2017届高考数学大一轮复习第十章统计、统计案例文北师大版
- 格式:doc
- 大小:1.82 MB
- 文档页数:51
【高考领航】2017届高考数学大一轮复习 第十章 统计、统计案例 文 北师大版第1课时 抽样方法1.理解随机抽样的必要性和重要性. 2.会用简单随机抽样方法从总体中抽取样本. 3.了解分层抽样和系统抽样方法.1.抽样调查及相关概念通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此对调查对象的某项指标作出推断,这就是抽样调查.其中,调查对象的全体称为总体,被抽取的一部分称为样本.2.简单随机抽样(1)定义:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法. 3.分层抽样(1)定义:将总体按其属性特征分成若干类型,然后在每个类型中按照所占比例随机抽取一定的样本,这种抽样方法通常叫作分层抽样. (2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样. 4.系统抽样(1)系统抽样是将总体的个体进行编号,按照简单随机抽样抽取第一个样本,然后按相同的间隔抽取其他样本. 系统抽样又叫等距抽样或机械抽样. (2)系统抽样的步骤①先将总体的N 个个体编号,有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等; ②确定分段间隔k ,对编号进行分段,当N n (n 是样本容量)是整数时,取k =N n; ③在第1段用简单随机抽样确定第一个个体编号l (l ≤k );④按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.[基础自测]1.(教材改编题)某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为( )A.33个,34人,33人B.25人,56人,19人C.30人,40人,30人D.30人,50人,20人解析:因为125∶280∶95=25∶56∶19,所以抽取人数分别为:25人,56人,19人.答案:B2.(2016·抚顺质检)为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是( )A.总体是240 B.个体是每一个学生C.样本是40名学生D.样本容量是40解析:总体容量是240,总体是240名学生的身高;个体是每名学生的身高;样本是40名学生的身高;样本容量是40.答案:D3.老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是( )A.随机抽样B.分层抽样C.系统抽样D.以上都不是解析:因为所抽取学生的学号成等差数列,即为等距离抽样,属于系统抽样.答案:C4.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的个数为________.解析:抽取男运动员的人数为2148+36×48=12.答案:125.若总体中含有1 650个个体,现在要采用系统抽样法,从中抽取一个容量为35的样本,分段时应从总体中随机剔除________个个体,编号后应均分为________段,每段有________个个体.解析:计算1 650除以35的余数,可知商为47,余数为5,所以采用系统抽样首先要从总体中随机剔除5个个体,由于抽取的样本容量为35,所以编号后应均分为35段,每段有47个个体.答案:5 35 47考点一简单随机抽样大一轮复习BSD数学(文)第十章统计、统计案例[例1] 某大学为了支持亚运会,从报名的24名大三学生中选6人组成志愿小组,请用抽签法和随机数法设计抽样方案.审题视点考虑到总体的个数较少,利用抽签法和随机数法可容易地获取样本,须按这两种抽样方法的操作步骤进行.抽签法应“编号、制签、搅匀、抽取”,随机数法应“编号、确定起始数、读数、取得样本”.解抽签法:第一步:将24名志愿者编号,编号为1,2,3, (24)第二步:将24个号码分别写在24张外形完全相同的纸条上,并揉成团,制成号签;第三步:将24个号签放入一个不透明的盒子中,充分搅匀;第四步:从盒子中逐个抽取6个号签,并记录上面的编号;第五步:所得号码对应的志愿者,就是志愿小组的成员.随机数法:第一步:将24名学生编号,编号为01,02,03, (24)第二步:在随机数表中任选一数开始,按某一确定方向选取两列组成两位数;第三步:凡不在01~24中的数或重复出现的数,都不能选取,依次选取即可得到6个样本的编号;第四步:所得号码对应的志愿者,就是志愿小组的成员.(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀,一般地,当总体容量和样本容量都较小时可用抽签法.(2)随机数表中共随机出现0,1,2,…,9十个数字,也就是说,在表中的每个位置上出现各个数字的机会都是相等的.在使用随机数表时,如遇到三位数或四位数时,可从选择的随机数表中的某行某列的数字计起,每三个或每四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.1.(2016·昆明调研)下列说法中正确说法的个数是( )①总体中的个体数不多时宜用简单随机抽样法;②在总体均分后的每一部分进行抽样时,采用的是简单随机抽样;③百货商场的抓奖活动是抽签法;④整个抽样过程中,每个个体被抽取的概率相等(有剔除时例外).A.1 B.2C.3 D.4解析:①②③显然正确,系统抽样无论有无剔除都是等概率抽样;④不正确.答案:C2.某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件在同一条件下测量,如何采用简单随机抽样的方法抽取样本?解:法一:抽签法:将100件轴编号为1,2,…,100,并制成大小、形状相同的号签,分别写上这100个数,将这些号签放在同一个箱子里,进行均匀搅拌,接着连续抽取10个号签,然后测量这10个号签对应的轴的直径.法二:随机数法:将100件轴编号为00,01,…99,在随机数表中选定一个起始位置,如从第21行第1个数开始,选取10个,为68,34,30,13,70,55,74,77,40,44,这10件即为所要抽取的样本.考点二系统抽样[例2] 某单位在职职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查,试采用系统抽样方法抽取所需的样本.审题视点由题意应抽取62人,624不是10的整数倍,需先剔除4人,再利用系统抽样完成抽样.解第一步:将624名职工用随机方式进行编号;第二步:从总体中用随机数法剔除4人,将剩下的620名职工重新编号(分别为000,001,002,…,619),并分成62段;第三步:在第1段000,001,002,…009这十个编号中用简单随机抽样确定起始号码为l;第四步:将编号为l,l+10,l+20,…,l+610的个体抽出,组成样本.(1)系统抽样的特点——机械抽样,又称等距抽样,所以依次抽取的样本对应的号码就是一个等差数列,首项就是第1组所抽取样本的号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码.(2)系统抽样时,如果总体中的个数不能被样本容量整除时,可以先用简单随机抽样从总体中剔除几个个体,然后再按系统抽样进行.1.(2015·高考湖南卷)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( ) A.3 B.4C.5 D.6解析:因为35÷7=5,因此可将编号为1~35的35个数据分成7组,每组有5个数据,在区间[139,151]上共有20个数据,分在4个小组中,每组取1人,共取4人.答案:B2.某校高一、高二、高三分别有学生人数为495,493,482,现采用系统抽样方法,抽取49人做问卷调查,将高一、高二、高三学生依次随机按1,2,3,…,1 470编号,若第1组用简单随机抽样方法抽取的号码为23,则高二应抽取的学生人数为( ) A.15 B.16 C.17 D.18解析:由系统抽样方法,知按编号依次每30个编号作为一组,共分49组,高二学生的编号为496到988,在第17组到第33组内,第17组抽取的编号为16×30+23=503,为高二学生,第33组抽取的编号为32×30+23=983,为高二学生,故共抽取高二学生人数为33-16=17.答案:C考点三分层抽样[例3] 某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.审题视点先求出样本抽取的比例,再逐个求解解析应从小学中抽取150150+75+25×30=18(所).应从中学中抽取75150+75+25×30=9(所).答案 18 9分层抽样的操作步骤及特点(1)操作步骤①将总体按一定标准进行分层;②计算各层的个体数与总体数的比,按各层个体数占总体数的比确定各层应抽取的样本容量; ③在每一层进行抽样(可用简单随机抽样或系统抽样). (2)特点①适用于总体由差异明显的几部分组成的情况; ②更充分地反映了总体的情况;③等可能抽样,每个个体被抽到的可能性都是n N.1.(2015·高考北京卷)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )A.90 B .100 C .180D .300解析:设该样本中的老年教师人数为x ,由题意得x 900=3201 600,故x =180.答案:C2.(2015·高考福建卷)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________.解析:男生人数为900-400=500(人),设男生应抽取x 人,则有45900=x500,解得x =25.答案:25分层抽样的易错点[典例] 某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.解题指南 由男生和女生的总人数和样本容量可得分层抽样的比例,进而可得男生的入样人数. 解析 男生人数为560×280560+420=160.答案 160阅卷点评 (1)不能正确确定抽样比例从而导致失误. (2)在求解过程中计算失误.备考建议 解决随机抽样问题时,还有以下几点容易造成失误,在备考时要高度关注: (1)熟练掌握各种抽样方法的步骤和适用条件;(2)系统抽样中各段入样的个体编号成等差数列,公差即每段的个体数;(3)分层抽样中各层所占的比例要确定准确.另外,某些情况下还需先剔除若干个体,注意剔除个体的等可能性.◆一条规律三种抽样方法的共同点都是等概率抽样,即抽样过程中每个个体被抽到的概率相等,体现了这三种抽样方法的客观性和公平性.若样本容量为n ,总体的个体数为N ,则用这三种方法抽样时,每个个体被抽到的概率都是n N.◆三个特点(1)简单随机抽样的特点:总体中的个体性质相似,无明显层次;总体容量较小,尤其是样本容量较小;用简单随机抽样法抽出的个体带有随机性,个体间无固定间距.(2)系统抽样的特点:适用于元素个数很多且均衡的总体;各个个体被抽到的机会均等;总体分组后,在起始部分抽样时,采用简单随机抽样.(3)分层抽样的特点:适用于总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样.课时规范训练 [A 级 基础演练]1.(2015·高考四川卷)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法解析:根据年级不同产生差异及按人数比例抽取易知应为分层抽样法. 答案:C2.(2016·浙江杭州模拟)某校150名教职员工中,有老年人20名,中年人50名,青年人80名,从中抽取30名作为样本. ①采用随机抽样法:抽签取出30个样本;②采用系统抽样法:将教职工编号为00,01,…,149,然后平均分组抽取30个样本;③采用分层抽样法:从老年人、中年人、青年人中抽取30个样本. 下列说法中正确的是( )A .无论采用哪种方法,这150名教职工中每个人被抽到的概率都相等B .①②两种抽样方法,这150名教职工中每个人被抽到的概率都相等;③并非如此C .①③两种抽样方法,这150名教职工中每个人被抽到的概率都相等;②并非如此D .采用不同的抽样方法,这150名教职工中每个人被抽到的概率是各不相同的 解析:三种抽样方法中,每个人被抽到的概率都等于30150=15,故选A. 答案:A3.(2014·高考湖南卷)对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3解析:根据三种抽样方法的特征求解.由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p 1=p 2=p 3. 答案:D4.课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为________.解析:设丙组中应抽取的城市数为x ,由分层抽样的性质n N =n 1N 1=n 2N 2=…可知824=x6,∴x =2.答案:25.(2014·高考天津卷)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.解析:根据题意,应从一年级本科生中抽取的人数为44+5+5+6×300=60.答案:606.(2016·兰州模拟)最近网络上流行一种“QQ 农场游戏”,这种游戏通过虚拟软件模拟种植与收获的过程.为了了解本班学生对此游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,对此先对60名学生进行编号为:01,02,03,…,60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.解析:由最小的两个编号为03,09可知,抽取人数的比例为16,即抽取10名同学,其编号构成首项为3,公差为6的等差数列,故最大编号为3+9×6=57.答案:577.(2016·沈阳质检)某学校的三个学生社团的人数分布如下表(每名学生只能参加一个社团):18人,结果拳击社被抽出了6人. (1)求拳击社女生有多少人;(2)从围棋社指定的3名男生和2名女生中随机选出2人参加围棋比赛,求这2名同学是一名男生和一名女生的概率. 解:(1)由于按分层抽样的方法从三个社团成员中抽取18人,拳击社被抽出了6人, ∴628+m =1820+40+28+m,∴m =2. (2)指定3男生记为A 1,A 2,A 3,2女生记为B 1,B 2,选取2人有A 1A 2,A 1A 3,A 2A 3,B 1B 2,A 1B 1,A 1B 2,A 2B 1,A 2B 2,A 3B 1,A 3B 2共10种选法,其中一男一女有6种选法,故设A 为“这2名同学是一名男生和一名女生”,则P (A )=610=35.8.海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A ,B ,C (2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率. 解:(1)因为样本容量与总体中的个体数的比是 650+150+100=150,所以样本中包含三个地区的个体数量分别是: 50×150=1,150×150=3,100×150=2.所以A ,B ,C 三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为:A ;B 1,B 2,B 3;C 1,C 2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D :“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有:{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个.所以P (D )=415,即这2件商品来自相同地区的概率为415. [B 级 能力突破]1.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样解析:由于三个学段学生的视力情况差别较大,故需按学段分层抽样. 答案:C2.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A .11B .12C .13D .14解析:抽样间隔为84042=20.设在1,2,…,20中抽取号码x 0(x 0∈[1,20]),在[481,720]之间抽取的号码记为20k +x 0,则481≤20k +x 0≤720,k ∈N +.∴24120≤k +x 020≤36.∵x 020∈⎣⎢⎡⎦⎥⎤120,1,∴k =24,25,26,…,35, ∴k 值共有35-24+1=12(个),即所求人数为12. 答案:B3.(2016·鄂州模拟)一个总体共有600个个体,随机编号为001,002,…,600.现采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600个个体分三组,从001到300在第一组,从301到495在第2组,从496到600在第3组,则这三组抽中的个数依次为( )A .25,16,9B .25,18,7C .25,17,8D .25,19,6解析:按照系统抽样,间隔为60050=12.∵随机号码为003,∴被抽出的个体编号为12k +3,所以在001~300间抽出25个个体,从301到495间抽出17个个体,在496~600间抽出8个个体. 答案:C4.一个工厂生产了24 000件某种产品,它们来自甲、乙、丙3条生产线,现采用分层抽样的方法对这批产品进行抽样检查.已知从甲、乙、丙3条生产线依次抽取的产品件数恰好组成一个等差数列,且知这批产品中甲生产线生产的产品数是6 000件,则这些产品中丙生产线生产的产品数量是________件.解析:因为从甲、乙、丙3条生产线依次抽取的产品件数恰好组成一个等差数列,故3条生产线生产的产品件数也组成等差数列,设甲、乙、丙3条生产线生产的产品件数组成的等差数列的公差为d ,则3×6 000+3d =24 000,∴d =2 000, ∴丙生产线生产的产品件数为 6 000+2×2 000=10 000.答案:10 0005.(2016·黄冈模拟)一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人进一步调查,则在[2 500,3 000)元/月收入段应抽出________人.解析:收入在[2 500,3 000)元/月的人占总数的频率为(3 000-2 500)×0.0005=0.25,故应抽出100×0.25=25(人). 答案:256.某校初一、初二、初三三班各有300人,400人,302人,取系统抽样从中抽取一个容量为100的样本检查学生的视力情况,则初三年级每人被抽到的概率为( )A.3021 002B.1001 002C.3001 000D.30302解析:利用系统抽样,虽然剔除2人,但每人能抽到的概率为n N =1001002.答案:B7.(2016·衡水中学一模)已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002,…,800进行编号.(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;(下面摘取了第7行到第9行) 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76(第7行)63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79(第8行)33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54(第9行)(2)抽取的100人的数学与地理的水平测试成绩如下表:20+18+4=42人.①若在该样本中,数学成绩优秀率是30%,求a ,b 的值;②在地理成绩及格的学生中,已知a ≥10,b ≥8,求数学成绩优秀的人数比及格的人数少的概率.解:(1)从第8行第7列的数开始向右读,依次检查的编号分别为785,916(舍),955(舍),667,199,….故最先检查的3个人的编号为785,667,199.(2)①7+9+a 100=30%,∴a =14,b =100-30-(20+18+4)-(5+6)=17. ②a +b =100-(7+20+5)-(9+18+6)-4=31.∵a ≥10,b ≥8,∴a ,b 的搭配为(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(16,15),(17,14),(18,13),(19,12),(20,11),(21,10),(22,9),(23,8),共14种.记a ≥10,b ≥8,数学成绩优秀的人数比及格的人数少为事件A .则事件A 包括(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),共6个基本事件. ∴P (A )=614=37,∴数学成绩优秀的人数比及格的人数少的概率为37.第2课时 统计图表、数据的数字特征及用样本估计总体1.了解分布的意义和作用,会列频率分布表、会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点. 2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想. 5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.1.统计图表统计图是表达和分析数据的重要工具,常用的统计图表有频率分布直方图、扇形统计图、折线统计图、茎叶图等. 2.用样本的数字特征估计总体的数字特征(1)众数、中位数、平均数众数:在一组数据中,出现次数最多的数据叫作这组数据的众数.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫作这组数据的中位数. 平均数:样本数据的算术平均数.即x =1n(x 1+x 2+…+x n )在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.(2)样本方差、标准差 标准差s =1nx 1-x2+x 2-x2+…+x n -x2],其中x n 是样本数据的第n 项,n 是样本容量,x 是平均数.标准差是反映总体波动大小的特征数,样本方差是标准差的平方.通常用样本方差估计总体方差,当样本容量接近总体容量时,样本方差很接近总体方差.3.用样本估计总体(1)我们对总体作出的估计一般分成两种.一种是用样本的频率分布估计总体的分布.另一种是用样本的数字特征估计总体的数字特征. (2)在频率分布直方图中,纵轴表示频率组距,数据落在各小组内的频率用各小长方形的面积表示,各小长方形的面积总和等于1.(3)连结频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.随着样本容量的增加,作图时所分的组数增加,相应的频率分布折线图就会越来越接近于一条光滑的曲线,统计中称之为总体密度曲线,它能够更加精确地反映出总体在各个范围内取值的百分比.[基础自测]1.(教材改编题)某工厂生产滚珠,从某批产品中随机抽取8粒,量得直径分别为(单位:mm):14.7,14.6,15.1,15.0,14.8,15.1,15.0,14.9,则估计该厂生产的滚珠直径的平均数为( )A .14.8 mmB .14.9 mmC .15.0 mmD .15.1 mm解析:平均数x =18(14.7+14.6+15.1+15.0+14.8+15.1+15.0+14.9)=14.9(mm).答案:B2.(2016·合肥月考)一个容量为100的样本,其数据的分组与各组的频数如下:则样本数据落在(10,40]上的频率为( ) A .0.13 B .0.39 C .0.52D .0.64 解析:由列表可知样本数据落在(10,40]上的频数52. 故其频率为0.52. 答案:C3.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员的中位数分别为________.解析:根据中位数的含义及茎叶图可知,甲的中位数是19,乙的中位数是13. 答案:19、134.已知一个样本为:1,3,4,a,7.它的平均数是4,则这个样本的标准差是________. 解析:由平均数是4,得1+3+4+a +75=4,∴a =5,代入标准差的计算公式得s =2. 答案:2考点一 频率分布直方图的绘制与应用[例1] 对某电子元件进行寿命追踪调查,情况如下:(1)列出频率分布表; (2)画出频率分布直方图;(3)估计电子元件寿命在[100,400)h 以内的概率; (4)估计电子元件寿命在400 h 以上的概率.审题视点 分组及频数统计题中已给出,只需列表画图即可,解答(3)(4)可用频率代替概率. 解 (1)频率分布表如下:(2)频率分布直方图如下:(3)由频率分布表和频率分布直方图可得,寿命在[100,400)h 内的电子元件出现的频率为0.10+0.15+0.40=0.65,所以我们估计电子元件寿命在[100,400)h 内的概率为0.65.(4)由频率分布表可知,寿命在400 h 以上的电子元件出现的频率为0.20+0.15=0.35,故我们估计电子元件寿命在400 h 以上的概率为0.35.用频率分布直方图解决相关问题时,应正确理解图表中各个量的意义,识图掌握信息是解决该类问题的关键.频率分布直方图有以下几个要点:(1)纵轴表示频率/组距;(2)频率分布直方图中各长方形高的比也就是其频率之比;(3)直方图中每一个矩形的面积是样本数据落在这个区间上的频率,所有的小矩形的面积之和等于1,即频率之和为1.1.(2016·厦门质检)某工厂对一批产品进行了抽样检测,如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A .90B .75C .60D .45解析:产品净重小于100克的频率为(0.050+0.100)×2=0.300,设样本容量为n ,则36n=0.300,所以n =120,净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90.答案:A2.(2015·高考安徽卷)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50)[50,60),…,[80,90),[90,100].。
课时规范练49 算法初步基础巩固组1.如图,若依次输入的x 分别为5π6,π6,相应输出的y 分别为y 1,y 2,则y 1,y 2的大小关系是( )A.y 1=y 2B.y 1>y 2C.y 1<y 2D.无法确定 答案:C解析:由算法框图可知,当输入的x 为5π6时,sin 5π6>cos 5π6成立,所以输出的y 1=sin5π6=12;当输入的x 为π6时,sin π6>cos π6不成立,所以输出的y 2=cos π6=√32,所以y 1<y 2.2.(河南六市一模)已知[x]表示不超过x的最大整数.执行如图所示的算法框图,若输入x的值为2.4,则输出z的值为( )A.1.2B.0.6C.0.4D.-0.4答案:D解析:执行该算法框图,输入x=2.4,y=2.4,x=[2.4]-1=1,满足x≥0,x=1.2,y=1.2,x=[1.2]-1=0,满足x≥0,x=0.6,y=0.6,x=[0.6]-1=-1,不满足x≥0,终止循环,z=-1+0.6=-0.4,输出z的值为-0.4.3.(河北石家庄四模)如图是计算1+13+15+…+131的值的算法框图,则图中①②处可以填写的语句分别是( )A.n=n+2,i>16B.n=n+2,i≥16C.n=n+1,i>16D.n=n+1,i≥16答案:A解析:式子1+13+15+…+131中所有项的分母构成公差为2的等差数列1,3,5,…,31,则①处填n=n+2.令31=1+(k-1)×2,k=16,共16项,而1到129共15项,需执行最后一次循环,此时i=16,所以②中应填“i>16”.故选A.4.秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,即使在现代,它依然是利用计算机解决多项式问题的最优算法,其算法的算法框图如图所示,若输入的a0,a1,a2,…,a n分别为0,1,2,…,n.若n=5,根据该算法计算当x=2时多项式的值,则输出的结果为( )A.248B.258C.268D.278答案:B解析:该算法框图是计算多项式f(x)=5x5+4x4+3x3+2x2+x当x=2时的值,f(2)=258,故选B.5.某算法框图如图所示,运行该程序后输出S=( )A.53B.74C.95D.116答案:D解析:根据算法框图可知其功能为计算:S=1+11×2+12×3+…+1n(n+1)=1+1-12+12−13+…+1n−1n+1=1+1-1n+1=2n+1n+1,初始值为n=1,当n=6时,输出S,可知最终赋值S时n=5,所以S=2×5+15+1=116,故选D.6.(湖北武汉模拟)元朝时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个算法框图,若输入的a,b 分别为5,2,则输出的n=( )A.2B.3C.4D.5 答案:C解析:执行算法框图得n=1,a=152,b=4,a≤b 不成立;n=2,a=454,b=8,a≤b 不成立;n=3,a=1358,b=16,a≤b 不成立;n=4,a=40516,b=32,a≤b 成立.故输出的n=4,故选C.综合提升组7.执行如图的算法框图,如果输入的x ∈-π4,π,则输出y 的取值范围是( )A.[-1,0]B.[-1,√2]C.[1,2]D.[-1,1]答案:B解析:流程图计算的输出值为分段函数: y={2cos 2x +sin2x -1,x <π2,cos 2x +2sinx -1,x ≥π2,原问题即求解函数在区间[-π4,π]上的值域.当-π4≤x<π2时,y=2cos 2x+sin2x-1=cos2x+1+sin2x-1=√2sin (2x +π4),-π4≤x<π2,则-14π≤2x+π4<54π,此时函数的值域为[-1,√2]. 当π2≤x≤π时,y=cos 2x+2sinx-1=-sin 2x+2sinx,π2≤x≤π,则0≤sinx≤1,此时函数的值域为[0,1].综上可得,函数的值域为[-1,√2]∪[0,1],即[-1,√2]. 即输出y 的取值范围是[-1,√2].故选B.8.(河南开封一模)我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的算法框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的语句是( )A.i<7,s=s-1i ,i=2iB.i≤7,s=s -1i,i=2iC.i<7,s=s2,i=i+1D.i≤7,s=s2,i=i+1答案:D解析:由题意可知第一天后剩下12,第二天后剩下122……由此得出第7天后剩下127,结合选项分析得,①应为i≤7,②应为s=s2,③应为i=i+1,故选D.9.如图所示的程序,若最终输出的结果为6364,则在程序中“ ”处应填入的语句为( )A.i>=8B.i>=7C.i<7D.i<8答案:B解析:S=0,n=2,i=1,执行S=12,n=4,i=2;S=12+14=34,n=8,i=3;S=34+18=78,n=16,i=4;S=78+116=1516,n=32,i=5;S=1516+132=3132,n=64,i=6;S=3132+164=6364,n=128,i=7.此时满足题目条件输出的S=6364,∴“ ”处应填上i>=7.故选B.10.根据某校10位高一同学的身高(单位:cm)画出的茎叶图(图1),其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,设计一个算法框图(图2),用A i(i=1,2, (10)表示第i个同学的身高,计算这些同学身高的方差,则算法框图①中要补充的语句是( )图1图2A.B=B+A iB.B=B+A i2C.B=(B+A i-A)2D.B=B2+A i2答案:B解析:由s2=(x1-x)2+(x2-x)2+…+(xn-x)2n=x 12+x 22+…+x n 2-2(x 1+x 2+…+x n )x+nx 2n =x 12+x 22+…+x n 2-2nx 2+nx 2n =x 12+x 22+…+x n 2n −x 2,循环退出时i=11,知x 2=(Ai -1)2. 所以B=A 12+A 22+…+A 102,故算法框图①中要补充的语句是B=B+A i 2.故选B.11.执行如图所示的算法框图,若输入的m,n 分别为385,105(图中“m MOD n”表示m 除以n 的余数),则输出的m= .答案:35解析:执行算法框图,可得m=385,n=105,r=70,m=105,n=70,不满足条件r=0;r=35,m=70,n=35,不满足条件r=0;r=0,m=35,n=0,满足条件r=0,退出循环,输出的m 值为35.创新应用组12.(河南郑州二模)执行如图的算法框图,如果输入的ε为0.01,则输出s 的值为( )A.2-124B.2-125C.2-126D.2-127答案:C解析:执行算法框图,s=1,x=12,不满足条件x<0.01; s=1+12,x=122,不满足条件x<0.01; s=1+12+122,x=123,不满足条件x<0.01; ……由于126>0.01,而127<0.01,可得当s=1+12+122+…+126,x=127时,满足条件x<0.01,输出s=1+12+122+…+126=2-126.故选C. 13.(河南郑州模拟)我们可以用随机数法估计π的值,如图所示的算法框图表示其基本步骤(函数RAND 是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为( )A.3.119B.3.126C.3.132D.3.151答案:B解析:在空间直角坐标系O-xyz 中,不等式组{0<x <1,0<y <1,0<z <1表示的区域是棱长为1的正方体区域,相应区域的体积为13=1;不等式组{0<x <1,0<y <1,0<z <1,x 2+y 2+z 2<1表示的区域是棱长为1的正方体区域内的18球形区域,相应区域的体积为18×43π×13=π6,因此π6≈5211000,即π≈3.126,故选B.。
高三数学一轮精品复习学案:第十章统计、统计案例【知识特点】1.统计中所学的内容是数理统计中最基本的问题,通过这些内容主要来介绍相关的统计思想和方法,了解一些有关统计学的基本知识,并能够应用几个基本概念、基本公式来处理实际生活中的一些基本问题。
2.统计案例为新课标中新增内容,主要是通过案例体会运用统计方法解决实际问题的思想和方法。
增加了统计和统计案例后,使得高中数学的整个体系更加完善了,有利于开阔数学视野,丰富数学思想和方法。
【重点关注】1.从对新课标高考试题的分析可以发现,主要考查抽样方法、各种统计图表、样本数字特征等。
对这部分的考查主要以选择题和填空题的形式出现。
2.统计案例中的独立性检验和回归分析也会逐步在高考题中出现,难度不会太大,多数情况下是考查两种统计分析方法的简单知识,以选择题和填空题为主。
【地位与作用】《全国新课程标准高考数学考试大纲》中对考生能力要求明确界定为空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识等六个方面,其中数据处理能力是首次提出的一个能力要求,这定义为:会收集数据、整理数据、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断。
数据处理能力主要依据统计(高考考试大纲对知识点要求如下表所示)或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题,对统计的要求已提升到能力的高度。
统计的思想方法广泛应用于自然科学和社会科学的研究中,统计的语言不仅是数学的语言,也是各学科经常引用的大众语言,统计知识是作为一个新时期公民所比备的知识。
统计学就是应用科学的方法收集、整理、分析、描述所要研究的数据资料,然后根据所得到的结果,进行推断或决策的一门实用性很强的科学。
统计这部分内容,在高中数学新课程中,主要分布在必修3第二章(约16课时)与选修2—3第三章(约9课时)。
相对于高中学生的认知水平和生活经历还相对不是很高,所以它只能属于非重点内容,所出的相关题目一般来说都相对比较简单。
【高考领航】2017届高考数学大一轮复习 第十章 统计、统计案例 文 北师大版第1课时 抽样方法1.理解随机抽样的必要性和重要性. 2.会用简单随机抽样方法从总体中抽取样本. 3.了解分层抽样和系统抽样方法.1.抽样调查及相关概念通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此对调查对象的某项指标作出推断,这就是抽样调查.其中,调查对象的全体称为总体,被抽取的一部分称为样本.2.简单随机抽样(1)定义:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法. 3.分层抽样(1)定义:将总体按其属性特征分成若干类型,然后在每个类型中按照所占比例随机抽取一定的样本,这种抽样方法通常叫作分层抽样. (2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样. 4.系统抽样(1)系统抽样是将总体的个体进行编号,按照简单随机抽样抽取第一个样本,然后按相同的间隔抽取其他样本. 系统抽样又叫等距抽样或机械抽样. (2)系统抽样的步骤①先将总体的N 个个体编号,有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等; ②确定分段间隔k ,对编号进行分段,当N n (n 是样本容量)是整数时,取k =N n; ③在第1段用简单随机抽样确定第一个个体编号l (l ≤k );④按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.[基础自测]1.(教材改编题)某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为( )A.33个,34人,33人B.25人,56人,19人C.30人,40人,30人D.30人,50人,20人解析:因为125∶280∶95=25∶56∶19,所以抽取人数分别为:25人,56人,19人.答案:B2.(2016·抚顺质检)为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是( )A.总体是240 B.个体是每一个学生C.样本是40名学生D.样本容量是40解析:总体容量是240,总体是240名学生的身高;个体是每名学生的身高;样本是40名学生的身高;样本容量是40.答案:D3.老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是( )A.随机抽样B.分层抽样C.系统抽样D.以上都不是解析:因为所抽取学生的学号成等差数列,即为等距离抽样,属于系统抽样.答案:C4.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的个数为________.解析:抽取男运动员的人数为2148+36×48=12.答案:125.若总体中含有1 650个个体,现在要采用系统抽样法,从中抽取一个容量为35的样本,分段时应从总体中随机剔除________个个体,编号后应均分为________段,每段有________个个体.解析:计算1 650除以35的余数,可知商为47,余数为5,所以采用系统抽样首先要从总体中随机剔除5个个体,由于抽取的样本容量为35,所以编号后应均分为35段,每段有47个个体.答案:5 35 47考点一简单随机抽样大一轮复习BSD数学(文)第十章统计、统计案例[例1] 某大学为了支持亚运会,从报名的24名大三学生中选6人组成志愿小组,请用抽签法和随机数法设计抽样方案.审题视点考虑到总体的个数较少,利用抽签法和随机数法可容易地获取样本,须按这两种抽样方法的操作步骤进行.抽签法应“编号、制签、搅匀、抽取”,随机数法应“编号、确定起始数、读数、取得样本”.解抽签法:第一步:将24名志愿者编号,编号为1,2,3, (24)第二步:将24个号码分别写在24张外形完全相同的纸条上,并揉成团,制成号签;第三步:将24个号签放入一个不透明的盒子中,充分搅匀;第四步:从盒子中逐个抽取6个号签,并记录上面的编号;第五步:所得号码对应的志愿者,就是志愿小组的成员.随机数法:第一步:将24名学生编号,编号为01,02,03, (24)第二步:在随机数表中任选一数开始,按某一确定方向选取两列组成两位数;第三步:凡不在01~24中的数或重复出现的数,都不能选取,依次选取即可得到6个样本的编号;第四步:所得号码对应的志愿者,就是志愿小组的成员.(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀,一般地,当总体容量和样本容量都较小时可用抽签法.(2)随机数表中共随机出现0,1,2,…,9十个数字,也就是说,在表中的每个位置上出现各个数字的机会都是相等的.在使用随机数表时,如遇到三位数或四位数时,可从选择的随机数表中的某行某列的数字计起,每三个或每四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.1.(2016·昆明调研)下列说法中正确说法的个数是( )①总体中的个体数不多时宜用简单随机抽样法;②在总体均分后的每一部分进行抽样时,采用的是简单随机抽样;③百货商场的抓奖活动是抽签法;④整个抽样过程中,每个个体被抽取的概率相等(有剔除时例外).A.1 B.2C.3 D.4解析:①②③显然正确,系统抽样无论有无剔除都是等概率抽样;④不正确.答案:C2.某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件在同一条件下测量,如何采用简单随机抽样的方法抽取样本?解:法一:抽签法:将100件轴编号为1,2,…,100,并制成大小、形状相同的号签,分别写上这100个数,将这些号签放在同一个箱子里,进行均匀搅拌,接着连续抽取10个号签,然后测量这10个号签对应的轴的直径.法二:随机数法:将100件轴编号为00,01,…99,在随机数表中选定一个起始位置,如从第21行第1个数开始,选取10个,为68,34,30,13,70,55,74,77,40,44,这10件即为所要抽取的样本.考点二系统抽样[例2] 某单位在职职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查,试采用系统抽样方法抽取所需的样本.审题视点由题意应抽取62人,624不是10的整数倍,需先剔除4人,再利用系统抽样完成抽样.解第一步:将624名职工用随机方式进行编号;第二步:从总体中用随机数法剔除4人,将剩下的620名职工重新编号(分别为000,001,002,…,619),并分成62段;第三步:在第1段000,001,002,…009这十个编号中用简单随机抽样确定起始号码为l;第四步:将编号为l,l+10,l+20,…,l+610的个体抽出,组成样本.(1)系统抽样的特点——机械抽样,又称等距抽样,所以依次抽取的样本对应的号码就是一个等差数列,首项就是第1组所抽取样本的号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码.(2)系统抽样时,如果总体中的个数不能被样本容量整除时,可以先用简单随机抽样从总体中剔除几个个体,然后再按系统抽样进行.1.(2015·高考湖南卷)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( ) A.3 B.4C.5 D.6解析:因为35÷7=5,因此可将编号为1~35的35个数据分成7组,每组有5个数据,在区间[139,151]上共有20个数据,分在4个小组中,每组取1人,共取4人.答案:B2.某校高一、高二、高三分别有学生人数为495,493,482,现采用系统抽样方法,抽取49人做问卷调查,将高一、高二、高三学生依次随机按1,2,3,…,1 470编号,若第1组用简单随机抽样方法抽取的号码为23,则高二应抽取的学生人数为( ) A.15 B.16 C.17 D.18解析:由系统抽样方法,知按编号依次每30个编号作为一组,共分49组,高二学生的编号为496到988,在第17组到第33组内,第17组抽取的编号为16×30+23=503,为高二学生,第33组抽取的编号为32×30+23=983,为高二学生,故共抽取高二学生人数为33-16=17.答案:C考点三分层抽样[例3] 某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.审题视点先求出样本抽取的比例,再逐个求解解析应从小学中抽取150150+75+25×30=18(所).应从中学中抽取75150+75+25×30=9(所).答案 18 9分层抽样的操作步骤及特点(1)操作步骤①将总体按一定标准进行分层;②计算各层的个体数与总体数的比,按各层个体数占总体数的比确定各层应抽取的样本容量; ③在每一层进行抽样(可用简单随机抽样或系统抽样). (2)特点①适用于总体由差异明显的几部分组成的情况; ②更充分地反映了总体的情况;③等可能抽样,每个个体被抽到的可能性都是n N.1.(2015·高考北京卷)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )A.90 B .100 C .180D .300解析:设该样本中的老年教师人数为x ,由题意得x 900=3201 600,故x =180.答案:C2.(2015·高考福建卷)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________.解析:男生人数为900-400=500(人),设男生应抽取x 人,则有45900=x500,解得x =25.答案:25分层抽样的易错点[典例] 某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.解题指南 由男生和女生的总人数和样本容量可得分层抽样的比例,进而可得男生的入样人数. 解析 男生人数为560×280560+420=160.答案 160阅卷点评 (1)不能正确确定抽样比例从而导致失误. (2)在求解过程中计算失误.备考建议 解决随机抽样问题时,还有以下几点容易造成失误,在备考时要高度关注: (1)熟练掌握各种抽样方法的步骤和适用条件;(2)系统抽样中各段入样的个体编号成等差数列,公差即每段的个体数;(3)分层抽样中各层所占的比例要确定准确.另外,某些情况下还需先剔除若干个体,注意剔除个体的等可能性.◆一条规律三种抽样方法的共同点都是等概率抽样,即抽样过程中每个个体被抽到的概率相等,体现了这三种抽样方法的客观性和公平性.若样本容量为n ,总体的个体数为N ,则用这三种方法抽样时,每个个体被抽到的概率都是n N.◆三个特点(1)简单随机抽样的特点:总体中的个体性质相似,无明显层次;总体容量较小,尤其是样本容量较小;用简单随机抽样法抽出的个体带有随机性,个体间无固定间距.(2)系统抽样的特点:适用于元素个数很多且均衡的总体;各个个体被抽到的机会均等;总体分组后,在起始部分抽样时,采用简单随机抽样.(3)分层抽样的特点:适用于总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样.课时规范训练 [A 级 基础演练]1.(2015·高考四川卷)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法解析:根据年级不同产生差异及按人数比例抽取易知应为分层抽样法. 答案:C2.(2016·浙江杭州模拟)某校150名教职员工中,有老年人20名,中年人50名,青年人80名,从中抽取30名作为样本. ①采用随机抽样法:抽签取出30个样本;②采用系统抽样法:将教职工编号为00,01,…,149,然后平均分组抽取30个样本;③采用分层抽样法:从老年人、中年人、青年人中抽取30个样本. 下列说法中正确的是( )A .无论采用哪种方法,这150名教职工中每个人被抽到的概率都相等B .①②两种抽样方法,这150名教职工中每个人被抽到的概率都相等;③并非如此C .①③两种抽样方法,这150名教职工中每个人被抽到的概率都相等;②并非如此D .采用不同的抽样方法,这150名教职工中每个人被抽到的概率是各不相同的 解析:三种抽样方法中,每个人被抽到的概率都等于30150=15,故选A. 答案:A3.(2014·高考湖南卷)对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3解析:根据三种抽样方法的特征求解.由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p 1=p 2=p 3. 答案:D4.课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为________.解析:设丙组中应抽取的城市数为x ,由分层抽样的性质n N =n 1N 1=n 2N 2=…可知824=x6,∴x =2.答案:25.(2014·高考天津卷)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.解析:根据题意,应从一年级本科生中抽取的人数为44+5+5+6×300=60.答案:606.(2016·兰州模拟)最近网络上流行一种“QQ 农场游戏”,这种游戏通过虚拟软件模拟种植与收获的过程.为了了解本班学生对此游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,对此先对60名学生进行编号为:01,02,03,…,60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.解析:由最小的两个编号为03,09可知,抽取人数的比例为16,即抽取10名同学,其编号构成首项为3,公差为6的等差数列,故最大编号为3+9×6=57.答案:577.(2016·沈阳质检)某学校的三个学生社团的人数分布如下表(每名学生只能参加一个社团):18人,结果拳击社被抽出了6人. (1)求拳击社女生有多少人;(2)从围棋社指定的3名男生和2名女生中随机选出2人参加围棋比赛,求这2名同学是一名男生和一名女生的概率. 解:(1)由于按分层抽样的方法从三个社团成员中抽取18人,拳击社被抽出了6人, ∴628+m =1820+40+28+m,∴m =2. (2)指定3男生记为A 1,A 2,A 3,2女生记为B 1,B 2,选取2人有A 1A 2,A 1A 3,A 2A 3,B 1B 2,A 1B 1,A 1B 2,A 2B 1,A 2B 2,A 3B 1,A 3B 2共10种选法,其中一男一女有6种选法,故设A 为“这2名同学是一名男生和一名女生”,则P (A )=610=35.8.海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A ,B ,C (2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率. 解:(1)因为样本容量与总体中的个体数的比是 650+150+100=150,所以样本中包含三个地区的个体数量分别是: 50×150=1,150×150=3,100×150=2.所以A ,B ,C 三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为:A ;B 1,B 2,B 3;C 1,C 2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D :“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有:{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个.所以P (D )=415,即这2件商品来自相同地区的概率为415. [B 级 能力突破]1.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样解析:由于三个学段学生的视力情况差别较大,故需按学段分层抽样. 答案:C2.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A .11B .12C .13D .14解析:抽样间隔为84042=20.设在1,2,…,20中抽取号码x 0(x 0∈[1,20]),在[481,720]之间抽取的号码记为20k +x 0,则481≤20k +x 0≤720,k ∈N +.∴24120≤k +x 020≤36.∵x 020∈⎣⎢⎡⎦⎥⎤120,1,∴k =24,25,26,…,35, ∴k 值共有35-24+1=12(个),即所求人数为12. 答案:B3.(2016·鄂州模拟)一个总体共有600个个体,随机编号为001,002,…,600.现采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600个个体分三组,从001到300在第一组,从301到495在第2组,从496到600在第3组,则这三组抽中的个数依次为( )A .25,16,9B .25,18,7C .25,17,8D .25,19,6解析:按照系统抽样,间隔为60050=12.∵随机号码为003,∴被抽出的个体编号为12k +3,所以在001~300间抽出25个个体,从301到495间抽出17个个体,在496~600间抽出8个个体. 答案:C4.一个工厂生产了24 000件某种产品,它们来自甲、乙、丙3条生产线,现采用分层抽样的方法对这批产品进行抽样检查.已知从甲、乙、丙3条生产线依次抽取的产品件数恰好组成一个等差数列,且知这批产品中甲生产线生产的产品数是6 000件,则这些产品中丙生产线生产的产品数量是________件.解析:因为从甲、乙、丙3条生产线依次抽取的产品件数恰好组成一个等差数列,故3条生产线生产的产品件数也组成等差数列,设甲、乙、丙3条生产线生产的产品件数组成的等差数列的公差为d ,则3×6 000+3d =24 000,∴d =2 000, ∴丙生产线生产的产品件数为 6 000+2×2 000=10 000.答案:10 0005.(2016·黄冈模拟)一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人进一步调查,则在[2 500,3 000)元/月收入段应抽出________人.解析:收入在[2 500,3 000)元/月的人占总数的频率为(3 000-2 500)×0.0005=0.25,故应抽出100×0.25=25(人). 答案:256.某校初一、初二、初三三班各有300人,400人,302人,取系统抽样从中抽取一个容量为100的样本检查学生的视力情况,则初三年级每人被抽到的概率为( )A.3021 002B.1001 002C.3001 000D.30302解析:利用系统抽样,虽然剔除2人,但每人能抽到的概率为n N =1001002.答案:B7.(2016·衡水中学一模)已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002,…,800进行编号.(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;(下面摘取了第7行到第9行) 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76(第7行)63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79(第8行)33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54(第9行)(2)抽取的100人的数学与地理的水平测试成绩如下表:20+18+4=42人.①若在该样本中,数学成绩优秀率是30%,求a ,b 的值;②在地理成绩及格的学生中,已知a ≥10,b ≥8,求数学成绩优秀的人数比及格的人数少的概率.解:(1)从第8行第7列的数开始向右读,依次检查的编号分别为785,916(舍),955(舍),667,199,….故最先检查的3个人的编号为785,667,199.(2)①7+9+a 100=30%,∴a =14,b =100-30-(20+18+4)-(5+6)=17. ②a +b =100-(7+20+5)-(9+18+6)-4=31.∵a ≥10,b ≥8,∴a ,b 的搭配为(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(16,15),(17,14),(18,13),(19,12),(20,11),(21,10),(22,9),(23,8),共14种.记a ≥10,b ≥8,数学成绩优秀的人数比及格的人数少为事件A .则事件A 包括(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),共6个基本事件. ∴P (A )=614=37,∴数学成绩优秀的人数比及格的人数少的概率为37.第2课时 统计图表、数据的数字特征及用样本估计总体1.了解分布的意义和作用,会列频率分布表、会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点. 2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想. 5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.1.统计图表统计图是表达和分析数据的重要工具,常用的统计图表有频率分布直方图、扇形统计图、折线统计图、茎叶图等. 2.用样本的数字特征估计总体的数字特征(1)众数、中位数、平均数众数:在一组数据中,出现次数最多的数据叫作这组数据的众数.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫作这组数据的中位数. 平均数:样本数据的算术平均数.即x =1n(x 1+x 2+…+x n )在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.(2)样本方差、标准差 标准差s =1nx 1-x2+x 2-x2+…+x n -x2],其中x n 是样本数据的第n 项,n 是样本容量,x 是平均数.标准差是反映总体波动大小的特征数,样本方差是标准差的平方.通常用样本方差估计总体方差,当样本容量接近总体容量时,样本方差很接近总体方差.3.用样本估计总体(1)我们对总体作出的估计一般分成两种.一种是用样本的频率分布估计总体的分布.另一种是用样本的数字特征估计总体的数字特征. (2)在频率分布直方图中,纵轴表示频率组距,数据落在各小组内的频率用各小长方形的面积表示,各小长方形的面积总和等于1.(3)连结频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.随着样本容量的增加,作图时所分的组数增加,相应的频率分布折线图就会越来越接近于一条光滑的曲线,统计中称之为总体密度曲线,它能够更加精确地反映出总体在各个范围内取值的百分比.[基础自测]1.(教材改编题)某工厂生产滚珠,从某批产品中随机抽取8粒,量得直径分别为(单位:mm):14.7,14.6,15.1,15.0,14.8,15.1,15.0,14.9,则估计该厂生产的滚珠直径的平均数为( )A .14.8 mmB .14.9 mmC .15.0 mmD .15.1 mm解析:平均数x =18(14.7+14.6+15.1+15.0+14.8+15.1+15.0+14.9)=14.9(mm).答案:B2.(2016·合肥月考)一个容量为100的样本,其数据的分组与各组的频数如下:则样本数据落在(10,40]上的频率为( ) A .0.13 B .0.39 C .0.52D .0.64 解析:由列表可知样本数据落在(10,40]上的频数52. 故其频率为0.52. 答案:C3.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员的中位数分别为________.解析:根据中位数的含义及茎叶图可知,甲的中位数是19,乙的中位数是13. 答案:19、134.已知一个样本为:1,3,4,a,7.它的平均数是4,则这个样本的标准差是________. 解析:由平均数是4,得1+3+4+a +75=4,∴a =5,代入标准差的计算公式得s =2. 答案:2考点一 频率分布直方图的绘制与应用[例1] 对某电子元件进行寿命追踪调查,情况如下:(1)列出频率分布表; (2)画出频率分布直方图;(3)估计电子元件寿命在[100,400)h 以内的概率; (4)估计电子元件寿命在400 h 以上的概率.审题视点 分组及频数统计题中已给出,只需列表画图即可,解答(3)(4)可用频率代替概率. 解 (1)频率分布表如下:(2)频率分布直方图如下:(3)由频率分布表和频率分布直方图可得,寿命在[100,400)h 内的电子元件出现的频率为0.10+0.15+0.40=0.65,所以我们估计电子元件寿命在[100,400)h 内的概率为0.65.(4)由频率分布表可知,寿命在400 h 以上的电子元件出现的频率为0.20+0.15=0.35,故我们估计电子元件寿命在400 h 以上的概率为0.35.用频率分布直方图解决相关问题时,应正确理解图表中各个量的意义,识图掌握信息是解决该类问题的关键.频率分布直方图有以下几个要点:(1)纵轴表示频率/组距;(2)频率分布直方图中各长方形高的比也就是其频率之比;(3)直方图中每一个矩形的面积是样本数据落在这个区间上的频率,所有的小矩形的面积之和等于1,即频率之和为1.1.(2016·厦门质检)某工厂对一批产品进行了抽样检测,如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A .90B .75C .60D .45解析:产品净重小于100克的频率为(0.050+0.100)×2=0.300,设样本容量为n ,则36n=0.300,所以n =120,净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90.答案:A2.(2015·高考安徽卷)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50)[50,60),…,[80,90),[90,100].。