高中人教版物理选修3-3第八章气体8-3理想气体状态方程教案
- 格式:doc
- 大小:91.50 KB
- 文档页数:4
8.3、理想气体的状态方程一、教学目标1.在物理知识方面的要求:(1)初步理解“理想气体”的概念。
(2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。
(3)熟记盖·吕萨克定律及数学表达式,并能正确用它来解答气体等压变化的有关问题。
2.通过推导理想气体状态方程及由理想气体状态方程推导盖·吕萨克定律的过程,培养学生严密的逻辑思维能力。
3.通过用实验验证盖·吕萨克定律的教学过程,使学生学会用实验来验证成正比关系的物理定律的一种方法,并对学生进行“实践是检验真理唯一的标准”的教育。
二、重点、难点分析1.理想气体的状态方程是本节课的重点,因为它不仅是本节课的核心内容,还是中学阶段解答气体问题所遵循的最重要的规律之一。
2.对“理想气体”这一概念的理解是本节课的一个难点,因为这一概念对中学生来讲十分抽象,而且在本节只能从宏观现象对“理想气体”给出初步概念定义,只有到后两节从微观的气体分子动理论方面才能对“理想气体”给予进一步的论述。
另外在推导气体状态方程的过程中用状态参量来表示气体状态的变化也很抽象,学生理解上也有一定难度。
三、教具1.气体定律实验器、烧杯、温度计等。
四、主要教学过程(一)引入新课前面我们学习的玻意耳定律是一定质量的气体在温度不变时,压强与体积变化所遵循的规律,而查理定律是一定质量的气体在体积不变时,压强与温度变化时所遵循的规律,即这两个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?这就是我们今天这节课要学习的主要问题。
(二)教学过程设计1.关于“理想气体”概念的教学设问:(1)玻意耳定律和查理定律是如何得出的?即它们是物理理论推导出来的还是由实验总结归纳得出来的?答案是:由实验总结归纳得出的。
理想气体的状态方程教学设计教材分析本节教材是人教版高中物理选修3-3第八章第3节《理想气体的状态方程》,教材在说明理想气体的含义后,引导学生用学过的知识推导一定质量某种气体在三个状态参量都发生变化时状态参量之间的关系式,即理想气体的状态方程,后将理想气体的状态方程应用于简单的问题中,以使学生进一步理解和记忆理想气体的状态方程。
在学习理想气体的状态方程之前,教材已安排学习了一定质量某种气体的等温、等容和等压变化规律,利用这三种过程中的任意两种都可以推导出理想气体的状态方程。
教材在“思考与讨论”栏目中,设计了一个状态A→状态B→状态C的物理情景,A→B是等温的,B→C是等容的,即采用先等温、后等容的方式。
实际上,设计为其他的过程也是可以的。
教材在“思考与讨论”后安排了例题,但此例题相对较简单,可用于助力学生记忆公式,但要提升能力显然还不够。
学情分析由于前面的一系列铺垫,加之学生的基础还不错,因而学生可以在课堂上就“思考与讨论”所提出的问题进行自主推导,基本上不会有太大问题。
学生所解答问题的答案,就是学生需要学习的新知识----理想气体的状态方程,学生解决这一问题的过程,就是构建自己新知识的过程。
在具体的教学过程中,应当让学生通过自己解决问题来建构新的知识,所以在学完理想气体的状态方程之后会给学生做一些拓展延伸,这样有利于形成学生的探究意识,发展学生的探究能力。
教学目标1.知识与技能:(1)了解理想气体,并知道实际气体可以被看成理想气体的条件。
(2)能独立根据气体定律推出理想气体的状态方程。
(3)掌握理想气体的状态方程的内容和表达式,并能应用方程解决实际问题。
2.过程与方法:(1)在建立理想气体的模型过程中,突出主要矛盾,从而认识物理现象的本质。
(2)通过推导理想气体的状态方程的过程,培养学生严密的逻辑思维能力和锻炼应用数学知识解决物理问题的能力。
3.情感态度价值观:(1)坚持内容与形式的统一的辩证唯物主义思想教育。
2019-2020年高中物理 8.3《理想气体的状态方程》教案新人教版选修3-3教学目标1.在物理知识方面的要求:(1)初步理解“理想气体”的概念。
(2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。
(3)熟记盖·吕萨克定律及数学表达式,并能正确用它来解答气体等压变化的有关问题。
2.通过推导理想气体状态方程及由理想气体状态方程推导盖·吕萨克定律的过程,培养学生严密的逻辑思维能力。
3.通过用实验验证盖·吕萨克定律的教学过程,使学生学会用实验来验证成正比关系的物理定律的一种方法,并对学生进行“实践是检验真理唯一的标准”的教育。
重点、难点分析1.理想气体的状态方程是本节课的重点,因为它不仅是本节课的核心内容,还是中学阶段解答气体问题所遵循的最重要的规律之一。
2.对“理想气体”这一概念的理解是本节课的一个难点,因为这一概念对中学生来讲十分抽象,而且在本节只能从宏观现象对“理想气体”给出初步概念定义,只有到后两节从微观的气体分子动理论方面才能对“理想气体”给予进一步的论述。
另外在推导气体状态方程的过程中用状态参量来表示气体状态的变化也很抽象,学生理解上也有一定难度。
教学过程引入新课玻意耳定律是一定质量的气体在温度不变时,压强与体积变化所遵循的规律,而查理定律是一定质量的气体在体积不变时,压强与温度变化时所遵循的规律,即这两个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?教学过程设计一.关于“理想气体”概念的教学设问:(1)玻意耳定律和查理定律是如何得出的?即它们是物理理论推导出来的还是由实验总结归纳得出来的?答案是:由实验总结归纳得出的。
(2)这两个定律是在什么条件下通过实验得到的?老师引导学生知道是在温度不太低(与常温比较)和压强不太大(与大气压强相比)的条件得出的。
理想气体的状态方程课时教学设计一、理想气体问题:以下是一定质量的空气在温度不变时,体积随常压和非常压变化的实验数据:压强〔p〕〔atm〕空气体积V〔L〕pV值( 1×1.013×105PaL)1 100 200 500 10001.0000.9730/1001.0100/2001.3400/5001.9920/10001.0000.97301.01001.34001.9920问题分析:〔1〕从表中发现了什么规律?在压强不太大的情况下,实验结果跟实验定律——玻意耳定律基本吻合,而在压强较大时,玻意耳定律那么完全不适用了。
〔2〕为什么在压强较大时,玻意耳定律不成立呢?如果温度太低,查理定律是否也不成立呢?○1分子本身有体积,但在气体状态下分子的体积相对于分子间的空隙很小,可以忽略不计。
○2分子间有相互作用的引力和斥力,但分子力相对于分子的弹性碰撞时的冲力很小,也可以忽略。
○3一定质量的气体,在温度不变时,如果压强不太大,气体分子自身体积可忽略,玻意耳定律成立,但在压强足够大时,气体体积足够小而分子本身不能压缩,分子体积显然不能忽略,这样,玻意耳定律也就不成立了。
○4一定质量的气体,在体积不变时,如果温度足够低,分子动能非常小,与碰撞时的冲力相比,分子间分子力不能忽略,因此查理定律亦不成立了。
总结规律:设想有这样的气体,气体分子本身体积完全可以忽略,分子间的作用力完全等于零,也就是说,气体严格遵守实验定律。
这样的气体就叫做理想气体。
a.实际的气体,在温度不太低、压强不太大时,可以近似为理想气体。
b.理想气体是一个理想化模型,实际气体在压强不太大、温度不太低的情况下可以看作是理想气体. 二、理想气体的状态方程情景设置:理想气体状态方程是根据气体实验定律推导得到的。
如下图,一定质量的理想气体由状态1〔T 1、p 1、v 1〕变化到状态2〔T 2、p 2、v 2〕,各状态参量变化有什么样的变化呢?我们可以假设先让气体由状态1〔T 1、p 1、v 1〕经等温变化到状态c 〔T 1、p c 、v 2〕,再经过等容变化到状态2〔T 2、p 2、v 2〕。
理想气体的状态方程课时教学设计一、理想气体问题:以下是一定质量的空气在温度不变时,体积随常压和非常压变化的实验数据:压强(p)(atm)空气体积V(L)pV值( 1×1.013×105PaL)1 100 200 500 10001.0000.9730/1001.0100/2001.3400/5001.9920/10001.0000.97301.01001.34001.9920问题分析:(1)从表中发现了什么规律?在压强不太大的情况下,实验结果跟实验定律——玻意耳定律基本吻合,而在压强较大时,玻意耳定律则完全不适用了。
(2)为什么在压强较大时,玻意耳定律不成立呢?如果温度太低,查理定律是否也不成立呢?○1分子本身有体积,但在气体状态下分子的体积相对于分子间的空隙很小,可以忽略不计。
○2分子间有相互作用的引力和斥力,但分子力相对于分子的弹性碰撞时的冲力很小,也可以忽略。
○3一定质量的气体,在温度不变时,如果压强不太大,气体分子自身体积可忽略,玻意耳定律成立,但在压强足够大时,气体体积足够小而分子本身不能压缩,分子体积显然不能忽略,这样,玻意耳定律也就不成立了。
○4一定质量的气体,在体积不变时,如果温度足够低,分子动能非常小,与碰撞时的冲力相比,分子间分子力不能忽略,因此查理定律亦不成立了。
总结规律:设想有这样的气体,气体分子本身体积完全可以忽略,分子间的作用力完全等于零,也就是说,气体严格遵守实验定律。
这样的气体就叫做理想气体。
a.实际的气体,在温度不太低、压强不太大时,可以近似为理想气体。
b.理想气体是一个理想化模型,实际气体在压强不太大、温度不太低的情况下可以看作是理想气体. 二、理想气体的状态方程情景设置:理想气体状态方程是根据气体实验定律推导得到的。
如图所示,一定质量的理想气体由状态1(T 1、p 1、v 1)变化到状态2(T 2、p 2、v 2),各状态参量变化有什么样的变化呢?我们可以假设先让气体由状态1(T 1、p 1、v 1)经等温变化到状态c (T 1、p c 、v 2),再经过等容变化到状态2(T 2、p 2、v 2)。
理想气体的状态方程课时教学设计一、理想气体问题:以下是一定质量的空气在温度不变时,体积随常压和非常压变化的实验数据:压强(p)(atm)空气体积V(L)pV值( 1×1.013×105PaL)1 100 200 500 10001.0000.9730/1001.0100/2001.3400/5001.9920/10001.0000.97301.01001.34001.9920问题分析:(1)从表中发现了什么规律?在压强不太大的情况下,实验结果跟实验定律——玻意耳定律基本吻合,而在压强较大时,玻意耳定律则完全不适用了。
(2)为什么在压强较大时,玻意耳定律不成立呢?如果温度太低,查理定律是否也不成立呢?○1分子本身有体积,但在气体状态下分子的体积相对于分子间的空隙很小,可以忽略不计。
○2分子间有相互作用的引力和斥力,但分子力相对于分子的弹性碰撞时的冲力很小,也可以忽略。
○3一定质量的气体,在温度不变时,如果压强不太大,气体分子自身体积可忽略,玻意耳定律成立,但在压强足够大时,气体体积足够小而分子本身不能压缩,分子体积显然不能忽略,这样,玻意耳定律也就不成立了。
○4一定质量的气体,在体积不变时,如果温度足够低,分子动能非常小,与碰撞时的冲力相比,分子间分子力不能忽略,因此查理定律亦不成立了。
总结规律:设想有这样的气体,气体分子本身体积完全可以忽略,分子间的作用力完全等于零,也就是说,气体严格遵守实验定律。
这样的气体就叫做理想气体。
a.实际的气体,在温度不太低、压强不太大时,可以近似为理想气体。
b.理想气体是一个理想化模型,实际气体在压强不太大、温度不太低的情况下可以看作是理想气体.二、理想气体的状态方程情景设置:理想气体状态方程是根据气体实验定律推导得到的。
如图所示,一定质量的理想气体由状态1(T1、p1、v1)变化到状态2(T2、p2、v2),各状态参量变化有什么样的变化呢?我们可以假设先让气体由状态1(T1、p1、v1)经等温变化到状态c(T1、p c、v2),再经过等容变化到状态2(T2、p2、v2)。
第三节 理想气体的状态方程[要点导学]1.这堂课学习教材第三节的内容。
主要要求如下:理解理想气体含义和建立“理想气体”模型的物理意义,进一步明确气体实验定律的适用范围。
体会根据气体实验定律推导理想气体状态方程的过程,会用理想气体状态方程解决有关气体状态变化的问题。
2.前二节学习的气体定律是在温度不太低、压强不太大的情况下通过实验总结得到的规律,当压强很大、温度很低时,实际的气体状态变化就不再符合气体定律。
理想气体是一种假想的气体,假想任何情况下都严格遵守气体定律的气体叫做理想气体。
用分子运动论的观点看,理想气体的分子大小不计,分子间相互作用力不计。
3.理想气体状态方程是根据气体实验定律推导得到的。
如图所示,一定质量的理想气体由状态1(T 1、p 1、v 1)变化到状态2(T 2、p 2、v 2),各状态参量变化有什么样的变化呢?我们可以假设先让气体由状态1(T 1、p 1、v 1)经等温变化到状态c (T 1、p c 、v 2),再经过等容变化到状态2(T 2、p 2、v 2)。
等温变化过程各参量的关系是__________________;等容变化过程各状态参量的关系是____________________。
两式联立消去p c 得到:112212p v p v T T =。
这就是一定质量的理想气体由状态1(T 1、p 1、v 1)变化到状态2(T 2、p 2、v 2)过程中各状态参量的关系,称为理想气体状态方程。
4.虽然理想气体在实际中并不存在,但在温度不太低、压强不太大的情况下,实际气体的性质与实验定律吻合得很好。
通常计算中把实际气体当作理想气体处理,简单方便而误差很小。
5.运用理想气体状态方程解决问题的基本思路和气体定律一样。
根据问题选取研究对象(一定质量的气体);分析状态变化过程,确定初、末状态,用状态参量描述状态;用理想气体状态方程建立各参量之间的联系,进行求解。
[范例精析]例1.某个汽缸中有活塞封闭了一定质量的空气,它从状态A 变化到状态B,其压强p 和温度T 的关系如图所示,则它的体积( )A .增大B.减小C.保持不变D.无法判断解析:根据理想气体状态方程pv T=恒量,由图可知,气体从A 变化到B 的过程中温度T 保持不变,压强p 增大,则体积v 一定变小。
3 理想气体的状态方程一、教学目标(1)初步理解“理想气体”的概念。
(2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。
2.通过推导理想气体状态方程的过程,培养学生严密的逻辑思维能力。
二、重点、难点分析1.理想气体的状态方程是本节课的重点,因为它不仅是本节课的核心内容,还是中学阶段解答气体问题所遵循的最重要的规律之一。
2.对“理想气体”这一概念的理解是本节课的一个难点,因为这一概念对中学生来讲十分抽象,而且在本节只能从宏观现象对“理想气体”给出初步概念定义,只有到后两节从微观的气体分子动理论方面才能对“理想气体”给予进一步的论述。
另外在推导气体状态方程的过程中用状态参量来表示气体状态的变化也很抽象,学生理解上也有一定难度。
三、教具1.投影幻灯机、书写用投影片。
2.气体定律实验器、烧杯、温度计等。
四、主要教学过程(一)引入新课:复习玻意耳定律、查理定律和盖·吕萨克定律。
说明,前面的三个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?这就是我们今天这节课要学习的主要问题。
(二)教学过程设计1.关于“理想气体”概念的教学设问:(1)玻意耳定律和查理定律是如何得出的?即它们是物理理论推导出来的还是由实验总结归纳得出来的?[答案]是:由实验总结归纳得出的。
(2)这两个定律是在什么条件下通过实验得到的?老师引导学生知道是在温度不太低(与常温比较)和压强不太大(与大气压强相比)的条件得出的。
老师讲解:在初中我们就学过使常温常压下呈气态的物质(如氧气、氢气等)液化的方法是降低温度和增大压强。
这就是说,当温度足够低或压强足够大时,任何气体都被液化了,当然也不遵循反映气体状态变化的玻意耳定律和查理定律了。
而且实验事实也证明:在较低温度或较大压强下,气体即使未被液化,它们的实验数据也与玻意耳定律或查理定律计算出的数据有较大的误差。
第 1 页 一、学习目标1.能够说出什么叫理想气体;2.会用气体实验三定律推导理想气体状态方程,并能应用方程解决具体气态变化问题;3.会用图像处理理想气体的状态变化。
二、课堂导学(一)理想气体什么叫理想气体?把实际气体看成理想气体的条件是什么?(二)理想气体的状态方程1.理想气体的状态方程的推导(1)一定质量的理想气体,其状态变化如图中箭头所示顺序进行,则AB 段是什么过程,遵守什么定律?BC 段是什么过程,遵守什么定律?若CA 段是以纵轴和横轴为渐近线的双曲线的一部分,则CA 段是什么过程,遵守什么定律? (2)如图所示,一定质量的某种理想气体从A 到B 经历了一个等温过程,从B 到C经历了一个等容过程。
分别用p A 、V A 、T A 和p B 、V B 、T B 以及p C 、V C 、T C 表示气体在A 、B 、C 三个状态的状态参量,请你推导A 、C 状态的状态参量间关系。
2.理想气体的状态方程的应用一定质量的理想气体,由状态A (1,3)沿直线AB 变化到C (3,1),如图所示,气体在A 、B 、C 三个状态中的温度之比是多少?三、典型例题例1 对一定质量的理想气体,初始状态为P 、V 、T ,经过一系列变化压强仍为P ,下列过程可以实现的是( )A . 先等温膨胀,再等容降温B .先等温压缩,再等容降温C .先等容升温,再等温压缩D .先等容降温,再等温压缩例2一定质量的理想气体的状态变化过程的V-T 图象如图甲所示,若将该变化过程用P -T 图象表示,则应为乙中的哪一个 ( )例3) A .C .例时,这个水银气压计的读数为738mmHg ,此时管中水银面距管顶80mm,当温度降至-3℃时,这个气压计的读数为743mmHg ,求此时的实际大气压值。
例5 如图所示是质量相等的A 、B 同种气体的等压线,根据图中给出的条件求:(1)它们的压强之比P A ︰P B ;(2)当t =273℃时,气体A 的体积比气体B 的体积大多少? p O V A B C c 甲乙 C D A B V O p。