2016人教版第24章圆的知识点5
- 格式:pdf
- 大小:160.46 KB
- 文档页数:5
圆的知识点归纳总结大全一、圆的定义。
1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素。
1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质。
1、圆的对称性。
(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:➢平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
➢平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O 的半径为r ,OP=d 。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角三角形的外心就是斜边的中点。
)8、直线与圆的位置关系。
d 表示圆心到直线的距离,r 表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切; 直线与圆没有交点,直线与圆相离。
29、平面直角坐标系中,A (x 1,y 1)、B (x 2,y 2)。
则AB=221221)()(y y x x -+- 10、圆的切线判定。
第二十四章 圆的有关性质知识点思维导图能力培养:符号意识、几何直观、推理能力、运算能力 【实战篇】知识点一:圆的有关概念 1. 圆的定义(1)描述性定义:如图,在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆. 其固定的端点O 叫做圆心,线段OA 叫做半径.(2)集合性定义:圆可以看成是所有到定点(圆心)的距离等于定长(半径)的点的集合. 2. 圆的表示方法:以点O 为圆心的圆,记作⊙O ,读作“圆O ”. 3. 圆具有的特性(1)圆上各点到定点(圆心O )的距离都等于定长(半径r ); (2)到定点的距离等于定长的点都在同一个圆上.注意:(1)确定一个圆取决于两个因素:圆心和半径. 圆心确定圆的位置,半径确定圆的大小.(2)同一个圆中的所有半径都相等,所以圆上任意两点和圆心(三点不共线)构成的三角A形都是等腰三角形.4. 圆的有关概念【例1】如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心、CB长为半径的圆恰好经过AB的中点D,则AC的长为______________.【例1】【解析】同一个圆中的所有半径都相等,所以在圆中“连半径”是常用的辅助线,本题先连接CD,根据直角三角形斜边上的中线的性质得出CD=5,所以半径BC=CD=5,又由已知AB=10,利用勾股定理得出AC==【答案】 【巩固】1. 如图,AB 是⊙O 的直径,点C 在圆上,∠ABC =65°,那么∠OCA 的度数是( ) A. 25°B. 35°C. 15°D. 20°2. 如图,在⊙O 中,下列说法不正确的是( ) A. AB 是⊙O 的直径B. 有5条弦C. AD 和BD 都是劣弧,ABD 是优弧D. CO 是圆O 的半径【巩固答案】 1. A 2.B知识点二:垂直于弦的直径CB DAABBA1. 圆的轴对称性圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴. 2. 垂径定理垂直于弦的直径平分弦,并且平分弦所对的两条弧. 符号语言:∵如图,CD 是直径,CD ⊥AB 于点M ,∴AM =BM ,AC =BC ,AD =BD .3. 垂径定理的推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 符号语言:∵如图,CD 是直径,AM =BM (AB 不是直径),∴CD ⊥AB ,AC =BC ,AD =BD .【例2】如图,AB ,BC 是⊙O 的两条弦,AO ⊥BC ,垂足为D ,若⊙O 的半径为5,BC =8,则AB 的长为( ) A. 8B. 10C.34D. 54【例2】【解析】连接OB ,根据垂径定理求出BD =12BC =4,已知半径OB =5,在Rt △OBD中,由勾股定理求出OD3,所以AD =8,在Rt △ABD 中,再由勾股定理求出AB.【答案】D 【巩固】1. 下列说法不正确的是( )A. 圆既是轴对称图形又是中心对称图形B. 圆有无数条对称轴C. 圆的每一条直径都是它的对称轴D. 圆的对称中心是它的圆心2. 如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =5 cm ,CD =8 cm ,则AE 的长为( ) A. 8 cmB. 5 cmC. 3 cmD. 2 cm【巩固答案】 1. C 2. A知识点三:弧、弦、圆心角 1. 圆的旋转对称性圆具有旋转不变性,把圆绕圆心旋转任意一个角度,所得的图形都与原图形重合. 因此,圆也是中心对称图形,圆心就是它的对称中心. 2. 圆心角的定义顶点在圆心的角叫做圆心角.如图:∠AOB 是AB 所对的圆心角,AB 是∠AOB 所对的弧. 注意:一条弧所对的圆心角只有一个. 3. 弧、弦、圆心角之间的关系A【例3】如图,点A ,B ,C ,D 在⊙O 上,且AB =CD . 求证:AC =BD .【例3】【解析】根据圆心角、弧、弦的关系,由AB =CD 得到AB =CD ,进而AB +BC =CD +BC ,即AC =BD ,所以AC =BD . 【答案】证明:∵AB =CD ∴AB =CD ,∴AB+BC =CD +BC , 即AC =BD , ∴AC =BD . 【巩固】1. 如图,在⊙O 中,∠AOB =∠COD ,那么AC 和BD 的大小关系是( )A. AC >BDB. AC <BDC. AC =BDD. 无法确定D2. 如图,C 是⊙O 上的点,CD ⊥OA 于点D ,CE ⊥OB 于点E ,且CD =CE ,则AC 与BC 的关系是( )A. AC =BCB. AC >BCC. AC <BCD. 不能确定【巩固答案】 1. C 2. A知识点四:圆周角 1. 圆周角的定义顶点在圆上,并且两边都与圆相交的角叫做圆周角.注意:(1)圆周角必须具备两个条件:①顶点在圆上;②两边都与圆相交. (2)同一条弧所对的圆周角有无数个. 2. 圆周角和圆心角的区别和联系3. 圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半.如图,∠ACB =21∠AOB .4. 圆周角定理的推论推论1 同弧或等弧所对的圆周角相等.推论2 (1)半圆(或直径)所对的圆周角是直角; (2)90°的圆周角所对的弦是直径. 5. “五量关系”定理在同圆或等圆中,如果两个圆心角、两条弧、两条弧所对的圆周角、两条弦、两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.【例4】如图,AB 为⊙O 的直径,C 、D 为⊙O 上两点,∠BCD =40°,则∠ABD 的大小为( ) A. 60°B. 50°C. 40°D. 20°【例4】【解析】本题考查的是圆周角定理的两个推论,根据题意先连接AD ,根据圆周角定理的推论可知,∠A =∠BCD =40°,又由AB 为⊙O 的直径知∠ADB =90°,所以∠ABD =90°-∠A =50°. 故选B.【答案】B 【巩固】1. 如图,点A ,B ,C 在⊙O 上,若∠OAB =54°,则∠C 的度数为( ) A. 54°B. 46°C. 36°D. 27°BAAB2. 如图,点A,B,C,D在⊙O上,BC=CD,∠CAD=30°,∠ACD=50°,则∠ADB =___________.【巩固答案】1.C2.70°知识点五:圆内接多边形1.圆内接多边形的定义如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.2.圆内接四边形的性质圆内接四边形的对角互补.注意:每一个圆都有无数个内接四边形,但并不是所有的四边形都有外接圆,只有对角互补的四边形才有外接圆.拓展:圆内接四边形的每一个外角都等于它的内对角.【例5】如图,四边形ABCD为⊙O的内接四边形,E是BC延长线上的一点,已知∠BOD =130°,则∠DCE的度数为()A. 45°B. 50°C. 65°D. 75°【例5】【解析】根据圆周角定理求出∠A =12∠BOD =65°,再根据圆内接四边形的性质得出∠BCD =180°-∠A =115°,则∠DCE =180°-∠BCD =65°. 故选C. 【答案】C 【巩固】1. 如图,在⊙O 中,∠AOB =120°,P 为劣弧AB 上的一点,则∠APB 的度数是_____________.2. 如图,四边形ABCD 为⊙O 的内接四边形,已知∠C =∠D. 问AB 与CD 有怎样的位置关系,请说明理由.【巩固答案】 1. 120° 2. 解:AB ∥CDB理由如下:∵四边形ABCD为⊙O的内接四边形,∴∠A+∠C=180°,∵∠C=∠D,∴∠A+∠D=180°,∴AB∥CD.。
第24章圆知识点1、圆的有关性质:(1)圆既是轴对称图形,又是中心对称图形。
(2)垂径定理:如果过圆心的线垂直弦,那么平分弦和平分弦所对的两条弧。
推论:如果过圆心的线平分弦(这里的弦不能是直径),那么线垂直弦,并且平分弦所对的两条弧。
(注意:在求弦长、半径、弦心距的长度时,垂径定理经常要结合勾股定理。
)(3)两条弦相等⇔两条弧相等⇔两个圆心角相等⇔两个圆周角相等(4)圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论:①同弧或等弧所对的圆周角相等。
②半圆或直径所对的圆周角是直角。
③90°的圆周角所对的弦是直径。
④圆内接四边形的对角互补。
(注意:运用圆周角定理及其推论的关键是找到这些角所对的弧)2、点和圆的位置关系:①点在圆内⇔d<r;②点在圆上⇔d=r;③点在圆外⇔d>r。
3、三角形的外心是三条边的垂直平分线的交点;内心是三条角平分线的交点。
4、直线和圆的位置关系:①相交⇔d<r;②相切⇔d=r;③相离⇔d>r。
5、证明一条直线是圆的切线的方法:有两种情况(1)直线和圆有公共点:先连接公共点和圆心,再证明直线垂直半径。
(2)直线和圆没有公共点:先过圆心作直线的垂线,再证明垂线段等于半径。
6、圆的切线的性质:先连接圆心和切点,然后得到切线垂直半径。
7、切线长定理:。
8、与圆有关的计算公式:(1)正多边形的中心角= ;(2)正多边形的每一个内角= ;(3)正多边形的周长= ;(4)正多边形的面积= ;(5)弧长= ;(6)扇形的面积= = ;(7)圆锥的侧面积= (8)圆锥的全面积= ;(9)圆锥的侧面展开图是扇形,此扇形的圆心角= ;(10)圆柱的侧面积= 。
9、圆中常用的辅助线:(1)有弦:一般都作弦心距,再结合垂径定理和勾股定理;(2)遇直径想直角,遇直角想直径;(3)连接圆心和切点。
10、圆中有“三多”:(1)直角多(直径所对的圆周角、切线引出的直角);(2)等腰三角形多(可得等边对等角(即两条半径所对的两个底角相等));(3)相等的角多(同弧或等弧所对的圆心角相等、圆周角相等,等边对等角)。
24章圆知识点一:圆的定义1、圆可以看作是的集合。
2、圆的特征(1)圆上各点到定点(圆心O)的距离都等于定长(半径)。
(2)到定点的距离等于定长的点都在同一个圆上。
知识点二:圆的相关概念1. 叫做弦,2. 叫做直径。
3. 的部分叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
的弧(用三个点表示)叫优弧;的弧叫做劣弧.注意:半圆是弧,但弧不一定是半圆。
半圆既不是优弧,也不是劣弧。
3、等圆:叫做等圆周。
4、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
知识点三:圆的对称性圆是轴对称图形,都是圆的对称轴。
知识点四:垂径定理及推论(重点)1、垂径定理:。
注意:(1)这里的垂径可以是直径、半径或过圆心的直线或线段,其本质是“过圆心”。
(2)垂径定理中的“弦”为直径时,结论仍成立。
2、垂径定理的推论:平分弦(不是直径)的垂直于弦,并且平分弦所对的.知识点五:弧、弦、圆心角之间的关系(重点、难点)1、圆心角定理:在同圆或等圆中,所对的弦相等,所对的弧也相等。
2、推论:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的相等,所对的相等。
(2)在同圆或等圆中,如果两条弦相等,那么它们所对的相等所对的相等。
知识点六:圆周角定理及其推论1、圆周角定理:一条弧所对的圆周角等于的一半。
2、圆周角定理的推论:(1)同弧或等弧所对的相等。
(2)半圆(或直径)所对的圆周角是;90°的圆周角所对的弦是 . 知识点七:圆内接多边形圆的内接四边形性质:圆的内接四边形的对角 .知识点八:三角形的外接圆1.经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆。
2.三角形外接圆的圆心是三角形三条边的的交点,叫做这个三角形的外心,(1)三角形的外心到三角形的距离相等,等于外接圆的半径。
(2)一个三角形有且只有个外接圆,而一个圆却有个内接三角形。
(3)三角形外心的位置:锐角三角形的外心在三角形;钝角三角形的外心在三角形;直角三角形的外心是。
第二十四章圆1圆:在一个平面内,线段OA绕它固定的一个端点O ,另一个端点A所叫做圆。
其固定的端点O叫做,线段OA叫做。
圆既是图形,又是图形,任何一条都是圆的对称轴。
2.圆弧和弦:连接圆上的线段叫做。
经过圆心的弦叫做。
弦的取值范围:;圆上的部分叫做,简称。
大于半圆的弧称为,小于半圆的弧称为。
以A、B为端点的劣弧记作,读作;等圆:能够的两个圆叫做;同圆或等圆的相等;等弧:在中,能够的弧叫做。
3.垂径定理:垂直于弦的直径,并且;几何语言:如图垂径定理的推论:平分弦()的直径,并且平分两条弧。
几何语言:如图4.圆心角和圆周角:顶点在上的角叫做圆心角。
顶点在,并且两边都与圆的角叫做圆周角。
圆心角定理:在,相等的圆心角相等,也相等。
几何语言:如图推论:①在,如果相等,那么它们,。
几何语言:如图②在,如果相等,那么它们,。
几何语言:如图圆周角定理:一条弧所对的等于它所对的的一半。
∠几何语言如图:∵∴∠=∠=12推论:①同弧或等弧所对的相等。
如图:∵∴∠=∠②半圆()所对的圆周角是,90°的圆周角所对的弦是直径。
几何语言:如图几何语言:如图5.圆内接多边形:如果一个多边形的都在同一个圆上,这个多边形叫做;这个圆叫做这个。
圆内接四边形的一个性质:圆内接四边形的。
几何语言:6.点和圆的位置关系:设圆O的半径为r,点P到圆心的距离OP=d,则有①圆内:点P在圆<=>②圆上:点P在圆<=>③圆外:点P在圆<=>圆的确定:①和;②不在的三个点确定一个圆。
7.反证法:假设命题的不成立,由此经过推理得出矛盾,由矛盾断定所作,从而得到原命题成立,这种方法叫做反证法。
8.三角形外接圆,内切圆经过三角形的三个可以作一个圆,这个圆叫做三角形的,其圆心叫做三角形的。
三角形的外心到三角形的的距离相等。
与三角形各边都的圆叫做这个三角形的,其圆心叫做三角形的。
三角形的内心到三角形的的距离相等。
第二十四章 圆 知识归纳24.1 圆定义:(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。
(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
圆心:(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。
(3)圆任意两条对称轴的交点为圆心。
(4) 垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O 表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。
直径一般用字母d 表示。
半径:连接圆心和圆上任意一点的线段,叫做圆的半径。
半径一般用字母r 表示。
圆的直径和半径都有无数条。
圆是轴对称图形,每条直径所在的直线是圆的对称轴。
在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r 或r=二分之d 。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C 表示。
圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。
直径所对的圆周角是直角。
90°的圆周角所对的弦是直径。
圆的面积公式:圆所占平面的大小叫做圆的面积.用字母S 表示。
S=πr 2一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
周长计算公式 1.、已知直径:C=πd 2、已知半径:C=2πr 3、已知周长:d=cπ4、圆周长的一半:21周长(曲线) 5、半圆的长:21周长+直径 面积计算公式: 1、已知半径:S=πr 22、已知直径:S=π(2d )2 3、已知周长:S=π(π2c )224.2 点、直线、圆和圆的位置关系1. 点和圆的位置关系 (d为点到圆心的距离,r为半径)①点在圆内点到圆心的距离小于半径②点在圆上点到圆心的距离等于半径③点在圆外点到圆心的距离大于半径2. 过三点的圆不在同一直线上的三个点确定一个圆。
人教版九年级数学第二十四章《圆》单元知识点总结1.弦弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.2.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.①半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;②优弧:大于半圆的弧叫做优弧;③劣弧:小于半圆的弧叫做劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.5、弧、弦、圆心角的关系(1)圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(2)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.6、圆周角(1)圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.(2).圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(3).圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.7.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).8.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。