圆幂定理
- 格式:ppt
- 大小:265.00 KB
- 文档页数:20
数学竞赛辅导讲义——圆幂与根轴一、圆幂的定义:在平面上,从点P 作半径为r 的圆O 的割线,从P 起到和该圆周相交为止的两线段之积是一个定值,称为点P 对于此圆周的圆幂.圆幂定理:(1)当P 在圆O 外时,点P 对于此圆的幂等于22OP r -; (2)当P 在圆O 内时,点P 对于此圆的幂等于22r OP -;(3)当P 在圆O 上时,规定:点P 对于此圆的幂等于0.二、根轴及其性质 1.根轴的定义:对于两个已知圆的圆幂相等的点的轨迹是一条直线,该直线称为这两圆的根轴.2.根轴的性质:(1)若两圆1O 与2O 相离(半径分别为1r ,2r 且12r r ≤),点M 为12O O 的中点,点H 在线段1O M 上,且2221122r r MH O O -=,则此两圆的根轴是过点H 且垂直于12O O 的直线.特别地,当两圆相离且半径相等时,它们的根轴是线段12O O 的中垂线.(2)若两个圆是同心圆,则这两个圆不存在根轴.(3)若两个圆相交,则它们的公共弦所在的直线就是它们的根轴.(4)若两圆相切,则过两圆切点的公切线是它们的根轴.(5)若三个圆的圆心互不相同,则任意两个圆的根轴共三条直线,它们相交于一点或互相平行.(6)若两圆相离,则两圆的四条公切线的中点共线(都在根轴上). 思考:能否从解析几何的角度看根轴?三、例题例1 如图,设I 和O 分别是ABC ∆的内心和外心,r 和R 分别是ABC ∆的内切圆和外接圆的半径,过I 作ABC ∆的外接圆的弦AK . 求证:(1)IK BK =;(2)2AI IK Rr ⋅=; (3)222OI R Rr =-.(欧拉公式)例2 如图,设圆1O 与圆2O 相离,引它们的一条外公切线切圆1O 于A ,切圆2O 于B ,又引它们的一条内公切线切圆1O 于C ,切圆2O 于D ,求证:(1)AC BD ⊥;(2)直线12O O 是分别以AB ,CD 为直径的圆3O ,4O 的根轴;(3)直线AC 和BD 的交点K 在两圆的连心线12O O 上 .例1K例3(1997年全国联赛)已知两个半径不相等的1O 与2O 相交于M ,N 两点,且1O ,2O 分别与O 内切于S ,T 两点,S ,N ,T三点共线,求证:OM MN ⊥.四、练习题1.点D ,E 为ABC ∆的边AB ,AC 上的点,分别以BE ,CD 为直径的圆1O 与2O 交于点M ,N .求证:ABC ∆的垂心H 在直线MN 上.1.C例32. (第36届IMO )设A 、B 、C 、D 是一条直线上依次排列的四个不同的点,分别以AC ,BD 为直径的圆1O ,2O 交于点X ,Y ,直线XY 交BC 于点Z .若P 为直线XY 上异于Z 的一点,直线CP 与交圆1O 于点C 及M ,直线BP 与交圆2O 于点B 及N . 求证:(1)B ,M ,N ,C 四点共圆; (2)A ,M ,N ,D 四点共圆; (3)AM ,DN ,XY 共点.3. (第40届IMO 国家队选拔题)凸四边形ABCD 的四边满足AB AD CB CD +=+,圆O 分别与凸四边形ABCD 的AB ,BC 两边相切于G ,H 两点,与对角线AC 相交于E ,F 两点.求证:存在另一个过E ,F 两点,且分别与DA ,DC 的延长线相切的圆'O .2.3.BD。
圆中的比例线段根轴相交弦定理圆内的两条相交弦被交点分成的两条线段的积相等.切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项割线定理从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.上述三个定理统称为圆幂定理,它们的发现距今已有两千多年的历史,它们有下面的同一形式:圆幂定理过一定点作两条直线与圆相交,则定点到每条直线与圆的交点的两条线段的积相等,即它们的积为定值.这里切线可以看作割线的特殊情形,切点看作是两个重合的交点.若定点到圆心的距离为d,圆半径为r,则这个定值为|d2-r2|.当定点在圆内时,d2-r2<0,|d2-r2|等于过定点的最小弦的一半的平方;当定点在圆上时,d2-r2=0;当定点在圆外时,d2-r2>0,d2-r2等于从定点向圆所引切线长的平方.特别地,我们把d2-r2称为定点对于圆的幂.一般地我们有如下结论:到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线;如果此二圆相交,那么该轨迹是此二圆的公共弦所在直线.这条直线称为两圆的“根轴”.对于根轴我们有如下结论:三个圆两两的根轴如果不互相平行,那么它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.练习:1.如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则BCAD的值为________.2.如图,四边形ABCD内接于⊙O,BC是直径,MN与⊙O相切,切点为A,∠MAB=35°,则∠D=________.3.如图,AB是⊙O的直径,D是⊙O上一点,E为BD的中点,⊙O 的弦AD与BE的延长线相交于点C,若AB=18,BC=12,则AD=_____4.如图,过点D作圆的切线切于B点,作割线交圆于A,C两点,其中BD=3,AD=4,AB=2,则BC=________.5如图,半径为2的⊙O 中,∠AOB =90°,D 为OB 的中点,AD 的延长线交⊙O 于点E ,则线段DE 的长为________.6.如图所示,P A 为⊙O 的切线,A 为切点,PBC 是过点O 的割线,P A =10,PB =5,∠BAC 的平分线与BC 和⊙O 分别交于点D 和E ,则AD ·AE 的值为__________.例1. 在ΔABC 中,已知CM 是∠ACB 的平分线,ΔAMC 的外接圆交BC于N ,若AC =12AB ,求证:BN =2AM .例2 ⊙O 与⊙O '外切于点P ,一条外公切线分别切两圆于点A 、B ,AC 为⊙O 的直径,从C 引⊙O '的切线CT ,切点为T .求证:CT =AB .例3. AD 是Rt △ABC 斜边BC 上的高,∠B 的平分线交AD于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .O AB C M N AP O'O B C T E A N C D BF M 1 2 3 4 5例4. 已知AB 切⊙O 于B ,M 为AB 的中点,过M 作⊙O 的割线MD 交⊙O 于C 、D 两点,连AC 并延长交⊙O 于E ,连AD 交⊙O 于F .求证:EF ∥AB .例5.(I )已知四边形PQRS 是圆内接四边形,∠PSR =90°,过点Q 作PR 、PS 的垂线,垂足分别为点H 、K .(1)求证:Q 、H 、K 、P 四点共圆;(2)求证:QT =TS .(II )如图所示,AB 是⊙O 的直径,G 为AB 延长线上的一点,GCD 是⊙O 的割线,过点G 作AB 的垂线,交AC 的延长线于点E ,交AD 的延长线于点F ,过G 作⊙O 的切线,切点为H .求证:(1)C ,D ,F ,E 四点共圆;(2)GH 2=CE ·GF .例6. 如图,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2.O E F D A B C M A O QP C B G FE D例7. 如图所示,P A 、PB 是⊙O 的两条切线,PEC 是⊙O 的一条割线,D 是AB 与PC 的交点,若PE =2,CD =1,求DE 的长.例8.以O 为圆心的圆通过⊿ABC 的两个顶点A 、C ,且与AB 、BC 两边分别相交于K 、N 两点,⊿ABC 和⊿KBN 的两外接圆交于B 、M 两点.证明:∠OMB 为直角.例9 AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .P AA B D E FM 1 2 3 4 O P Q1.13 2.125° 3.14 4.325.355 6.(1)利用∠PHQ=∠PKQ=90°;(2)先证∠HKS=∠QSP,TS=TK,再证TS=QT.证明(1)∵∠PHQ=∠PKQ=90°,∴Q、H、K、P四点共圆.(2)∵Q、H、K、P四点共圆,∴∠HKS=∠HQP,①∵∠PSR=90°,∴PR为圆的直径,∴∠PQR=90°,∠QRH=∠HQP,②而∠QSP=∠QRH,③由①②③得,∠QSP=∠HKS,TS=TK,又∠SKQ=90°,∵∠SQK=∠TKQ,∴QT=TK,∴QT=TS. (2)证明(1)如图,连接BC.∵AB是⊙O的直径,∴∠ACB=90°.∵AG⊥FG,∴∠AGE=90°.又∠EAG=∠BAC,∴∠ABC=∠AEG.又∠FDC=∠ABC,∴∠FDC=∠AEG.∴∠FDC+∠CEF=180°.∴C,D,F,E四点共圆.(2)∵GH为⊙O的切线,GCD为割线,∴GH2=GC·GD.由C,D,F,E四点共圆,得∠GCE=∠AFE,∠GEC=∠GDF.∴△GCE∽△GFD.∴GCGF=GEGD,即GC·GD=GE·GF.∴CH2=GE·GF.。
圆幂定理廖述美 知识要点相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等. 即若弦AB 、CD 交于点P ,则PA·PB=PC·PD . 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段的比例中项.即若PT 切⊙O 于点T ,PAB 是⊙O 的割线,则PT2=PA·PB割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.即若割线AB 、CD 与⊙O 分别交于A 、B 、C 、D ,则PA·PB=PC·PD .圆幂定理:相交弦定理、切割线定理、割线定理统称圆幂定理. 经典例题例1. 如图,⊙O 和⊙O ′都经过点A 和B ,PQ 切⊙O 于P ,交⊙O ′于Q ,M ,交AB的延长线于N.求证:2PN NM NQ =∙例2.如图,两个以O 为圆心的同心圆,AB 切大圆于B ,AC 切小圆于C ,交大圆于D ,E ,AB =12,AO =20,AD =8, 求两圆的半径.例3.如图,在以O为圆心的两个同心圆中,A,B是大圆上任意两点,过A,B作小圆的割线AXY和BPQ.求证:AX·AY=BP·BQ破题分析相交弦定理练习1:如图,圆中两条弦AB,CD相交于圆内一点P,已知PA=PB=4,PC=14PD,求CD的长。
切割线定理2:两圆相交于A,B两点,P为两圆公共弦AB上任一点,从P引两圆的切线PC,PD,求证PC=PD3:E 是圆内两弦AB 和CD 的交点,直线EF//CB,交AD 的延长线于F,切圆于G 求证(1) EFA DFE (2)EF=FG基础题1.如图1,AB 是⊙O 的直径,C ,D 是半圆的三等分点,则∠C +∠E +∠D =( )A .135°B .110°C .145°D .120° 2.如图2,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么( )A .∠BAD +∠CAD =90°B .∠BAD >∠CADC .∠BAD =∠CADD .∠BAD <∠CAD3、如图3,PAB 、PC 分别是圆O 的割线和切线(C 为切点),若3PA AB ==,则PC 的长为A .62B .6C .32D .3(如图1) (如图2) (如图3)ABC OP4、 如图4,已知⊙O 的直径5AB =,C 为圆周上一点,4=BC ,过点C 作⊙O 的切线l ,过点A 作l 的垂线AD ,垂足为D ,则CD =___________.5、如图5,已知PA 是圆O 的切线,切点为A ,PO 交圆O 于,B C 两点,3,1PA PB ==, 则圆O 的半径为 ,C ∠=6、如图6,PC 切O 于点C ,割线PAB 经过圆心O ,弦C D A B ⊥于点E ,已知O 的半径为3,2PA =,则PC =_________,OE =_________.(如图4) (如图5) (如图6)7.如图7,AB 是⊙O 的直径,CB 切⊙O 与B ,CD 切⊙O 与D ,交BA 的延长线于E .若AB =3,ED =2,则BC 的长为______.8. 如图8,AB 是O ⊙的直径,弦CD AB ⊥,垂足为E ,P 是BA 延长线上的点,连结PC交O ⊙于F ,如果713P F F C ==,,且::2:4:P A A E E B =,那么CD 的长是 .9. 如图9,BC 是半圆O ⊙的直径,EF BC ⊥于点F ,5BFFC=.已知点A 在CE 的延长线上,AB 与半圆交于D ,且82AB AE ==,,则AD 的长为_____________.O F EDCBAPABCDEFO(如图7) (如图8) (如图9)AB PCO ·PCBA D EO lOAD CB10.如图,在梯形ABCD中,AB∥CD,⊙O为内切圆,E为切点,(Ⅰ)求∠AOD的度数;(Ⅱ)若AO=8 cm,DO=6 cm,求OE的长.11.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.(1)求证:BC是⊙O切线;(2)若BD=5,DC=3,求AC的长.12.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,且CD ⊥AB 于E ,连结AC 、OC 、BC .(1)求证:∠ACO =∠BCD ;(2)若BE =2,CD =8,求AB 和AC 的长.提高题1、如图1:PA 切O 于点A ,4PA =,PBC 过圆心O ,且与圆相交于B 、C 两点,:1:2AB AC =,则O 的半径为 .2、如图2,在圆内接四边形ABCD 中, 对角线, AC BD 相交于点E .已知23BC CD ==,2AE EC =,30CBD ∠=,则CAB ∠= ,AC 的长是 .3、如图3,过⊙O 外一点A 作一条直线与⊙O 交于C ,D 两点,AB 切⊙O 于B ,弦MN 过CD 的中点P .已知AC =4,AB =6,则MP ·NP = .(如图1) (如图2) (如图3)C D M NOBAP BCOAP4、如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=15,求EM的长.5.如图所示,⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(1)求证:AD∥EC;(2)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.挑战极限1.如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点,若∠CED=x°,∠ECD=y°,⊙B的半径为R,则⋂DE的长度是()(题目进行过改编)A.()9090Rx-πB.()9090Ry-πC.()180180Rx-πD.()180180Ry-π2.(2012武汉中考题)在平面直角坐标系中,点A的坐标为(3.0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是.考点:切线的性质;坐标与图形性质;勾股定理;锐角三角函数的定义。
圆幂的定理
圆幂定理是几何学中的一条定理,它描述了一个点与一个圆之间的关系。
具体来说,圆幂定理说明了如果有一条直线通过一个点P,与一个圆相交于点M和点N,那么这个点P到圆的两个切线段PM和PN的长度的乘积等于点P到圆心O的距离的平方减去圆的半径的平方,即可以表示为PM * PN = PO^2 - r^2。
圆幂定理可以推广到两个圆相交的情况下,即如果有两个圆分别为圆A和圆B,并且它们相交于点M和点N,那么点M和点N到这两个圆心的线段的乘积等于这两个圆心到点M和点N的距离的乘积,即可以表示为MA * MB = NA * NB。
这个式子即为圆A关于圆B的圆幂定理。
圆幂定理有许多应用,其中一个重要的应用是求解圆的切线长度。
通过圆幂定理,可以求解出切线与切点之间的关系,进而解决与圆切线相关的几何问题。
中小学1对1课外辅导专家武汉龙文教育学科辅导讲义 圆幂定理圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数||(R 为圆半径),因为叫做点对于⊙O 的幂,所以将下述定理统称为圆幂定理。
定理 图形 已知 结论 证法 相交弦定理⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD 连结AC 、BD ,证:△APC∽△DPB .相交弦定理的推论⊙O 中,AB 为直径,CD⊥AB 于P.PC 2=PA·PB . 用相交弦定理.切割线定理⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于APT 2=PA·PB 连结TA 、TB ,证:△PTB∽△PAT割线定理推论PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA·PB=PC·PD 过P 作PT 切⊙O 于T ,用两次切割线定理圆中的相似(1)一、圆中相似三角形的判定1.如图,直线PM 切⊙O 于点M ,直线PO 交⊙O 于A ,B 点,弦AC ∥PM ,连接OM 、BC.求证:(1)△ABC ∽△POM ;(2)2OA 2=OP •BC .CA MB PO中小学1对1课外辅导专家2.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 与E ,交BC 与D .求证:(1)D 是BC 的中点; (2)△BE C ∽△ADC ; (3)BC 2=2AB ·CE二、利用圆中相似三角形证明圆中的比例线段3.如图,在圆内接四边形ABCD 中,CD 为∠BCA 的外角的平分线,F 为错误!未找到引用源。
上一点,BC=AF ,延长DF 与BA 的延长线交于E . (1)求证:△ABD 为等腰三角形. (2)求证:AC•AF=DF•FE .4如图,BD 为⊙O 的直径,AB =AC ,AD 交B C 于点E ,AE =2,ED =4, (1)求证:△ABE ∽△ADB ; (2)求AB 的长;(3)延长DB 到F ,使得BF =BO ,连接F A ,试判断直线F A 与⊙O 的位置关系,并说明理由.FD OC EB AA C BD EO · 圆中的相似(2)三、利用圆中相似进行计算1.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于 点P ,AC=PC ,∠COB=2∠PCB. (1)求证:PC 是⊙O 的切线; (2)求证: AB =2BC ;(3)点M 是弧AB 的中点,CM 交AB 于点N , 若AB=4,求MN ·MC 的值.2.如图,已知R t △ABC ,∠ABC =90°,以直角边AB 为直径作O ,交斜边AC 于点D ,连结BD . (1)若AD =3,BD =4,求边BC 的长; (2)取BC 的中点E ,连结ED ,试证明ED 与⊙O 相切.四、圆的有关线段与相似三角形的综合运用3.如图,点P 为△ABC 的内心,延长AP 交△ABC 的外接圆于D ,在AC 延长线上有一点E ,满足AD 2=AB ·AE ,求证:DE 是⊙O 的切线.4.如图,AB 是⊙O 的直径,AC 是弦,CD 是⊙O 的切线,C 为切点,AD ⊥CD 于点D . 求证:(1)∠AOC =2∠ACD ;(2)AC 2=AB ·AD .圆中的相似(3)1、如图, Rt ABC △中,90ABC ∠=°,以AB 为直径的O ⊙交AC 于点D ,过点D 的切线交BC 于E .(1)求证:12DE BC =;(2)若,求AD 的长.2.如图,已知ABC △,以BC 为直径,O 为圆心的半圆交AC 于点F ,点E 为 CF的中点,连接BE 交AC 于点M ,AD 为△ABC 的角平分线,且AD BE ⊥,垂足为点H 。
圆幂定理逆定理
圆幂定理是一个经典的几何定理,它描述了一个点和圆之间的关系。
具体而言,如果一个点P在圆的外部,则它到圆的两个切点的距离的乘积等于它到圆心的距离的平方减去圆的半径的平方。
如果一个点P在圆的内部,则圆的半径的平方减去它到圆心的距离的平方等于它到圆的两个切点的距离的乘积。
圆幂定理的逆定理是指,如果给定一个点P和两条相交的直线AB和CD,使得AP·BP=CP·DP,则这个点P在由ABCD组成的圆上。
这个定理的证明可以通过构造圆心角相等来完成。
圆幂定理和它的逆定理在几何证明中经常被使用,它们可以帮助我们解决很多和圆相关的问题。
在学习几何知识的过程中,深入理解这些定理的含义和证明方法是非常重要的。
- 1 -。
补充内容:圆幂定理一、圆幂定理及其逆定理:(1)割线定理:设过圆O 外一点P 的两直线分别与圆O 交于点B A ,和D C ,,则PD PC PB P A ⋅=⋅,反之PD PC PB P A ⋅=⋅,则D C B A ,,,四点共圆(2)相交弦定理:圆O 的两条弦CD AB ,相交于点P ,则PD PC PB P A ⋅=⋅,反之过点P 的两直线上四点D C B A ,,,满足PD PC PB P A ⋅=⋅,则D C B A ,,,四点共圆(3)切割线定理:设直线P A 与圆切于点T ,过点P 的直线交圆于C B ,两点,则PBP A PT ⋅=2证明:(1)连接BC AD ,,由圆的性质D B ∠=∠,所以P AD ∆∽PCB ∆所以⇒=PBPDPC P A PD PC PB P A ⋅=⋅(2)连接BC AD ,,则C A ∠=∠,B D ∠=∠,所以P AD ∆∽PCB ∆所以⇒=PBPDPC P A PD PC PB P A ⋅=⋅(3)连接TB TA ,,则PBT PTA ∠=∠,所以PTA ∆∽PBT ∆所以⇒=PTP APB PT PB P A PT ⋅=2二、圆幂定理的应用例1.“圆幂定理”是平面几何中关于圆的一个重要定理,它包含三个结论,其中一个是相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等,如图,已知圆O 的半径为2,点P 是圆O 内的定点,且2=OP ,弦BD AC ,均过点P ,则下列说法正确的是A.0)(=⋅+DB OB ODB.PC P A ⋅为定值C.OC OA ⋅的取值范围为]0,2[-D.当BD AC ⊥时,CD AB ⋅为定值解析:连接OP OD OC OB OA ,,,,,直线OP 交圆O 于F E ,,设BD 的中点S ,则BD OS ⊥02)(=⋅=⋅+DB OS DB OB OD ,A 正确;由相交弦定理得PF PE PC P A PC P A ⋅-=⋅-=⋅242)()(22-=-=-=+⋅--=R OP OP R OP R ,B 正确;取AC 的中点M ,则OCOA ⋅42)4(4122222-=--=-=OM OM OM AC OM ,又OPOM ≤≤0即]2,0[∈OM ,所以OC OA ⋅]0,4[-∈,所以C 错误;当BD AC ⊥时,)()(PC PD P A PB CD AB -⋅-=⋅4)4(222-=--=⋅-=⋅-⋅-=⋅+⋅=OP PF PE PC P A PD PB PC P A PD PB ,D 正确例2.在平面直角坐标系xOy 中,设直线2+-=x y 与圆)0(222>=+r r y x 交于B A ,两点,O 为坐标原点,若圆上一点C 满足OB OA OC 4345+=,则=r ()A.22 B.5C.3D.10r ===,设θ2=∠AOB ,则将OB OA OC 4345+=平方得θ2cos 3092516163016916252222222r r r r OB OA OB OA OC ++=⇒⋅++=432cos -=⇒θ55cos 531cos 22=⇒-=-⇒θθ,所以圆心到直线2+-=x y 的距离为θcos 22r =10552==⇒=⇒r r ,故选D例3.在平面直角坐标系xOy 中,圆O :322=+y x ,),2(m T ,若圆O 上存在以M 为中点的弦AB ,且MT AB 2=,则实数m 的取值范围是()A.]0,2[- B.]2,0( C.]2,2[- D.)2,2(-解法1:设),(y x M ,连OM ,由垂径定理知AB OM ⊥⇒32222=+=+MT OM MB OM 42)2()1(3)()2(2222222m m y x m y x y x -=-++⇒=-+-++⇒,所以点M 在以)2,1(m D -为圆心,222m -为半径的圆上,又点M 为圆O 的弦AB 的中点,所以点M 在圆O 内,所以两圆内含,所以223)2()1(222m m --<+-0)1(22>+⇔m ,只需022>-m 解得22<<-m ,即实数m 的取值范围是]2,2[-,故选C解法2:因为M 为弦AB 的中点,且MT AB 2=,所以090=∠ATB ,过点T 作圆的切线TF TE ,,F E ,为切点,则只需090≥∠ETF 即可,所以045≥∠OTE ,所以OTE∠sin 6223≤⇒≥=OT OT ,所以642≤+m ,解得22≤≤-m ,故选C例4.在平面直角坐标系xOy 中,直线kx y =与圆C :5)36()27(22=-+-y x 交于B A ,,则=⋅OB OA 解析:过点O 作圆C 的切线OT ,T 为切点,则由切割线定理得20205362722222=-+=-==⋅R OC OT OB OA 例5.在平面直角坐标系xOy 中,已知点)1,0(P 在圆C :01422222=+-+-++m m y mx y x 内,若存在过点P 的直线交圆C 于B A ,两点,且PBC ∆的面积是P AC ∆的面积的2倍,则实数m 的取值范围为解析:圆C :m y m x 4)1()(22=-++,圆心)1,(m -,半径为m r 2=,所以0>m 点P 在圆C 内40014212<<⇒<+-+-⇒m m m设AB 的中点为D ,t AP 2=,则t PD =,圆心到直线AB 的距离为d ,由PBC ∆的面积是P AC ∆的面积的2倍可知P A PB 2=,所以⎪⎩⎪⎨⎧=+=+⇐⎪⎩⎪⎨⎧=+=+mt d mt d r P A CD CP PD CD 492222222222222849d m m =-⇒,因为220m d <≤,所以494849022<≤⇒<-≤m m m m 当94=m 时,C B A P ,,,四点共线,不能构成三角形,所以m 的取值范围为)4,94(例6.在平面直角坐标系xOy 中,圆C :3)()2(22=-++m y x ,若圆C 存在以G 为中点的弦AB ,且GO AB 2=,则实数m 的取值范围是解析:类例3,]2,2[-例7.已知椭圆E 的中心为坐标原点O ,焦点在x 轴上,离心率为23,21,F F 分别为椭圆E 的左右焦点,点P 在椭圆E 上,以线段21F F 为直径的圆经过点P ,线段P F 1与y 轴交于点B ,且611=⋅B F P F (1)求椭圆E 的方程(2)设动直线l 与椭圆E 交于N M ,两点,且0=⋅ON OM ,求证:动直线l 与圆5422=+y x 相切解析:(1)设椭圆E :)0(12222>>=+b a b y a x ,c F F 221=,因为211F PF O BF ∠=∠,2211π=∠=∠PF F BOF ,所以BO F 1∆∽P F F 21∆,所以P F O F F F B F 11211=21111F F O F B F P F ⋅=⋅⇒3622=⇒==c c ,所以1,2233==⇒==b a a e ,所以椭圆E :1422=+y x (2)设OM 的倾斜角为θ,则)sin ,cos (θθOM OM M ,))90sin(),90cos((00±±θθON ON M ,又点N M ,在椭圆上,所以⎪⎪⎩⎪⎪⎨⎧=+=+⇒⎪⎩⎪⎨⎧=±+±=+22222202202222224cos 4sin 4sin 4cos 1)90(sin 4)90(cos 4sin 4cos ON OM ON ON OM OM θθθθθθθθ两式相加得4511541442222=+⇒=+=+ONOMONOM,设原点到直线MN 的距为d 由5421212222222=+=⇒=+=∆ONOM ON OM d ON OM d ON OM S OMN所以动直线l 与圆5422=+y x 相切。
一知识再现1. 圆幂定理一般地,把相交弦定理、切割线定理、割线定理等统称为圆幂定理。
它的基本内容是,在平面上经过;点P的直线与⊙O相交于A、B两点,有向线段PA、PB的乘积PA·PB是一个定值。
如下列图形,经过一定点P作圆的弦或割线或切线,设⊙O半径为R在图(1)中,PA·PB=PC·PD=PE·PF=(R-OP)(R-OP)=R2-OP2在图(2)中,PA·PB=PT2=OP2-OT2==OP2-R2在图(3)中,PA·PB=PC·PD= PT2==OP2-R2可得PA·PB均等于,为一常数,所以叫做点P关于⊙O的幂,所以相交弦定理、切割线定理及其推论(割线定理)统称为圆幂定理.2.角平分线定理角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。
三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。
【注】三角形的角平分线不是角的平分线,是线段。
角的平分线是射线。
■拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。
■定理1:在角平分线上的任意一点到这个角的两边距离相等。
■逆定理:在一个角的内部(包括顶角),且到这个角的两边距离相等的点在这个角的角平分线上。
■定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例,如:在△ABC 中,BD 平分∠ABC ,则AD :DC=AB :BC 3.平行线分线段定理定理 三条平行线截两条直线,所得的对应线段成比例.二 例题讲解例1如图4AB 是⊙O 的弦,P 是AB 上一点,AB = 10cm ,P A : PB = 2 : 3,OP = 5cm ,则⊙O 的半径等于 .解析:设⊙O 的半径为R .∵AB = 10cm ,P A : PB = 2 : 3,∴PA = 4 cm ,PB = 6 cm . 由相交弦定理,得P A ·PB = PC ·PD = R 2-OP 2,即4×6 = R 2-52. 所以,R = 7. 故⊙O 的半径等于7 cm . 例2.如图5,已知P AC 为⊙O 的割线,连接PO 交⊙O 于B ,PB = 2,OP = 7,P A= AC ,则P A 的长为( )A .7B .23C .14D .32解析:延长PO 交⊙O 于D .∵PB = 2,OP = 7,∴OB = 5,即PC = 12. 由切割线定理的推论,得 P A ·AC = PB ·PC . ∵P A = AC ,∴2 P A 2 = 2×12. 所以,P A = 23.故应选B .一、“四心”分类讨论1、外心三解形三条垂直平分线的交点叫做三角形的外心,即外接圆圆心。
圆幂的定义假设平面上有一圆O,其半径为R,有一点P在圆O外,则OP^2-R^2即为P 点到圆O的幂;若P点在圆内,则圆幂为R^2-OP^2;综上所述,圆幂为|OP^2-R^2|。
圆幂恒大于或等于零。
圆幂的由来过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。
则PA·PB=PC·PD。
若圆半径为r,则PC·PD=(PO-r)·(PO+r)=PO^2-r^2=|PO^2-r^2| (要加绝对值,原因见下)为定值。
这个值称为点P到圆O的幂。
(事实上所有的过P点与圆相交的直线都满足这个值)若点P在圆内,类似可得定值为r^2-PO^2=|PO^2-r^2|故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差,而过这一点引任意直线交圆于A、B,那么PA·PB等于圆幂的绝对值。
圆幂定理定理内容过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有。
[1]圆幂定理的所有情况考虑经过P点与圆心O的直线,设PO交⊙O与M、N,R为圆的半径,则有圆幂定理的证明图Ⅰ:相交弦定理。
如图,AB、CD为圆O的两条任意弦。
相交于点P,连接AB、BD,由于∠B与∠D同为弧AC所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以。
所以有:,即:图Ⅱ:割线定理。
如图,连接AD、BC。
可知∠B=∠D,又因为∠P为公共角,所以有,同上证得图Ⅲ:切割线定理。
如图,连接AC、AD。
∠PAC为切线PA 与弦AC组成的弦切角,因此有∠PAC=∠D,又因为∠P为公共角,所以有易证图Ⅳ:PA、PC均为切线,则∠PAO=∠PCO=直角,在直角三角形中:OC=OA=R,PO为公共边,因此所以PA=PC,所以综上可知,是普遍成立的。
证明完毕。
圆中的重要模型--圆幂定理模型圆幂定理是一个总结性的定理,是对相交弦定理、切割线定理、割线定理、弦切角定理、托勒密定理以及它们推论的统一与归纳。
可能是在19世纪由德国数学家施泰纳(Steiner)或者法国数学家普朗克雷(Poncelet)提出的。
圆幂定理的用法:可以利用圆幂定理求解与圆有关的线段比例、角度、面积等问题。
模型1.相交弦模型条件:在圆O中,弦AB与弦CD交于点E,点E在圆O内。
结论:△CAE∼△BDE⇒ECEB=EAED⇒EC⋅ED=EB⋅EA。
1(2023·广东广州·九年级校考期中)如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PD=4,两圆组成的圆环的面积是.2(2023·江西景德镇·九年级校考期末)如图,PT是⊙O的切线,T为切点,PA是割线,交⊙O于A、B两点,与直径CT交于点D.已知CD=2,AD=3,BD=4,那PB=.3(2023·江苏·九年级专题练习)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(1)为了说明相交弦定理正确性,需要对其进行证明,如下给出了不完整的“已知”“求证”,请补充完整,并写出证明过程.已知:如图①,弦AB,CD交于点P,求证:.(2)如图②,已知AB是⊙O的直径,AB与弦CD交于点P,且AB⊥CD于点P,过D作⊙O的切线,交BA的延长线于E,D为切点,若AP=2,⊙O的半径为5,求AE的长.模型2.双割线模型条件:如图,割线CH与弦CF交圆O于点E和点G。
结论:△CEG∼△CHF⇒ECCH=CGCF⇒EC⋅FC=GC⋅HC4(2023·浙江·九年级假期作业)如图:PAB、PCD为⊙O的两条割线,若PA∙PB=30,PC=3,则CD的长为()A.10B.7C.510D.35(2023·四川成都·九年级校考阶段练习)如图,PAB为⊙O的割线,且PA=AB=3,PO交⊙O于点C,若PC=2,则⊙O的半径的长为.6(2022·河南洛阳·统考一模)我们知道,直线与圆有三种位置关系:相交、相切、相离.当直线与圆有两个公共点(即直线与圆相交)时,这条直线就叫做圆的割线.割线也有一些相关的定理.比如,割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等.下面给出了不完整的定理“证明一”,请补充完整.已知:如图①,过⊙O 外一点P 作⊙O 的两条割线,一条交⊙O 于A 、B 点,另一条交⊙O 于C 、D 点.求证:PA ⋅PB =PC ⋅PD .证明一:连接AD 、BC ,∵∠A 和∠C 为BD 所对的圆周角,∴.又∵∠P =∠P ,∴,∴.即PA ⋅PB =PC ⋅PD .研究后发现,如图②,如果连接AC 、BD ,即可得到学习过的圆内接四边形ABDC .那么或许割线定理也可以用圆内接四边形的性质来证明.请根据提示,独立完成证明二.证明二:连接AC 、BD ,模型3.切割线模型条件:如图,CB 是圆O 的切线,CA 是圆O 的割线。