用以及其取等条件.难易度:★★解析:由于222222)())((2cz by ax z y x c b a ++≥++++等成立当且仅当,t zcy b x a ===则a=t x b=t y c=t z ,10)(2222=++z y x t 所以由题知2/1=t ,又2/1,==++++++++===t zy x cb a z y xc b a z c y b x a 所以,答案选C.7.定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}n a , {()}n f a 仍是等比数列,则称()f x 为“保等比数列函数”. 现有定义在(,0)(0,)-∞+∞上的如下函数:①2()f x x =; ②()2x f x =; ③()f x =; ④()ln ||f x x =.则其中是“保等比数列函数”的()f x 的序为 A .① ② B .③ ④ C .① ③ D .② ④考点分析:本题考察等比数列性质及函数计算.难易度:★解析:等比数列性质,212++=n n n a a a ,①()()()()122212222++++===n n n n n n a f a a a a f a f ;②()()()12221222222+++=≠==+++n a a a a an n a f a f a f n n n n n ;③()()()122122++++===n n n n n n a f a a a a f a f ;④()()()()122122ln ln ln ++++=≠=n n n n n n a f a a a a f a f .选C8.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是A .21π-B .112π- C .2π D .1π考点分析:本题考察几何概型及平面图形面积求法.难易度:★解析:令1=OA ,扇形OAB 为对称图形,ACBD 围成面积为1S ,围成OC 为2S ,作对称轴OD ,则过C 点。
....2012 年普通高等学校招生全国统一考试(湖北卷)数学(理工类)试卷解析一、选择题:本大题共10 小题,每小题 5 分,共 50 分 . 在每小题给出的四个选项中,只有一项是符合题目要求 的 .1.方程x 26 x 13 0 的一个根是 A . 3 2iB . 3 2iC . 2 3iD . 2 3i 考点分析: 本题考察复数的一元二次方程求根 .难易度 : ★ 解析: 根据复数求根公式: x 6 6213 4 3 2i ,所以方程的一个根为2 答案为 A.2.命题“ x 0 e R Q , x 03 Q ”的否定是 A . x0 eR Q , x0 3 B . x0 eR Q , x03 Q Q C . x e R Q , x 3 Q D . x e R Q , x 3 Q 考点分析: 本题主要考察常用逻辑用语,考察对命题的否定和否命题的区别. 难易度 :★解析: 根据对命题的否定知,是把谓词取否定, 然后把结论否定。
因此选 D 3.已知二次函数 y f ( x) 的图象如图所示,则它与 x 轴所围图形的面积为 A . 2πB . 45 3C . 3 πD . 2 2 考点分析: 本题考察利用定积分求面积 .难易度 :★解析: 根据图像可得: y f ( x)x 2 1,再由定积分的几何意 2 1 1 x 34 4义,可求得面积为x 2 1)dx ( x)1 2S( 14.已知某几何体的三视图如图所示,则该几 何体的体积为 A . 8π B .π 3....3 2iy111 O 1 x1第 3 题图142侧视图第 4 题图C .10πD . 6π 3 考点分析: 本题考察空间几何体的三视图 .难易度:★解析: 显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2 的圆柱体,底面圆的半径为1,圆柱体的高为 6,则知所求几何体体积为原体积的一半为 .选 B. 3π 5.设 a Z ,且 0a 13 ,若 512012 a 能被 13 整除,则 aA .0 B .1 C .11D . 12 考点分析: 本题考察二项展开式的系数 .难易度:★解析:由于51=52-1 , (52 1)2012C 20120 522012 C 20121 522011 ... C 20122011521 1 , 又由于 13|52,所以只需 13|1+a , 0≤ a<13, 所以a=12 选 D.6.设 a,b, c, x, y, z 是正数,且 a 2b2 c 210 , x 2 y 2 z 240 , ax by cz 20 ,则 a b c x y zA . 1B . 14 3 C . 1 D . 32 4考点分析: 本题主要考察了柯西不等式的使用以及其取等条件.难易度: ★★解析: 由于 ( a 2b 2 2 )( x 2 y 2 z 2 ) ( ax by cz)2c等号成立当且仅当a b c t , 则 a=t x b=t y c=t z , t 2( x 2 y 2 z 2 ) 10 x y z所以由题知 t1/ 2 , 又 a b c a b c , 所以 a b c t 1/ 2,答案选 C.x y z x y z x y z7.定义在 ( ,0) (0, ) 上的函数 f ( x) ,如果对于任意给定的等比数列{ a n}, { f(a n )} 仍是等比数列,则称f ( x) 为“保等比数列函数”. 现有定义在( ,0) (0,) 上的如下函数:① f( x) x2;② f ( x) 2x;③ f ( x)| x | ;④ f (x) ln | x | .第 2 页共 15 页则其中是“保等比数列函数”的 f ( x) 的序号为A .① ②B .③ ④C.① ③ D .② ④考点分析:本题考察等比数列性质及函数计算.难易度:★解析:等比数列性质, a n a n a n21,①f a n f a n 2 a n2a n22 a n22f 2 a n 1;2 12a n2a n2 2a n a n2 22a n 1 f 2 an 1;③ f a n f a n 222 an 1;② f a n f a n 2a n a n 2a n 1 f④ f a n f a n 2ln a n ln a n 22f 2 an 1.选 C ln a n 18.如图,在圆心角为直角的扇形OAB 中,分别以 OA,OB 为直径作两个半圆. 在扇形OAB内随机取一点,则此点取自阴影部分的概率是A .1 2 B .11π 2 πC.2D.1ππ考点分析:本题考察几何概型及平面图形面积求法.难易度:★解析:令OA 1,扇形 OAB 为对称图形, ACBD 围成面积为S1,围成 OC 为 S2,作对称轴 OD ,则过 C 点。
2012年XX省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(2012?XX)方程2)x+6x+13=0的一个根是(A.﹣3+2iB.3+2iC.﹣2+3i D.2+3i2.(2012?XX)命题“?x0∈CRQ,∈Q”的否定是()A.?x0?CRQ,∈QB.?x0∈CRQ,?QC.?x0?CRQ,∈QD.?x0∈CRQ,?Q3.(2012?XX)已知二次函数y=f(x)的图象如图所示,则它与X轴所围图形的面积为()A.B.C.D.4.(2012?XX)已知某几何体的三视图如图所示,则该集合体的体积为()A.B.3πC.D.6π5.(2012?XX)设a∈Z,且0≤a≤13,若512012)+a能被13整除,则a=(A.0B.1C.11 D.126.(2012?XX)设a,b,c,x,y,z是正数,且2 2 2 2 2 2,ax+by+cz=20 ,则=()a+b+c =10,x+y +z=40A.B.C.D.17.(2012?XX)定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=;④f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为()A.①②B.③④C.①③D.②④8.(2012?XX)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1﹣B.﹣C.D.9.(2012?XX)函数f(x)=xcosx2在区间[0,4]上的零点个数为()A.4 B.5 C.6 D.710.(2012?XX)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积 V,求其直径d的一个近似公式d≈.人们还用过一些类似的近似公式.根据x=3.14159⋯..判断,下列近似公式中最精确的一个是()A.d≈B.d≈C.d≈D.d≈二、填空题:(一)必考题(11-14题)本大题共4小题,考试共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(2012?XX)设△ABC的内角A,B,C,所对的边分别是a,b,c.若(a+b﹣c)(a+b+c)=ab,则角C=_________.12.(2012?XX)阅读如图所示的程序框图,运行相应的程序,输出的结果s= _________.13.(2012?XX)回文数是指从左到右与从右到左读都一样的正整数.如22,,11,3443,94249等.显然2位回文数有9个:11,22,33⋯,99.3位回文数有90个:101,111,121,⋯,191,202,⋯,999.则:(Ⅰ)4位回文数有_________个;(Ⅱ)2n+1(n∈N+)位回文数有_________个.214.(2012?XX)如图,双曲线﹣=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:(Ⅰ)双曲线的离心率e=_________ ;(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值=_________.二、填空题:(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分.)15.(2012?XX)(选修4﹣1:几何证明选讲)如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交⊙O于点C,则CD的最大值为_________.16.(2012?XX)(选修4﹣4:坐标系与参数方程):在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线(t为参数)相较于 A,B来两点,则线段AB的中点的直角坐标为_________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(2012?XX)已知向量=(cosωx﹣sinωx,sinωx),=(﹣cosωx﹣sinωx,2cosωx),设函数f(x)= ? +λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1)(1)求函数f(x)的最小正周期;(2)若y=f(x)的图象经过点(,0)求函数f(x)在区间[0,]上的取值X围.18.(2012?XX)已知等差数列{a}前三项的和为﹣3,前三项的积为8.n(1)求等差数列{a n}的通项公式;3(2)若a2,a3,a1成等比数列,求数列{|an|}的前n项和.19.(2012?XX)如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.20.(2012?XX)根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:降水量X X<300 300≤X<700 700≤X<900 X≥900工期延误天数Y 0 2 6 10历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:(I)工期延误天数Y的均值与方差;(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率.2 2上的任意一点,i是过点A与x轴垂直的直线,D是直线i与x轴的交点,21.(2012?XX)设A是单位圆x +y=1点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN 交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.22.(2012?XX)(I)已知函数f(x)=rx﹣x r+(1﹣r)(x>0),其中r为有理数,且0<r<1.求f(x)的最小值;(II)试用(I)的结果证明如下命题:设b1b2a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1a2≤a1b1+a2b2;(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求αr α1道公式(x)﹣.=αx42012年XX省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(2012?XX)考点:复数相等的充要条件。
试卷类型A
2012年普通高等学校招生全国统一考试(湖北卷)
数学(理工类)
本试卷共5页,共22题,其中第15、16题为选考题,满分150分。
考试用时120分钟。
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用统一提供的2B 铅笔将答题卡上试卷类型A 后的方块涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷、草稿纸上无效。
3.填空题和解答题的作答:用统一提供的签字笔将答案直接答在答题卡上对应的答题区域内。
答在试卷、草稿纸上无效。
4.选考题的作答:先把所选题目的题号答在答题卡上指定的位置用统一提供的2B 铅笔涂黑。
考生应该根据直接的选做的题目准确填涂题号,不得多选,答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分 ,在每小题给出的四个选项中,只
有一项是符合题目要求的
1. 方程 2x +6x +13 =0的一个根是
A -3+2i
B 3+2i
C -2 + 3i
D 2 + 3i
2 命题“∃x 0∈C R Q , 30x ∈Q ”的否定是
A ∃x 0∉C R Q ,30x ∈Q
B ∃x 0∈
C R Q ,30x ∉Q
C ∀x 0∉C R Q , 30x ∈Q
D ∀x 0∈C R Q ,30x ∉Q
3 已知二次函数y =f(x)的图像如图所示 ,则它与X 轴所围图形的面积为
A.25π
B.43
C.32
D.2
π 4.已知某几何体的三视图如图所示,则该集合体的体积为 A.
83π B.3π C. 103π D.6π
5.设a ∈Z ,且0≤a ≤13,若512012+a 能被13整除,则a=
A.0
B.1
C.11
D.12
6.设a,b,c,x,y,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax+by+cz=20,则a b c x y z
++=++
A. 14
B. 13
C. 12 D,34
7.定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”。
现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x ²;②f (x )=2x ;③;④f (x )=ln|x |。
则其中是“保等比数列函数”的f (x )的序号为
A.①②
B.③④
C.①③
D.②④
8.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆。
在扇形OAB 内随机取一点,则此点取自阴影部分的概率是
A. B. C. D.
9.函数f(x)=xcosx²在区间[0,4]上的零点个数为
A.4
B.5
C.6
D.7
10.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一
个近似公式。
人们还用过一些类似的近似公式。
根据x=3.14159…..判断,下列近似公式中最精确的一个是
二、填空题:本大题共6小题,考试共需作答5小题,每小题5分,共25分。
请将答案填在答题卡对应题号
.......的位置上。
答错位置,书写不清,模棱两可均不得分。
(一)必考题(11-14题)
11.设△ABC的内角A,B,C,所对的边分别是a,b,c。
若(a+b-c)(a+b+c)=ab,
则角C=______________。
12.阅读如图所示的程序框图,运行相应的程序,输出的结果s=___________.
13.回文数是指从左到右与从右到左读都一样的正整数。
如22,,11,3443,94249等。
显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999。
则
(Ⅰ)4位回文数有______个;
(Ⅱ)2n+1(n∈N+)位回文数有______个。
14.如图,双曲线的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2。
若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D。
则
(Ⅰ)双曲线的离心率e=______;
(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值__________。
(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分。
)
15.(选修4-1:几何证明选讲)
如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交⊙O于点C,则CD的最大值为_____________。
16.(选修4-4:坐标系与参数方程)
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,
已知射线与曲线(t为参数)相较于A,B来两点,则线段AB 的中点的直角坐标为_________。
三、解答题:本大题共6小题,共75分。
解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分12分)
已知向量a=,b=,设函数f(x)
=a·b+的图像关于直线x=π对称,其中为常数,且
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图像经过点求函数f(x)在区间上的取值范围。
18.(本小题满分12分)
已知等差数列{a n}前三项的和为-3,前三项的积为8.
(1)求等差数列{a n}的通项公式;
(2)若a2,a3,a1成等比数列,求数列{}n a的前n项的和。
19.(本小题满分12分)
如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),
(1)当BD的长为多少时,三棱锥A-BCD的体积最大;
(2)当三棱锥A-BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD 上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小
20.(本小题满分12分)
历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:
(I)工期延误天数Y的均值与方差;
(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率。
21.(本小题满分13分)
设A是单位圆x2+y2=1上的任意一点,i是过点A与x轴垂直的直线,D是直线i与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1)。
当点A在圆上运动时,记点M的轨迹为曲线C。
(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;
(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由。
22.(本小题满分14分)
(I)已知函数f(x)=rx-x r+(1-r)(x>0),其中r为有理数,且0<r<1.求f(x)的最小值;(II)试用(I)的结果证明如下命题:
设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2;
(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题。
注:当α为正有理数时,有求道公式(xα)r=αxα-1。