不等式与不等式组 练习题 答案
- 格式:doc
- 大小:462.00 KB
- 文档页数:30
不等式与不等式方程练习题(含答案)本文档包含了一系列关于不等式和不等式方程的练题和答案,旨在帮助读者巩固对这些概念的理解和应用。
不等式练题1. 求解不等式:$2x + 5 > 10$。
答案:$x > 2.5$2. 将不等式$3x - 4 < 7$化为标准不等式形式。
答案:$3x < 11$3. 求解不等式组:$\begin{cases} x - 2 > 5 \\ 2x + 3 < 10\end{cases}$。
答案:$x > 7$,$x < 3.5$4. 求解绝对值不等式:$|2x - 3| \leq 7$。
答案:$-2 \leq x \leq 5$5. 求解复合不等式:$-3 < 2x + 1 < 5$。
答案:$-2 < x < 2$不等式方程练题1. 求解不等式方程:$5x - 7 = 3x + 5$。
答案:$x = 6$2. 求解二次不等式方程:$x^2 + 5x - 6 < 0$。
答案:$-6 < x < 1$3. 求解分式不等式方程:$\frac{2x + 1}{x - 3} \geq 2$。
答案:$x \geq 4$4. 求解绝对值不等式方程:$|2x - 5| = 10$。
答案:$x = -2.5$,$x = 7.5$5. 求解复合不等式方程组:$\begin{cases} 3x - 2 \geq 4 \\ 2x + 5 \leq 9 \end{cases}$。
答案:$x \geq 2$,$x \leq 2$以上是一些关于不等式和不等式方程的练习题和答案。
阅读者可以利用这些题目来巩固学习并提高解题能力。
如有任何疑问,请随时提出。
第九章不等式与不等式组9.1不等式9.1.1不等式及其解集基础题知识点1不等式1.给出下面5个式子:①3>0;②4x+3y≠0;③x=3;④x-1;⑤x+2<3,其中不等式有(B)A.2个B.3个C.4个D.5个2.选择适当的不等号填空:(1)2<3;(2)-9>-4;(3)若a为正方形的边长,则a>0;(4)若x≠y,则-x≠-y.3.如图,左边物体的质量为x g,右边物体的质量为50g,用不等式表示下列数量关系是x>50.第3题第4题4.如图,身高为x cm的1号同学与身高为y cm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,那么这个式子可以表示成x<y(用“>”或“<”填空).5.用适当的符号表示下列关系:(1)x是正数:x>0;(2)m大于-3:m>-3;11(3)a-b是负数:a-b<0;(4)a的3比5大:3a>5.116.“b的2与c的和是负数”用不等式表示为2b+c<0.知识点2不等式的解和解集7.用不等式表示如图所示的解集,其中正确的是(A)A.x>-2B.x<-2C.x>2D.x≠-28.下列说法中,错误的是(C)A.x=1是不等式x<2的解;B.-2是不等式2x-1<0的一个解;C.不等式-3x>9的解集是x=-3;D.不等式x<10的整数解有无数个。
229.下列各数:-2,-2.5,0,1,6中,不等式3x>1的解有6;不等式-3x>1的解有-2,-2.5.10.把下列不等式的解集在数轴上表示出来.(1)x>-3;解:(2)x>-1;解:(3)x<3;解:3(4)x<-2.解:中档题11.x与3的和的一半是负数,用不等式表示为(C)1111A.2x+3>0B.2x+3<0C.2(x+3)<0D.2(x+3)>012.实数a,b在数轴上的位置如图所示,则下列不等式成立的是(D)A.a>bB.ab>0C.a+b>0D.a+b<013.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.x+4]=5,则x的取值可以是(C)若[10A.40B.45C.51D.5614.请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解:x<1;(2)-2,-1,0,1都是不等式的解:x<2;(3)0不是这个不等式的解:x>0;(4)与x<-1的解集相同的不等式:x+2<1.15.有如图所示的两种广告牌,其中图1是由两个两直角边相等的直角三角形构成的,图2是一个长方形,从图形上确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a,b 11的不等式表示为2a2+2b2>ab.16.用不等式表示:(1)7x与1的差小于4;(2)x的一半比y的2倍大;1(3)a的9倍与b的2的和是正数.11(3)9a+2b>0.解:(1)7x-1<4.(2)2x>2y.17.直接写出下列各不等式的解集:(1)x+1>0;解:x>-1.(2)3x<6.解:x<2.18.已知一支圆珠笔1.5元,签字笔与圆珠笔相比每支贵2元.小华想要买x支圆珠笔和10支签字笔.若付50元仍找回若干元,则如何用含x的不等式来表示小华所需支付的金额与50元之间的关系?解:列不等式为:1.5x+10×(1.5+2)<50.19.在爆破时,如果导火索燃烧的速度是每秒钟0.8cm,人跑开的速度是每秒钟4m,为了使点导火索的人在爆破时能够跑到100m以外的安全地区,设导火索的长为s cm.(1)用不等式表示题中的数量关系;s解:4×0.8>100.(2)当导火索是下列哪个长度时,人能跑到安全地区(D)A.15cmB.18cmC.20cmD.25cm综合题20.阅读下列材料,并完成填空:你能比较20172018和20182017的大小吗?为了解决这个问题,先把问题一般化,即:比较n n +1和(n+1)n的大小(n>0,且n为整数).从分析n=1,2,3,…的简单情况入手,从中发现规律,经过归纳猜想出结论:(1)通过计算,填“>”或“<”;①12<21;②23<32;③34>43;④45>54.(2)根据(1)的结果,猜想n n+1和(n+1)n的大小关系;(3)根据(2)中的猜想,知20172018>20182017.解:当n=1或2时,n n+1<(n+1)n;当n>2,且n为整数时,n n+1>(n+1)n.4.若 a >b ,则 3a >3b ; > ;ac 2>bc 2(c 为非零实数).(填“>”“=”或“<”)5.如果 2m <3n ,那么不等式两边同时乘 (或除以 6),可变为 m< n.2 3 3第九章 不等式与不等式组9.1 不等式9.1.2不等式的性质第 1 课时 不等式的基本性质基础题知识点 1 不等式的性质 11.若 a >b ,则 a -3>b -3.(填“>”“<”或“=”)2.若 a -4<b -4,则 a <b.(填“>”“<”或“=”)3.已知实数 a ,b 在数轴上的对应点的位置如图所示,则 a -2<b -2.知识点 2 不等式的性质 2a b5 51 1 16 3 2知识点 3 不等式的性质 316.若- a≥b,则 a≤-2b ,其根据是(C)A.不等式的两边加(或减)同一个数(或式子),不等号的方向不变B.不等式的两边乘(或除以)同一个正数,不等号的方向不变C.不等式的两边乘(或除以)同一个负数,不等号的方向改变D.以上答案均不对7.若 a >b ,am <bm ,则一定有(B)A.m =0B.m <0C.m >0D.m 为任何实数中档题8.若 x >y ,则下列式子中错误的是(D)x y A.x -3>y -3B. >C.x +3>y +3D.-3x >-3y9.(2017·株洲)已知实数 a ,b 满足 a +1>b +1,则下列选项错误的为(D)A.a >bB.a +2>b +2C.-a <-bD.2a >3bc b12.已知关于x的不等式(1-a)x>2的解集为x<210.下列说法不一定成立的是(C)A.若a>b,则a+c>b+c;B.若a+c>b+c,则a>b;C.若a>b,则ac2>bc2;D.若ac2>bc2,则a>b11.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是(B)A.a-c>b-cB.a+c<b+ca cC.ac>bcD.<1-a,则a的取值范围是a>1.13.如图所示,A,B,C,D四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为B<A<D<C.14.张华在进行不等式变形时遇到不等式b<-b,他将不等式两边同时除以b得1<-1,这显然是不成立的,你能解释这是为什么吗?你能求出b的取值范围吗?解:∵不知道b的正负,∴将不等式两边同时除以b,不等号的方向不知道改变不改变.张华把b看成大于0,所以才得出错误的结论.不等式两边同时加上b,得2b<0.不等式两边同时除以2,得b<0.3 6 3 6 7 44第 2 课时 不等式的基本性质的运用基础题知识点 1 利用不等式的性质解不等式1.不等式 x -2>1 的解集是(C)A.x>1B.x>2C.x>3D.x>42.(2016·临夏)在数轴上表示不等式 x -1<0 的解集,正确的是(C)3.利用不等式的基本性质求下列不等式的解集,并写出变形的依据.(1)若 x +2 016>2 017,则 x>1;(不等式两边同时减去 2__016,不等号方向不变)1 1(2)若 2x>- ,则 x>- ;(不等式两边同时除以 2,不等号方向不变)1 1(3)若-2x>- ,则 x< ;(不等式两边同时除以-2,不等号方向改变)x(4)若- >-1,则 x<7.(不等式两边同时乘-7,不等号方向改变)4.根据不等式的性质,将下列不等式化成“x>a”或“x<a”的形式.3(1)8x >7x +1;(2)-3x <-4x - .3解:(1)不等式两边都减 7x ,得 x >1.(2)不等式两边都加 4x ,得 x <- .知识点 2 不等式的简单应用5.某单位打算和一个体车主或一出租车公司签订月租合同.个体车主答应除去每月 1 500 元租金外,每千米收 1 元;出租车公司规定每千米收 2 元,不收其他费用.设该单位每月用车 x 千米时,乘坐出租车划算,请写出 x 的取值范围.解:根据题意,得1 500+x>2x ,解得 x<1 500.∵单位每月用车 x(千米)是正数,∴x 的取值范围是 x >0 并且 x <1 500.33336.若式子3x+4的值不大于0,则x的取值范围是(D)4444A.x<-B.x≥C.x<D.x≤-7.如图是关于x的不等式2x-a≤-1的解集,则a的取值是(C)A.a≤-1B.a≤-2C.a=-1D.a=-28.利用不等式的性质解下列不等式.(1)5x≥3x-2;解:不等式两边同时减去3x,得2x≥-2.不等式两边同时除以2,得x≥-1.(2)8-3x<4-x.解:不等式两边同时加上x,得8-2x<4.不等式两边同时减去8,得-2x<-4.不等式两边同时除以-2,得x>2.9.已知一台升降机的最大载重量是1200kg,在一名体重为75kg的工人乘坐的情况下,它最多能装载多少件25kg重的货物?解:设能载x件25kg重的货物,因为升降机最大载重量是1200kg,所以有75+25x≤1200,解得x≤45.因此,升降机最多载45件25kg重的货物.a b10.已知关于 x 的不等式 ax <-b 的解集是 x >1,求关于 y 的不等式 by >a 的解集.解:∵不等式 ax <-b 的解集是 x >1,b∴a<0,- =1.∴b=-a ,b >0.a∴不等式 by >a 的解集为 y > =-1,即不等式 by >a 的解集为 y >-1.第九章 不等式与不等式组9.1 不等式9.2 一元一次不等式第 1 课时 一元一次不等式的解法基础题知识点 一元一次不等式及其解法1.下列不等式中,属于一元一次不等式的是(B)1 A.4>1B.3x -16<4C.x<2.4x -3<2y -712.(2017· 眉山)不等式-2x >2的解集是(A)11A.x <-4B.x <-1C.x >-4D.x >-13.(2017· 吉林)不等式 x +1≥2 的解集在数轴上表示正确的是(A)4.(2016· 六盘水)不等式 3x +2<2x +3 的解集在数轴上表示正确的是(D)x x -15.不等式2- 3 ≤1 的解集是(A)A.x ≤4B.x ≥4C.x ≤-1D.x ≥-16.(2017· 遵义)不等式 6-4x ≥3x -8 的非负整数解有(B)A.2 个B.3 个C.4 个D.5 个77.已知 y 1=-x +3,y 2=3x -4,当 x >4时,y 1<y 2.8.解不等式,并把解集在数轴上表示出来:(1)5x-2≤3x;解:移项,得5x-3x≤2.合并同类项,得2x≤2.系数化为1,得x≤1.其解集在数轴上表示为:(2)2(x-1)+5<3x;解:去括号,得2x-2+5<3x.移项,得2x-3x<2-5.合并同类项,得-x<-3.系数化为1,得x>3.其解集在数轴上表示为:x-27-x.(3)2≤3解:去分母,得3(x-2)≤2(7-x).去括号,得3x-6≤14-2x.移项、合并同类项,得5x≤20.解得x≤4.其解集在数轴上表示为:1+x 2x +19.(2017· 舟山)小明解不等式 2 - 3 ≤1 的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.解:去分母,得 3(1+x)-2(2x +1)≤1.①去括号,得 3+3x -4x +1≤1.②移项,得 3x -4x ≤1-3-1.③合并同类项,得-x ≤-3.④两边都除以-1,得 x ≤3.⑤解:错误的是①②⑤,正确的解答过程如下:去分母,得 3(1+x)-2(2x +1)≤6.去括号,得 3+3x -4x -2≤6.移项,得 3x -4x ≤6-3+2.合并同类项,得-x ≤5.两边都除以-1,得 x ≥-5.中档题10.(2017· 丽水)若关于 x 的一元一次方程 x -m +2=0 的解是负数,则 m 的取值范围是(C)A.m ≥2B.m >2C.m <2 D .m ≤2111.不等式3(x -m)>2-m 的解集为 x >2,则 m 的值为(B)31 A.4 B.2C.2D.2312.要使 4x -2的值不大于 3x +5,则 x 的最大值是(B)A.4B.6.5C.7D.不存在x +1 2x +213.(2016· 南充)不等式 2 > 3 -1 的正整数解的个数是(D)A.1B.2C.3D.414.(2017·大庆)若实数3是不等式2x-a-2<0的一个解,则a可取的最小正整数为(D)A.2B.3C.4D.515.(2017·烟台)运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作.若输入x后程序操作仅进行了一次就停止,则x的取值范围是x<8.16.解不等式,并把解集在数轴上表示出来:(1)2(x+1)-1≥3x+2;解:去括号,得2x+2-1≥3x+2.移项,得2x-3x≥2-2+1.合并同类项,得-x≥1.系数化为1,得x≤-1.其解集在数轴上表示为:1(2)(2017·晋江月考)3(x-1)<4(x-2)-3;解:去括号,得3x-3<4x-2-3.移项,得3x-4x<3-2-3.合并同类项,得-x<-2.系数化为1,得x>2.其解集在数轴上表示为:(3)2x-19x+2323=23-6≤1;解:去分母,得2(2x-1)-(9x+2)≤6.去括号,得4x-2-9x-2≤6.移项,得4x-9x≤6+2+2.合并同类项,得-5x≤10.系数化为1,得x≥-2.其解集在数轴上表示为:x+1(4)2≥3(x-1)-4.解:去分母,得x+1≥6(x-1)-8.去括号,得x+1≥6x-6-8.移项,得x-6x≥-6-1-8.合并同类项,得-5x≥-15.系数化为1,得x≤3.其解集在数轴上表示为:综合题17.已知关于x的方程4(x+2)-2=5+3a的解不小于方程(3a+1)x a(2x+3)=的解,试求a的取值范围.3a-1解:解方程4(x+2)-2=5+3a,得x=4.(3a+1)x a(2x+3)9a解方程,得x=2.3a-19a11依题意,得4≥2.解得a≤-15.故a的取值范围为a≤-15.第九章不等式与不等式组9.2一元一次不等式第2课时一元一次不等式的应用基础题知识点1一元一次不等式的简单应用1.(2017·齐齐哈尔)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买(A)A.16个B.17个C.33个D.34个2.某校举行关于“保护环境”的知识竞赛,共有25道题,答对一题得10分,答错(或不答)一题倒扣5分,小明参加本次竞赛,得分超过了100分,则他至少答对的题数是(B)A.17B.16C.15D.123.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x千米,出租车费为21元,那么x的最大值是(B)A.11B.8C.7D.54.(2016·西宁)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有(C)A.103块B.104块C.105块D.106块5.为了举行班级晚会,孔明准备去商店购买20个乒乓球作道具,并买一些乒乓球拍作奖品,已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?解:设孔明应该买x个球拍,根据题意,得81.5×20+22x≤200,解得x≤711.由于x取整数,故x的最大值为7.答:孔明应该买7个球拍.知识点2利用一元一次不等式设计方案6.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?解:(1)120×0.95=114(元).答:实际应支付114元.(2)设购买商品的价格为x元,由题意得0.8x+168<0.95x,解得x>1120.答:当购买商品的价格超过1120元时,采用方案一更合算.7.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人.售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式.解:设参加旅游的儿童有m人,则成人有(30-m)人.根据题意,得按团体票购买时,总费用为100×80%×30=2400(元).分别按成人票、儿童票购买时,总费用为100(30-m)+50m=(3000-50m)元.①若3000-50m=2400,解得m=12.即当儿童为12人时,两种购票方式花费相同.②若选择购买团体票花费少,则有3000-50m>2400,解得m<12.即当儿童少于12人时,选择购买团体票花费少.③若选择分别按成人票、儿童票购票花费少,则有3000-50m<2400,解得m>12.即当儿童多于12人时,选择分别按成人票、儿童票购票花费少.中档题8.(2016·雅安)“一方有难,八方支援”,雅安芦山4·20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为(C)A.60B.70C.80D.909.(2017·牡丹江)某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打8折.10.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3∶2,则该行李箱的长的最大值为78cm.11.2017年的5月20日是第28个全国学生营养日,某市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?信息1.快餐成分:蛋白质、脂肪、碳水化合物和其他.2.快餐总质量为400克.3.碳水化合物质量是蛋白质质量的4倍.解:设这份快餐含有x克的蛋白质,则这份快餐含有4x克的碳水化合物,根据题意,得x+4x≤400×70%,解得x≤56.答:这份快餐最多含有56克的蛋白质.12.某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.假设你是决策者,你认为应该选择哪种方案?并说明理由.解:设纸箱的个数为x,则当两种方案费用一样时,4x=2.4x+16000,解得x=10000;当方案一费用低时,4x<2.4x+16000,解得x<10000;当方案二费用低时,4x>2.4x+16000,解得x>10000.答:当需要纸箱的个数为10000时,两种方案都可以;当需要纸箱的个数小于10000时,方案一便宜;当需要纸箱的个数大于10000时,方案二便宜.综合题13.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知方案一购买较为合算;(只填“方案一”或“方案二”,不要求解题过程)(2)当x>20时,①该客户按方案一购买,需付款(40x+3__200)元;(用含x的式子表示)②该客户按方案二购买,需付款(36x+3__600)元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?解:若按方案一购买更省钱,则有40x+3200<36x+3600.解得x<100.即当买的领带数少于100时,方案一付费较少.若按方案二购买更省钱,则有40x+3200>36x+3600.解得x>100.即当买的领带数超过100时,方案二付费较少;若40x+3200=36x+3600,解得x=100.即当买100条领带时,两种方案付费一样.第九章不等式与不等式组周周练(9.1~9.2)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.下列各式中,是一元一次不等式的是(C)A.5+4>8B.2x-11C.2x≤5D.x-3x≥02.下列数值中不是不等式5x≥2x+9的解的是(D)A.5B.4C.3D.23.(2017·六盘水)不等式3x+6≥9的解集在数轴上表示正确的是(C)4.(2017·杭州)若x+5>0,则(D)xD.-2x<12 A.x+1<0 B.x-1<0C.5<-12+x2x-15.下列解不等式3>5的过程中,出现错误的一步是(D)①去分母,得5(x+2)>3(2x-1);②去括号,得5x+10>6x-3;③移项,得5x-6x>-10-3;④系数化为1,得x>13.A.①B.②C.③D.④6.设a,b,c表示三种不同物体的质量,用天平秤两次,情况如图所示,则这三种物体的质量从小到大排列正确的是(A)A.c<b<aB.b<c<aC.c<a<bD.b<a<c7.(2017· 毕节)关于 x 的一元一次不等式m -2x11.若不等式(a -2)x <1 的两边同时除以 a -2 后变成 x> ,则 a 的取值范围是 a <2.3 ≤-2 的解集为 x ≥4,则 m 的值为(D)A.14B.7C.-2D.28.某射击运动员在一次比赛中(共 10 次射击,每次射击最多是 10 环),前 6 次射击共中 52 环.如果他要打破 89 环的记录,那么第 7 次射击不能少于(D)A.5 环B.6 环C.7 环D.8 环二、填空题(每小题 3 分,共 18 分)1 19.用不等式表示“y 的2与 5 的和是正数”为2y +5>0.2 7 1210.不等式3x +1<3x -3 的解集是 x > 5 .1a -212.不等式 3(x -1)≤5-x 的非负整数解有 3 个.13.某校规定期中考试成绩的 40%和期末考试成绩的 60%的和作为学生成绩总成绩.该校李红同学期中数学考了 85 分,她希望自己学期总成绩不低于 90 分,则她在期末考试中数学至少应得多少分?设她在期末应考 x 分,可列不等式为 40%×85+60%x ≥90.⎧x +2y =3,14.已知关于 x ,y 的方程组⎨的解满足不等式 x +y >3,则 a 的取值范围是 a >1. ⎩2x +y =6a三、解答题(共 50 分)15.(8 分)解下列不等式,并将其解集在数轴上表示出来.(1)8x -1≥6x +3;解:移项,得 8x -6x ≥3+1.合并同类项,得 2x ≥4.系数化为 1,得 x ≥2.其解集在数轴上表示为:6 . 16.(6 分)已知式子 1-3x∴3+ m >0.10x +1(2)2x -1<解:去分母,得 12x -6<10x +1.移项,得 12x -10x <1+6.合并同类项,得 2x <7.7系数化为 1,得x<2.其解集在数轴上表示为:2 与 x -2 的差是负数,求 x 的取值范围.解:∵1-3x2 与 x -2 的差是负数,1-3x ∴ 2 -(x -2)<0.解得 x >1.17.(6 分)已知关于 x 的方程 x +m =3(x -2)的解是正数,求 m 的取值范围.解:解方程 x +m =3(x -2),1得 x =3+2m.∵方程的解是正数,12∴m >-6,即 m 的取值范围是 m >-6.2-x18.(8分)已知:不等式3≤2+x.(1)解该不等式,并把它的解集表示在数轴上;(2)若实数a满足a>2,说明a是不是该不等式的解.解:(1)2-x≤3(2+x),2-x≤6+3x,-4x≤4,x≥-1.解集表示在数轴上如下:(2)∵a>2,不等式的解集为x≥-1,而2>-1,∴a是该不等式的解.19.(10分)(2017·贵港)某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?解:(1)设甲队胜了x场,则负了(10-x)场,根据题意,得2x+10-x=18,解得x=8.则10-x=2.答:甲队胜了8场,负了2场.(2)设乙队在初赛阶段胜a场,根据题意,得2a+(10-a)>15,解得a>5.答:乙队在初赛阶段至少要胜6场.20.(12分)某市某中学要印制本校高中招生的录取通知书,有两个印刷厂前来联系制作业务.甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而制版费900元六折优惠.且甲、乙两厂都规定:一次印刷数至少是500份.如何根据印刷的数量选择比较合算的方案?如果这个中学要印制2000份录取通知书,那么应选择哪个厂?需要多少费用?解:设印刷数量为x份,则当1.2x+900=1.5x+540,此时x=1200.∴当印刷数量为1200份时,两个印刷厂费用一样,二者任选其一.当1.2x+900<1.5x+540,此时x>1200.∴当印刷数量大于1200份时,选择甲印刷厂费用少,比较合算.当1.2x+900>1.5x+540,此时500≤x<1200.∴当印刷数量大于或等于500且小于1200份时,选择乙印刷厂费用少,比较合算.当印制2000份时,选择甲印刷厂比较合算,所需费用为1.2×2000+900=3300(元).∴如果要印制2000份录取通知书,应选择甲印刷厂,需要3300元.x+1>x⎪⎩⎪⎩2第九章不等式与不等式组9.3一元一次不等式组基础题知识点1一元一次不等式组1.下列不等式组中,是一元一次不等式组的是(A)⎧x>2⎧x+1>0A.⎨B.⎨⎩x<-3⎩y-2<0⎧3x-2>0⎧⎪3x-2>0C.⎨D.⎨1⎩(x-2)(x+3)>0知识点2解一元一次不等式组2.如图表示下列四个不等式组中其中一个的解集,这个不等式组是(D)⎧x≥2⎧x≤2⎧x≥2⎧x≤2A.⎨B.⎨C.⎨D.⎨⎩x>-3⎩x<-3⎩x<-3⎩x>-3⎧3x-6<0,3.下列四个数中,为不等式组⎨的解的是(C)⎩3+x>3A.-1B.0C.1D.2⎧⎪2x>x-1,4.(2017·湖州)一元一次不等式组⎨1的解集是(C)x≤1A.x>-1B.x≤2C.-1<x≤2D.x>-1或x≤2⎧2x+9≥3,5.(2017·德州)不等式组⎨1+2x的解集是(B)⎩3>x-1A.x≥-3B.-3≤x<4C.-3≤x<2D.x>4⎧x+1>2,6.(2017·自贡)不等式组⎨的解集表示在数轴上正确的是(C)⎩3x-4≤2⎧2x-1>x+1,7.(2017·襄阳)不等式组⎨的解集为2<x≤3.⎩x+8≥4x-1⎧x+1≥2,①8.(2017·天津)解不等式组:⎨⎩5x≤4x+3.②请结合题意填空,完成本题的解答.(1)解不等式①,得x≥1;(2)解不等式②,得x≤3;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为1≤x≤3.9.解不等式组:⎧x-3<1,①(1)⎨⎩4x-4≥x+2;②解:解不等式①,得x<4.解不等式②,得x≥2.∴不等式组的解集为2≤x<4.⎧⎪1 x -6≤1-3x ,⎧x -1>0,①(2)(2016· 郴州)⎨⎩3(x -1)<2x.②解:解不等式①,得 x >1.解不等式②,得 x <3.∴不等式组的解集是 1<x <3.知识点 3 一元一次不等式组的运用10.已知点 P(3-m ,m -1)在第二象限,则 m 的取值范围在数轴上表示正确的是(A)⎧x +1<2a ,11.已知不等式组⎨的解集是 2<x <3,则 a =2,b =1. ⎩x -b >1中档题⎧2x +1>0,12.一元一次不等式组⎨的解集中,整数解的个数是(C) ⎩x -5≤0A.4B.5C.6D.75 13.(2017· 鄂州)对于不等式组⎨3下列说法正确的是(A) ⎪⎩3(x -1)<5x -1,7A.此不等式组的正整数解为 1,2,3;B.此不等式组的解集为-1<x ≤6;C.此不等式组有 5 个整数解;D.此不等式组无解。
第九章不等式与不等式组一、单项选择题1.假如莱州市2019 年 6 月 1 日最高气温是33o C ,最低气温是24o C ,则当日莱州市气温t o C的变化范围是()A .t33B.t33C.24t 33D.24t33 2.以下说法正确的选项是()A . 5 是不等式x 5 0 的解B. 6 是不等式x 5 10 的解集C.x 3 是不等式x 30 的解集D.x 5 是不等式 x 510 的解集3).若 a b ,则以下不等式不建立的是(A .ac2bc2B. a 4 b 4C. 1 a 1 b D.1 2a1 2b2 24 |a| x 的一元一次不等式,则 a 的值是().若 ( a 1)x 3 0 是对于A .1 B.C.1 D. 05.在数轴上表示不等式1 1 的解集,正确的选项是()1- x≥2 2A .B.C.D.6.某种商品的进价为900元,销售的标价为1650元,后出处于该商品积压,商品准备打折销售,但要保证收益率不低于10% ,则最多可打()A.6折B.7折C.8折D.9折x87.若不等式组有解,那么n 的取值范围是()x nA . n 8B . n 8C . n 8D . n 88.若对于 x 、 y3x y 1 a 的解知足xy 505 ,则 a的二元一次方程组3y 1的取值范围x 是( ).A . a 2018B . a 2018C . a 505D . a 5059.运转程序以下图, 从 “输入实数 x ”到 “结果能否 18 ”为一次程序操作, 若输入后 x 程序操作进行了两次就停止,则x 的取值范围是 ()14 B .14 C .14 x 6D . x 6A . xx 8333a ba b 1 3 10.阅读理解: 我们把d 称作二阶队列式, 规定它的运算法例为=ad ﹣ bc ,比如2 4cc d=1×4﹣ 2× 3=﹣ 22 3 x ,假如1 > 0,则 x 的解集是( )xA . x >1B . x <﹣ 1C .x > 3D . x <﹣ 3二、填空题11.若不等式 (a - 2)x > a - 2 能够变形为 x < 1,则 a 的取值范围为 _____.12.已知不等式 3x - a0 的正整数解正是 1,2,3,4,那么 a 的取值范围是 _________________.x 2⋯1 的解集为 _____.13.不等式组2x 3x9 1614.迪士尼乐园开门前已经有400 名旅客在排队检票.检票开始后,均匀每分钟又有120 名旅客前来排队.已知一个检票口每分钟能检票15 人,若要使排队现象在开始检票10分钟内消逝,则起码开放___个检票口.三、解答题15.阅读以下资料:数学识题:已知x y 2 ,且x1,y0 ,试确立x y 的取值范围.问题解法: Q x y 2 ,x y 2.又 Q x 1 ,y 2 1 , y 1 .又Q y 0 ,1 y 0 .①同理得 1 x 2 .①由①①得 1 1 y x 0 2 ,x y 的取值范围是0 x y 2 .达成任务:(1)在数学识题中的条件下,写出2x 3 y 的取值范围是_____.(2)已知x y 3,且x 2 ,y0,试确立x y 的取值范围;(3)已知 y 1 ,x1,若x y a 建立,试确立x y 的取值范围(结果用含 a 的式子表示).16.解不等式(组)(1)3 x 1 1 x 2x1( 2)22x 12( x 1) 1 x2x y m 3 0, 求 m 的取值范围.17.已知对于 x, y 的方程组y2m 的解 xy x18.跟着 “一带一路 ”国际合作顶峰论坛在北京举行, 中国同 30 多个国家签订经贸合作协议,某厂准备生产甲、 乙两种商品共 8 万件销往 “一带一路 ”沿线国家和地域. 已知甲种商品的销售单价为 900 元,乙种商品的销售单价为600 元.( 1)已知乙种商品的销售量不可以低于甲种商品销售量的三分之一,则最多能销售甲种商品多少万件?(2)在( 1)的条件下,要使甲、乙两种商品的销售总收入不低于5700 万元,恳求甲种商品销售量的范围.19.益马高速通车后, 将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一田户需要将 A ,B 两种农产品按期运往益阳某加工厂,每次运输A ,B 产品的件数不变,本来每运一次的运费是 1200 元,此刻每运一次的运费比本来减少了300 元, A ,B 两种产品本来的运费和此刻的运费(单位:元∕件)以下表所示:品种A B本来的运费45 25此刻的运费30 20( 1)求每次运输的农产品中 A ,B 产品各有多少件;( 2)因为该田户诚实守信,产质量量好,加工厂决定提升该田户的供货量,每次运送的总件数增添 8 件,但总件数中 B 产品的件数不得超出A 产品件数的 2 倍,问产品件数增添后,每次运费最少需要多少元答案1. D 2. C 3. A 4. A 5. B 6. A 7. A8. B9. B10. A11. a<212.12a1513. 3≤x<514. 1115.( 1) 1 2x 3 y 4 ;(2)x y 的取值范围是 1 x y 3;(3)x y 的取值范围是 2 a x y a 2 .16.( 1)x 2;(2) 3 x 117. 1 m 16 万件18.( 1)最多销售甲种商品 6 万件;( 2)范围为3万件到19.( 1)每次运输的农产品中 A 产品有10 件,每次运输的农产品中 B 产品有30 件,( 2)产品件数增添后,每次运费最少需要1120 元。
不等式与不等式组练习题(2)1.已知5-4a 与1-2a 的值的符号相同,求a 的取值范围2.若不等式3x -m≤0的正整数解是1,2,3,求m 的取值范围3.若关于x 的不等式组()202114x a x x ->⎧⎪⎨+>-⎪⎩的解集是x>2a,求a 的取值范围4.关于x 的方程kx-1=2x 的解为正实数,求k 的取值范围5.已知不等式组2123x a x b -<⎧⎨->⎩,的解集为-1<x <1,则(a+1)(b-1)的值等于多少?6.已知满足不等式5-3x ≤1的最小正整数是关于x 的方程(a+9)x=4(x+1)的解,求代数式a 2-a1的值7.如果不等式4x -3a>-1与不等式2(x -1)+3>5的解集相同,请确定a 的值8.不等式a (x -1)>x+1-2a 的解集是x<-1,请确定a 是怎样的值9.若方程组212x y x y m +=⎧⎨-=⎩的解x 、y 的值都不大于1,求m 的取值范围10.已知不等式组3xx a>-⎧⎨<⎩,⑴若此不等式组无解,求a的取值范围,并利用数轴说明;⑵若此不等式组有解,求a的取值范围,并利用数轴说明11.已知3(5x+2)+5<4x-6(x+1),化简|3x+1|-|1-3x|12.求同时满足不等式6x-2≥3x-4和2112132x x+--<的整数x的值13.若关于x、y的二元一次方程组533x y mx y m-=-⎧⎨+=+⎩中,x的值为负数,y的值为正数,求m的取值范围14.已知方程组32121x y mx y m+=+⎧⎨+=-⎩,m为何值时,x>y?15.已知y=2-2x ,试求(1)当x为何值时,y>0;(2)当y为何值时,x≤-116.在平面直角坐标系中,若点P(x-2, x+5)在第二象限且x为整数,求点P的坐标不等式与不等式组练习题(2)参考答案1.解:由5﹣4a与1﹣2a的值的符号相同可知:(1),解得:a<,a<,∴a<;(2),解得:a>,a >∴a >;∴5﹣4a 与1﹣2a 的值的符号相同,a 的取值范围为:a <或a >.2.解:不等式3x-m ≤0的解集是x ≤3m ,∵正整数解是1,2,3,∴m 的取值范围是3≤3m<4,即19≤m<12,3.解不等式x-2a>0得:x>2a ,解不等式2(x+1)>14-x 得:x>4,因为不等式组的解集是x>2a ,所以2a ≥4,a ≥2,即a 的取值范围是a ≥2.4.解:kx-1=2x(k-2)x=1,解得,x=2-k 1,x 的方程kx-1=2x 的解为正实数, 2-k 1>0,解得,k>2.5.解:∵解不等式2x ﹣a <a 得:x <a ,解不等式x ﹣2b >3得:x >2b+3,∴不等式组的解集是2b+3<x <a ,∵不等式组的解集为﹣1<x <1,∴2b+3=﹣1,a =1,∴b =﹣2,∴(a+1)(b ﹣1)=(1+1)×(﹣2﹣1)=﹣6,6.解:不等式5-3x ≤1x ≥5,x ≥34,x 的最小正整数是2,又x 的最小正整数是关于x 的方程(a+9)x=4(x+1)的解,所以(a+9)×2=4×(2+1),即a=-3代数式a 2-a1=9+31=328.7.解:解不等式4x ﹣3a >﹣1得,x >;解不等式2(x ﹣1)+3>5得,x>2,∵两不等式的解集相同,∴=2,解得a=3.8.解:整理得:(a-1)x>1-2a+a,(a-1)x>1-a,不等式解是x<-1,a-1<0,解得:a<1.9.解:,①+②,得2x=1+m,解得x=,①﹣②,得4y=1﹣m,解得y=,即方程组的解为.∵x与y的值都不大于1,∴,解得﹣3≤m≤1.10.解:(1)若不等式组无解,说明属于“大大小小无处找”或﹣3=a的情形,因此a的取值范围为a≤﹣3,数轴如下:(2)若有解,则与(1)的情形相反,a应取≤﹣3以外的数,所以a的取值范围为a>﹣3,数轴如下:11.解:去括号得15x+6+5<4x-6x-6,移项得15x-4x+6x<-6-6-5,合并得17x<-17,系数化为1得x<-1,所以|3x+1|-|1-3x|=-(3x+1)-(1-3x)=-3x-1-1+3x=-212.解:由不等式6x﹣2≥3x﹣4,解得:x≥﹣,由<1,解得:x<,要同时满足条件:即﹣≤x<,故整数解为0.13.解:,①+②得2x=4m﹣2,解得x=2m﹣1,②﹣①得2y=2m+8,解得y=m+4,∵x的值为负数,y的值为正数,∴,∴﹣4<m<.②×3﹣①得:x=14.解:,③,将③代入②得:y=,∴,∵x>y,∴,解得:m>3.15.(1)当y>0,2-2x>0,x<1;(2)当x≤-1,-2x≥2, -2x+2≥2+2, -2x+2≥4,即y≥4.16.根据题意x+5>0,x-2<0,故得-5<x<2,因为x为正整数,所以x=1,所以x+5=6,x-2=-1,所以P的坐标是(-1,6).。
完整版)解不等式组计算专项练习60题(有答案)1.解不等式组60题参考答案:1.解:由不等式①得2a-3x+1≥0,即x≤(2a+1)/3;由不等式②得3b-2x-16≥0,即x≤(3b-16)/2.又因为a≤4<b,所以2a+1≤9,3b-16≥8,所以x的取值范围为x≤3或x≥-11/2.2.解:由不等式①得x≤-1或x≥3;由不等式②得x≤4/3或x≥2.综合起来,x的取值范围为x≤-1或x≥3,或者4/3≤x≤2.3.解:由不等式①得x>(a+1)/2;由不等式②得x0,所以a/2>(a+1)/2,所以不等式组的解集为a/2<x<(a+1)/2.4.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.5.解:由不等式①得x≤-2;由不等式②得x>-3.所以不等式组的解集为-3<x≤-2.6.解:由不等式①得x>-1;由不等式②得x≤2.所以不等式组的解集为-1<x≤2.7.解:由不等式①得x≤-1;由不等式②得x≥-2.所以不等式组的解集为-2≤x≤-1.8.解:由不等式①得x>-3;由不等式②得x≤1.所以不等式组的解集为-3<x≤1.9.解:由不等式①得x>-1;由不等式②得x≤4.所以不等式组的解集为-1<x≤4.10.解:由不等式①得x-3.所以不等式组的解集为-3<x<2.11.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.1.由不等式组的①得x≥-1,由不等式组的②得 x<4,因此不等式组的解集为 -1≤x<4.2.由不等式①得x≤3,由不等式②得 x>0,因此不等式组的解集为0<x≤3.3.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.4.原不等式组可化为:x+45,x<-1.因此不等式组的解集为-3<x≤3.5.解不等式①得 x<5,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<5.6.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.7.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.8.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.9.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.10.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.11.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.12.解不等式组的①得-∞<x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.13.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.14.原不等式组可化为:x>-3,x≤3.因此不等式组的解集为-3<x≤3.15.解不等式组的①得 x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.16.解不等式①得 x<2,解不等式②得x≥-1,因此不等式组的解集为 -1≤x<2.17.解不等式①得x≥1,解不等式②得1≤x<4,因此不等式组的解集为1≤x<4.18.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.19.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.20.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.21.不等式①的解集为x≥1,不等式②的解集为 x<4,因此原不等式的解集为1≤x<4.22.解不等式①得 x<0,解不等式②得x≥3,因此原不等式无解。
七年级数学第9章《不等式和不等式组》同步测试一、选择题(每题3分,共30分):1、若a >b ,则下列各式中一定成立的是( )A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b 2、在数轴上表示不等式x >-2的解集,正确的是( )3、不等式a >b ,两边同时乘m 得am <bm ,则一定有( )A .m =0B .m <0C .m >0D .m 为任何实数4、下列说法中,错误的是( )A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个 5、已知实数a ,b 满足a +1>b +1,则下列选项错误的为( )A .a >bB .a +2>b +2C .-a <-bD .2a >3b6、已知不等式组有解,则 的取值范围为( ) A .a>-2 B .a≥-2 C .a<2 D .a≥27、如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( ) A .m =2 B .m >2 C .m <2 D .m≥28、小明准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( )A. 30x-45≥300B. 30x+45≥300C. 30x-45≤300D. 30x+45≤3009、对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( ) A .40 B .45 C .51 D .5610、若关于x 的不等式组⎩⎪⎨⎪⎧x -a≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1 D.23二、填空题(每题3分,共15分):11、不等式3(x ﹣1)≤5﹣x 的非负整数解有_____个.12、已知0≤a–b≤1且1≤a+b≤4,则a 的取值范围是13、已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x≥-1,a -x <0无解,则a 的取值范围是 . 14、若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为 .15、某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x 分,可列不等式为 .三、解答题(共55分):16、(6分)在爆破时,如果导火索燃烧的速度是每秒钟0.8 cm ,人跑开的速度是每秒钟4 m ,为了使点导火索的人在爆破时能够跑到100 m 以外的安全地区,设导火索的长为s cm.(1)用不等式表示题中的数量关系;(2) 要使人能跑到安全地区,则导火索的长度至少多长?17、(6分)已知关于x 的不等式ax <-b 的解集是x >1,求关于y 的不等式by >a 的解集.18、(8分)已知关于x 的不等式2m -mx 2>12x -1. (1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.19、(8分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?20、(10分)解不等式组并在数轴上表示解集.(1)⎩⎪⎨⎪⎧2x<5,①3(x +2)≥x+4,②(2) ⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②21、(8分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?22、(9分)某科技有限公司准备购进A 和B 两种机器人来搬运化工材料,已知购进A 种机器人2个和B 种机器人3个共需16万元,购进A 种机器人3个和B 种机器人2个共需14万元,请解答下列问题:(1)求A 、B 两种机器人每个的进价;(2)已知该公司购买B 种机器人的个数比购买A 种机器人的个数的2倍多4个,如果需要购买A 、B 两种机器人的总个数不少于28个,且该公司购买的A 、B 两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?参考答案:一、选择题:1、C2、C3、B4、C5、D6、C7、D8、B9、C 10、B二、填空题:11、312、 ≤a≤13、a≥214、515、40%×85+60%x≥90三、解答题:16、(1)4×s 0.8>100. (2)25 cm17、∵不等式ax <-b 的解集是x >1,∴a<0,-b a=1. ∴b=-a ,b >0.∴不等式by >a 的解集为y >a b=-1, 即不等式by >a 的解集为y >-1.18、(1)当m =1时,该不等式为2-x 2>12x -1,解得x <2. (2)∵2m -mx 2>12x -1,∴2m-mx >x -2. ∴-mx -x >-2-2m.∴(m+1)x <2(1+m).∵该不等式有解,∴m+1≠0,即m≠-1.当m >-1时,不等式的解集为x <2;当x <-1时,不等式的解集为x >2.19、(1)120×0.95=114(元).(2)设购买商品的价格为x 元.由题意,得0.8x +168<0.95x.解得x >1 120. 当购买商品的价格超过1 120元时,采用方案一更合算.20、(1)解不等式①,得x <52人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是( )A .B .C .D .2.若a >b ,则下列各式中一定成立的是( )A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b 3.如果 的解集是 ,那么 的取值范围是( )A .B .C .D .4.如图,天平左盘中物体A 的质量为 ,,天平右盘中每个砝码的质量都是1g,则 的取值范围在数轴上可表示为( )A .B .C .D .5.已知不等式组有解,则 的取值范围为( ) A .a>-2 B .a≥-2 C .a<2 D .a≥26.将不等式组的解集在轴上表示出来,应是( ) A . B .C .D .7.不等式组>的整数解的个数为()A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B13.﹣9<x≤﹣314.>15.3组.16.317.18.(1)x<2;(2)x ≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版七年级数学下册:第九章《不等式与一次不等式组》单元测试人教版七年级数学下册:第九章不等式及不等式组单元测试(时间:60分钟,满分:100分)一、选择题(每题3分,共24分)1.当1≤x≤2时,ax+2>0,则a 的取值范围是( ).A .a >﹣1B .a >﹣2C .a >0D .a >﹣1且a≠02.若不等式组12x x k<≤⎧⎨>⎩ 有解,则k 的取值范围是( ).A.2k <B. 2k ≥C.1k <D. 12k ≤<3.已知,a b 为非零有理数,下面四个不等式组中,解集有可能为22x -<<的不等式组是( ).A .11ax bx >⎧⎨>⎩B .11ax bx >⎧⎨<⎩C .11ax bx <⎧⎨>⎩D .11ax bx <⎧⎨<⎩4.不等式组9511x x x m +<+⎧⎨>+⎩的解集是2>x ,则m 的取值范围是( ).A.2≤mB. 2≥mC.1≤mD. 1>m5.不等式组()()⎪⎩⎪⎨⎧≤--+<--+-1213128313x x x x 的解集应为( ). A 、2-<x B 、722≤<-x C 、12≤<-x D 、2-<x 或x ≥16.如图,用两根长度均为Lcm的绳子,分别围成一个正方形和圆.则围成的正方形和圆的面积比较().A.正方形的面积大B.圆的面积大C.一样大D.根据L的变化而变化7.某商场的老板销售一种商品,他要以利润不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售().A.80元B.100元 C.120元D.160元8. 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与两个球体质量相等的正方体的个数为( ) .A.5 B.4 C.3 D.2二、填空题(每题5分,共40分)9.已知关于x的不等式组的整数解共有个,则的取值范围为.10.已知方程组⎩⎨⎧=+=-7325ayxyax的解满足⎩⎨⎧<>yx,则a的取值范围.11. 若不等式组⎩⎨⎧->+<121mxmx无解,则m的取值范围是.12.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打折.13.已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围 .14.如果关于x的不等式组9080x ax b-≥⎧⎨-<⎩的正整数解仅为1,2,3,则a的取值范围是,b的取值范围是 .15. 为确保信息安全,信息需加密传输,发送方将明加密为密文传输给接收方,接收方收到密文后解密还原为明文.已知某种加密规则为:明文a ,b 对应的密文为a-2b ,2a+b .例如,明文1,2对应的密文是-3,4,当接收方收到密文是1,7时,解密得到的明文是 .16.若不等式组114111.5(1)()0.5(21)22x x a x a x x +⎧+>⎪⎪⎨⎪-+>-+-⎪⎩①②只有一个整数解,则a 的取值范围 . 三、解答题(每题12分,共36分) 17.已知x 满足⎪⎩⎪⎨⎧3)12(24213120)93(33)62(18)3(35-<--->---+-x x x x x x ,化简|x -3|+|2x -1| . 18.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?19. 今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台.若要求购买的费用不超过40000元,安装及运输费用不超过9200元,则可购买甲、乙两种设备各多少台?【答案与解析】一.选择题1. 【答案】A ;【解析】当x=1时,a+2>0解得:a >﹣2;当x=2,2a+2>0,解得:a >﹣1,∴a 的取值范围为:a >﹣1.2. 【答案】A ;【解析】画数轴进行分析.3. 【答案】D ;【解析】由选项及解集可得a b 、一正一负,不防设a 正b 负代入选项验证.4. 【答案】C ;【解析】解第一个不等式得x >2,由题意可得1m +≤2,所以m ≤1.5. 【答案】C ;【解析】解第一个不等式得2x >-,解第二个不等式得1x ≤,所以不等式组的解集为21x -<≤.6. 【答案】B ;7. 【答案】C ;【解析】解:设降价x 元时商店老板才能。
七年级数学下册不等式与不等式组练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.关于x 的不等式ax <-b 的解集x <2,则关于y 的不等式by >a 的解集为____2.已知关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根,那么实数m 的取值范围是__________. 3.已知3a ≤,则负整数=a _____.4.已知关于x ,y 的二元一次方程组235423x y a x y a +=⎧⎨+=+⎩满足0x y ->,则a 的取值范围是____. 5.已知函数y =(2m ﹣4)x +m 2﹣9(x 是自变量)的图象只经过二、四象限,则m =_____. 6.若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________.二、单选题7.在二元一次方程12x +y =8中,当y <0时,x 的取值范围是( ).A .23x <B .23x >-C .23x >D .23x <- 8.已知x a <的解中最大的整数解为3,则a 的取值范围为( )A .34x <<B .34x <≤C .34x ≤<D .34x ≤≤9.下列结论:①一个数和它的倒数相等,则这个数是±1和0;①若﹣1<m <0,则21m m m <<;①若a +b <0,且0b a>,则33a b a b +=--;①若m 是有理数,则|m |+m 是非负数;①若c <0<a <b ,则(a ﹣b )(b ﹣c )(c ﹣a )>0;其中正确的有( )A .1个B .2个C .3个D .4个10.下列解方程变形:①由3x +4=4x -5,得3x +4x =4-5;①由1132x x +-=,去分母得2x -3x +3=6; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;①由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个11.若关于x 的一元二次方程2210ax x -+=有实数根,则a 应满足( )A .1a ≤B .1a ≥C .1a ≥-且0a ≠D .1a ≤且0a ≠ 12.已知方程3a 1a a 44a --=--,且关于x 的不等式a x b <≤只有4个整数解,那么b 的取值范围是( ) A .23b <≤ B .34b <≤ C .23b ≤< D .34b ≤<三、解答题13.在数轴上有A ,B 两点,其中点A 所对应的数是a ,点B 所对应的数是1.已知A ,B 两点的距离小于3,请你利用数轴.(1)写出a 所满足的不等式;(2)数﹣3,0,4所对应的点到点B 的距离小于3吗.14.解方程:-314x x +=.15.比较大小:和4;和12.参考答案:1.12y <- 【分析】根据不等式的性质可得b a-2=,0a >,进而可得0b <,据此即可求解. 【详解】解:①关于x 的不等式ax <-b 的解集x <2,①b x a<-,b a -2=,0a >, 0b ∴<,∴关于y 的不等式by >a 的解集为a y b<, 2b a=-, ①1=2a b - ∴关于y 的不等式by >a 的解集为12y <-. 【点睛】本题考查了解一元一次不等式,确定a b ,的符号以及2b a=-是解题的关键. 2.m <94且m ≠0##m ≠0且m <94 【分析】根据判别式①>0时一元二次方程有两个不相等的实数根求解不等式即可.【详解】解:①关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根,①①=(2m -3)2-4m (-2+m )=-4m +9>0,且m ≠0,解得:m <94且m ≠0, 故答案为:m <94且m ≠0. 【点睛】本题考查一元二次方程根的判别式、解一元一次不等式,熟练掌握一元二次方程根与判别式的关系是解答的关键,注意二次项系数不为0.3.1-,2-,3-.【分析】直接根据绝对值的概念可得a 的取值范围,然后列举出负整数即可.【详解】①3a ≤,①33a -≤≤.①a 为负整数,①a 为1-,2-,3-.故答案为:1-,2-,3-.【点睛】此题主要考查绝对值的概念及一元一次不等式组的整数解,正确理解绝对值的概念是解题关键. 4.1a >.【分析】根据题目中方程组的的特点,将两个方程作差,即可用含a 的代数式表示出x y -,再根据0x y ->,即可求得a 的取值范围,本题得以解决.【详解】解:235423x y a x y a +=⎧⎨+=+⎩①②①-①,得33x y a -=-①0x y ->①330a ->,解得1a >,故答案为:1a >.【点睛】本题考查解一元一次不等式,二元一次方程组的解,熟悉相关性质是解答本题的关键. 5.-3【分析】根据解析式是关于x 的一次函数,只经过二、四象限可知函数为正比例函数,k <0,b =0,列方程与不等式求解即可.【详解】解:函数y =(2m ﹣4)x +m 2﹣9是关于x 的一次函数,①函数y =(2m ﹣4)x +m 2﹣9(x 是自变量)的图象只经过二、四象限,①224090m m -⎧⎨-=⎩<, 解得23m m ⎧⎨=±⎩<, ①m =3>2舍去,m =-3<2,满足条件,①m=-3,故答案为-3.【点睛】本题考查一次函数的性质,正比例函数,解不等式,直接开平方法解一元二次方程,掌握一次函数的性质,正比例函数,解不等式,直接开平方法解一元二次方程是解题关键.6.1a <-【分析】先解分式方程得1x =,再把1x =代入不等式计算即可. 【详解】33122x x x-+=-- 去分母得:323x x -+-=-解得:1x =经检验,1x =是分式方程的解把1x =代入不等式()230-->a x 得:230a -->解得1a <-故答案为:1a <-【点睛】本题综合考查分式方程的解法和一元一次不等式的解法,解题的关键是熟记相关运算法则. 7.C【解析】略8.B【分析】根据x a <的解中最大的整数解为3,则3x =是不等式的解,则3a >,同时4x =不是不等式的解,则4a ≤,从而求解.【详解】解:①x a <的解中最大的整数解为3,①3x =是不等式的解,则3a >,又①同时4x =不是不等式的解,则4a ≤,①34a <≤,故选B .【点睛】本题主要考查了不等式的整数解,解题的关键在于能够熟练掌握相关知识进行求解.9.C【分析】根据绝对值的性质,倒数的性质,不等式的性质,有理数的运算法则依次判断即可.【详解】①0没有倒数,①①错误.①﹣1<m <0, ①1m<0,2m >0, ①①错误.①a +b <0,且0b a>,①a <0,b <0,①a +3b <0,①|a +3b |=﹣a ﹣3b .①①正确.①|m |≥﹣m ,①|m |+m ≥0,①①正确.①c <0<a <b ,①a ﹣b <0,b ﹣c >0,c ﹣a <0,①(a ﹣b )(b ﹣c )(c ﹣a )>0正确,①①正确.故选:C .【点睛】本题考查绝对值,倒数,不等式的性质,有理数的运算法则,正确掌握相关法则是求解本题的关键.10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:①由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;①由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;①由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是①,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11.D【分析】方程为一元二次方程,故a ≠0,再结合根的判别式:当24b ac -≥0时,方程有实数根;即可求解.【详解】解:①原方程为一元二次方程,且有实数根,①a ≠0,24b ac -≥0时,方程有实数根;①2(2)40a --≥,解得:a ≤1,①1a ≤且0a ≠,故选:D【点睛】本题主要考查了一元二次方程根的判别式,熟练地掌握根的判别式与根的关系是解题的关键.当24b ac -≥0时,方程有实数根,当24b ac -<0时,方程无实数根.12.D【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a 的值,代入不等式组确定出b 的范围即可.【详解】解:分式方程去分母得:3-a -a 2+4a =-1,即a 2-3a -4=0,分解因式得:(a -4)(a +1)=0,解得:a =-1或a =4,经检验a =4是增根,分式方程的解为a =-1,当a =-1时,由a <x ≤b 只有4个整数解,得到3≤b <4.故选:D .【点睛】此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键. 13.(1) −2<a<4;(2) 小于3【分析】根据数轴上两点之间的距离为这两个数差的绝对值,列出不等式并解出结果.【详解】解:(1)根据题意得:|a −1|<3,得出−2<a <4,(2)由(1)得:到点B 的距离小于3的数在−2和4之间,①在−3,0,4三个数中,只有0所对应的点到B 点的距离小于3.【点睛】本题考查了数轴上两点之间的距离为两个数差的绝对值,以及解不等式,难度适中.14.x =32 或x =﹣54【分析】利用绝对值的性质,将方程转化为314xx +﹣=或314x x +﹣=﹣,再分情况讨论: 当3x +1>0时可得到|3x +1|=3x +1;当3x +1<0时可得到|3x +1|=-3x -1,分别求出对应的方程的解即可. 【详解】解:原方程式化为-314x x +=或31-4xx +﹣=, 当3x +1>0时,即x >﹣13, 由-314x x +=得-3-14x x =,①x =﹣52与x >﹣13 不相符,故舍去; 由-31-4x x +=得314x x﹣﹣=﹣,①x=32,符合题意;当3x+1<0时,即x<﹣13,由-314x x+=得314x x++=,①x=34与x<﹣13不相符,故舍去;由-31-4x x+=得314x x++=﹣,①x=﹣54,符合题意;故原方程的解是x=32或x=﹣54.【点睛】本题主要考查的是含有绝对值符号的一元一次方程的解法.分类讨论是解题的关键.15.412<【分析】(1)根据无理数的估算即可得;(22,由此即可得.(1)解:1216<,4.(2)解:34<,<2,121<-11<,12<.【点睛】本题考查了实数的大小比较、无理数的估算,熟练掌握无理数的估算是解题关键.。
(完整版)不等式与不等式组练习题答案第九章不等式与不等式组测试1 不等式及其解集学习要求:知道不等式的意义;知道不等式的解集的含义;会在数轴上表⽰解集.(⼀)课堂学习检测⼀、填空题:1.⽤“<”或“>”填空:⑴4______-6; (2)-3______0;(3)-5______-1; (4)6+2______5+2;(5)6+(-2)______5+(-2); (6)6×(-2)______5×(-2). 2.⽤不等式表⽰:(1)m -3是正数______; (2)y +5是负数______; (3)x 不⼤于2______; (4)a 是⾮负数______;(5)a 的2倍⽐10⼤______; (6)y 的⼀半与6的和是负数______;(7)x 的3倍与5的和⼤于x 的31______;(8)m 的相反数是⾮正数______.3.画出数轴,在数轴上表⽰出下列不等式的解集: (1)?>213x(2)x ≥-4.(3)?≤51x(4)?-<312x⼆、选择题:4.下列不等式中,正确的是( ).(A)4385-<-(B)5172< (C)(-6.4)2<(-6.4)3 (D)-|-27|<-(-3)3 5.“a 的2倍减去b 的差不⼤于-3”⽤不等式可表⽰为( ). (A)2a -b <-3 (B)2(a -b )<-3 (C)2a -b ≤-3 (D)2(a -b )≤-3三、解答题:6.利⽤数轴求出不等式-2<x ≤4的整数解.(⼆)综合运⽤诊断⼀、填空题:7.⽤“<”或“>”填空:⑴-2.5______-5.2; (2);125______114--(3)|-3|______-(-2.3); (4)a 2+1______0; (5)0______|x |+4; (6)a +2______a .8.“x 的23与5的差不⼩于-4的相反数”,⽤不等式表⽰为______.⼆、选择题:9.如果a 、b 表⽰两个负数,且a <b ,则( ).(A)1>b a(B)1a 11< (D)ab <110.如图在数轴上表⽰的解集对应的是( ).(A)-2<x <4 (B)-2<x ≤4 (C)-2≤x <4 (D)-2≤x ≤4 11.a 、b 是有理数,下列各式中成⽴的是( ).(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 12.|a |+a 的值⼀定是( ).(A)⼤于零 (B)⼩于零 (C)不⼤于零 (D)不⼩于零三、判断题:13.不等式5-x >2的解集有⽆数多个. ( ). 14.不等式x >-1的整数解有⽆数多个. ( ).15.不等式32421<<-x 的整数解有0、1、2、3、4. ( ). 16.若a >b >0>c ,则.0>cab( ).四、解答题:17.若a 是有理数,⽐较2a 和3a 的⼤⼩.(三)拓⼴、探究、思考18.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.19.对于整数a 、b 、c 、d ,定义db a -=,已知3411<<db ,则b +d 的值为______.测试2 不等式的性质学习要求:知道不等式的三条基本性质,并会⽤它们解简单的⼀元⼀次不等式.(⼀)课堂学习检测⼀、填空题:1.已知a <b ,⽤“<”或“>”填空:⑴a +3______b +3; (2)a -3______b -3; (3)3a ______3b ;(4);2______2b a (5);7______7ba -- (6)5a +2______5b +2; (7)-2a -1______-2b -1; (8)4-3b ______6-3a . 2.⽤“<”或“>”填空: (1)若a -2>b -2,则a______b ; (2)若,33ba <则a ______b ; (3)若-4a >-4b ,则a ______b ;(4),22ba -<-则a ______b . 3.不等式3x <2x -3变形成3x -2x <-3,是根据______. 4.如果a 2x >a 2y (a ≠0).那么x______y .⼆、选择题:5.若a >2,则下列各式中错误的是( ). (A)a -2>0 (B)a +5>7 (C)-a >-2 (D)a -2>-4 6.已知a >b ,则下列结论中错误的是( ). (A)a -5>b -5 (B)2a >2b (C)ac >bc (D)a -b >0 7.若a >b ,且c 为有理数,则( ). (A)ac >bc (B)ac <bc (C)ac 2>bc 2 (D)ac 2≥bc 2 8.若由x <y 可得到ax >ay ,应满⾜的条件是( ). (A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0三、解答题:9.根据不等式的基本性质解下列不等式,并将解集表⽰在数轴上.(1)x -10<0.(2).621(3)2x ≥5.(4).131-≥-x10.⽤不等式表⽰下列语句并写出解集:⑴8与y 的2倍的和是正数;(2)a 的3倍与7的差是负数.(⼆)综合运⽤诊断⼀、填空题:11.(1)若x <a <0,则把x 2;a 2,ax 从⼩到⼤排列是______.(2)关于x 的不等式mx -n >0,当m ______时,解集是;mnx <当m ______时,解集是?>mn x 12.已知b <a <2,⽤“<”或“>”填空:(1)(a -2)(b -2)______0; (2)(2-a )(2-b )______0; (3)(a -2)(a -b )______0.13.不等式4x -3<4的解集中,最⼤的整数x =______. 14.如果ax >b 的解集为,abx >则a ______0.⼆、选择题:15.已知⽅程7x -2m +1=3x -4的根是负数,则m 的取值范围是( ).(A)25=m (B)25>m (C)25≤m 16.已知⼆元⼀次⽅程2x +y =8,当y <0时,x 的取值范围是( ).(A)x >4 (B)x <4 (C)x >-4 (D)x <-4 17.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是( ).(A)a <2 (B)a <3 (C)a <4 (D)a <5三、解答题:18.当x 取什么值时,式⼦563-x 的值为(1)零;(2)正数;(3)⼩于1的数.(三)拓⼴、探究、思考19.若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .20.解关于x 的不等式ax >b (a ≠0).测试3 解⼀元⼀次不等式会解⼀元⼀次不等式.(⼀)课堂学习检测⼀、填空题:1.⽤“>”或“<”填空:(1)若x ______0,y <0,则xy >0;(2)若ab >0,则b a ______0;若ab <0,则ab______0; (3)若a -b <0,则a ______b ;(4)当x >x +y ,则y ______0.2.当a ______时,式⼦152-a 的值不⼤于-3.3.不等式2x -3≤4x +5的负整数解为______.⼆、选择题:4.下列各式中,是⼀元⼀次不等式的是( ).(A)x 2+3x >1(B)03<-yx (C)5511≤-x(D)31312->+x x 5.关于x 的不等式2x -a ≤-1的解集如图所⽰,则a 的取值是( ).(A)0 (B)-3 (C)-2 (D)-1三、解下列不等式,并把解集在数轴上表⽰出来:6.2(2x -3)<5(x -1). 7.10-3(x +6)≤1.8.?-->+22531x x 9.-≥--+612131y y y10.求不等式361633->---x x 的⾮负整数解.11.求不等式6)125(53)34(2+<-x x 的所有负整数解.(⼆)综合运⽤诊断⼀、填空题:12.已知a <b <0,⽤“>”或“<”填空:⑴2a ______2b ;(2)a 2______b 2;(3)a 3______b 3;(4)a 2______b 3;(5)|a |______|b |(6)m 2a ______m 2b (m ≠0). 13.⑴已知x <a 的解集中的最⼤整数为3,则a 的取值范围是______;(2)已知x >a 的解集中最⼩整数为-2,则a 的取值范围是______.⼆、选择题:14.下列各对不等式中,解集不相同的⼀对是( ).(A)72423xx +<-与-7(x -3)<2(4+2x ) (B)3921+<-x x 与3(x -1)<-2(x +9) (C)31222-≥+x x 与3(2⼗x )≥2(2x -1) (D)x x ->+414321与3x >-1 15.如果关于x 的⽅程5432bx a x +=+的解不是负值,那么a 与b 的关系是( ) (A)b a 53>(B)a b 53≥(C)5a =3b(D)5a ≥3b三、解下列不等式:16.(1)3[x -2(x -7)]≤4x . (2).17)10(2383+-≤--y y y(3).151)13(21+<--y y y (4)-+≤--+15)2(22537313x x x(5)).1(32)]1(21[21-<---x x x x (6)->+-+2503.002.003.05.09.04.0x x x四、解答题:17.已知⽅程组?-=++=+②①m y x m y x 12,312的解满⾜x +y <0.求m 的取值范围.18.x 取什么值时,代数式413--x 的值不⼩于8)1(32++x 的值.19.已知关于x 的⽅程3232xm x x -=--的解是⾮负数,m 是正整数,求m 的值.*20.当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4 )5(的解集.(三)拓⼴、探究、思考21.适当选择a 的取值范围,使1.7<x <a 的整数解:(1)x 只有⼀个整数解; (2)x ⼀个整数解也没有.22.解关于x 的不等式2x +1≥m (x -1).(m ≠2)23.已知A =2x 2+3x +2,B =2x 2-4x -5,试⽐较A 与B 的⼤⼩.测试4 实际问题与⼀元⼀次不等式学习要求:会从实际问题中抽象出不等的数量关系,会⽤⼀元⼀次不等式解决实际问题.(⼀)课堂学习检测⼀、填空题:1.若x 是⾮负数,则5231x-≤-的解集是______. 2.使不等式x -2≤3x +5成⽴的负整数有______. 3.代数式231x-与代数式x -2的差是负数,则x 的取值范围为______ 4.6⽉1⽇起,某超市开始有偿..提供可重复使⽤的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装⼤⽶3公⽄、5公⽄和8公⽄.6⽉7⽇,⼩星和爸爸在该超市选购了3只环保购物袋⽤来装刚买的20公⽄散装⼤⽶,他们选购的3只环保购物袋⾄少..应付给超市______元.⼆、选择题:5.三⾓形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ). (A)13cm (B)6cm (C)5cm (D)4cm6.⼀商场进了⼀批商品,进价为每件800元,如果要保持销售利润不低于15%,则售价应不低于( ). (A)900元 (B)920元 (C)960元 (D)980元三、解答题:7.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?8.某次数学竞赛活动,共有16道选择题,评分办法是:答对⼀题给6分,答错⼀题倒扣2分,不答题不得分也不扣分.某同学有⼀道题未答,那么这个学⽣⾄少答对多少题,成绩才能在60分以上?(⼆)综合运⽤诊断⼀、填空题:9.直接写出解集:(1)4x -3<6x +4的解集是______; (2)(2x -1)+x >2x 的解集是______;(3)5231052--≤-x x x 的解集是______. 10.若m >5,试⽤m 表⽰出不等式(5-m )x >1-m 的解集______.⼆、选择题:11.初三⑴班的⼏个同学,毕业前合影留念,每⼈交0.70元,⼀张彩⾊底⽚0.68元,扩印⼀张相⽚0.50元,每⼈分⼀张,将收来的钱尽量⽤掉的前提下,这张相⽚上的同学最少有( ). (A)2⼈ (B)3⼈ (C)4⼈(D)5⼈12.某出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不⾜1km 按1km 计).某⼈乘这种出租车从甲地到⼄地共⽀付车费19元,设此⼈从甲地到⼄地经过的路程是x km ,那么x 的最⼤值是( ). (A)11 (B)8 (C)7 (D)5三、解答题:13.已知:关于x 、y 的⽅程组?-=++=+134,123p y x p y x 的解满⾜x >y ,求p 的取值范围.14.某⼯⼈加⼯300个零件,若每⼩时加⼯50个可按时完成;但他加⼯2⼩时后,因事停⼯40分钟.那么这个⼯⼈为了按时或提前完成任务,后⾯的时间每⼩时他⾄少要加⼯多少个零件?(三)拓⼴、探究、思考15.某商场出售A 型冰箱,每台售价2290元,每⽇耗电1度;⽽B 型节能冰箱,每台售价⽐A ⾼出10%,但每⽇耗电0.55度.现将A 型冰箱打折出售(打九折后的售价为原价的⼗分之九),问商场最多打⼏折时,消费者购买A 型冰箱才⽐购买B 型冰箱更合算?(按使⽤期10年,每年365天,每度电0.4元计算)16.某零件制造车间有20名⼯⼈,已知每名⼯⼈每天可制造甲种零件6个或⼄种零件5个,且每制造⼀个甲种零件可获利150元,每制造⼀个⼄种零件可获利260元,在这20名⼯⼈中,车间每天安排x 名⼯⼈制造甲零件,其余⼯⼈制造⼄种零件.⑴若此车间每天所获利润为y (元),⽤x 的代数式表⽰y ;(2)若要使每天所获利润不低于24000元,⾄少要派多少名⼯⼈去制造⼄种零件?测试5 ⼀元⼀次不等式组(⼀)学习要求:会解⼀元⼀次不等式组,并会利⽤数轴正确表⽰出解集.(⼀)课堂学习检测⼀、填空题:1.解不等式组?>--<+)2(223)1(,423x x 时,解⑴式,得______,解(2)式,得______.于是得到不等式组的解集是______.2.解不等式组-≥--≥-)2(21)1(,3212x x 时,解⑴式,得______,解(2)式,得______,于是得到不等式组的解集是______.3.⽤字母x 的范围表⽰下列数轴上所表⽰的公共部分: (1)________________________;(2)_______________________; (3)________________________.⼆、选择题:4.不等式组+<+>-5312,243x x x 的解集为( ).(A)x <-4 (B)x >2 (C)-4<x <2 (D)⽆解5.不等式组?>+<-023,01x x 的解集为( ).(A)x >1(B)132<<-x(C)32-三、解下列不等式组,利⽤数轴确定不等式组的解集.6.≥-≥-.04,012x x7.?>+≤-.074,03x x8.??+>-≤-.3342,121x x x x9.-5<6-2x <3.四、解答题:10.解不等式组??<-+≤+321),2(352x x x x 并写出不等式组的整数解.(⼆)综合运⽤诊断⼀、填空题:11.当x 满⾜______时,235x-的值⼤于-5⽽⼩于7. 12.不等式组≤-+<25 12,912x x x x 的整数解为______.⼆、选择题:13.如果a >b ,那么不等式组?<<.,b x a x 的解集是( ).(A)x <a(B)x <b(C)b <x <a(D)⽆解14.不等式组?+>+≤+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2 (C)m <1 (D)m >1三、解答题:15.求不等式组73123<--≤x 的整数解.16.解不等式组??-<-->-->+.3273,4536,7342x x x x x x17.当k 取何值时,⽅程组-=+=-52,53y x k y x 的解x 、y 都是负数?18.已知?+=+=+122,42k y x k y x 中的x 、y 满⾜且0<y -x <1,求k 的取值范围.(三)拓⼴、探究、思考19.已知a 是⾃然数,关于x 的不等式组?>-≥-.02,43x a x 的解集是x >2,求a 的值.20.关于x 的不等式组?->-≥-.123,0x a x 的整数解共有5个.求a 的取值范围.测试6 ⼀元⼀次不等式组(⼆)学习要求:进⼀步掌握⼀元⼀次不等式组.(⼀)课堂学习检测1.直接写出解集:(1)->>3,2x x 的解集是______;(2)-<<3,2x x 的解集是______;(3)??-><32x x 的解集是______;(4)??-<>3,2x x 的解集是______.2.⼀个两位数,它的⼗位数字⽐个位数字⼩2,如果这个数⼤于20且⼩于40,那么此数为______.⼆、选择题:3.如果式⼦7x -5与-3x +2的值都⼩于1,那么x 的取值范围是( ).(A)76<x (B)31>x (C)7631<4.已知不等式组?->--+-≤-).23(2)1(53,1)1(3)3(2x x x x x 它的整数解⼀共有( ).(A)1个(B)2个(C)3个(D)4个5.若不等式组?>≤1有解,则k 的取值范围是( ).(A)k <2 (B)k ≥2 (C)k <1三、解下列不等式组,并把解集在数轴上表⽰出来:6.??>-<-322,352x x x x7.??->---->-.6)2(3)3(2,132x x xx8.+>-≤+).2(28,142x x x9..234512x x x -≤-≤-(⼆)综合运⽤诊断⼀、填空题:10.不等式组<->+233,152x x 的所有整数解的和是______,积是______.11.k 满⾜______时,⽅程组?=-=+.4,2y x k y x 中的x ⼤于1,y ⼩于1.⼆、解下列不等式组:12.<+->+--.1)]3(2[21,312233x x x x x13.>-->-->-24,255,13x x x x x x三、解答题:14.k 取哪些整数时,关于x 的⽅程5x +4=16k -x 的根⼤于2且⼩于10? 15.已知关于x 、y 的⽅程组?-=-+=+3472m y x m y x ,的解为正数.(2)化简|3m +2|-|m -5|.(三)拓⼴、探究、思考16.若关于x 的不等式组+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.测试7 利⽤不等关系分析实际问题学习要求:利⽤不等式(组)解决较为复杂的实际问题;感受不等式(组)在实际⽣活中的作⽤.(⼀)课堂学习检测列不等式(组)解应⽤题:1.⼀个⼯程队原定在10天内⾄少要挖掘600m 3的⼟⽅.在前两天共完成了120m 3后,接到要求要提前2天完成掘⼟任务.问以后⼏天内,平均每天⾄少要挖掘多少⼟⽅?2.某城市平均每天产⽣垃圾700吨,由甲、⼄两个垃圾⼚处理.如果甲⼚每⼩时可处理垃圾55吨,需花费550元;⼄⼚每⼩时处理45吨,需花费495元,如果规定该城市每天⽤于处理垃圾的费⽤的和不能超过7150元,问甲⼚每天⾄少要处理多少吨垃圾?3.若⼲名学⽣,若⼲间宿舍,若每间住4⼈将有20⼈⽆法安排住处;若每间住8⼈,则有⼀间宿舍的⼈不空也不满,问学⽣有多少⼈?宿舍有⼏间?4.今年5⽉12⽇,汶川发⽣了⾥⽒8.0级⼤地震,给当地⼈民造成了巨⼤的损失.某中学全体师⽣积极捐款,其中九年级的3个班学⽣的捐款⾦额如下表:⽼师统计时不⼩⼼把墨⽔滴到了其中两个班级的捐款⾦额上,但他知道下⾯三条信息:信息⼀:这三个班的捐款总⾦额是7700元;信息⼆:(2)班的捐款⾦额⽐(3)班的捐款⾦额多300元;信息三:(1)班学⽣平均每⼈捐款的⾦额⼤于..51元...48元,⼩于请根据以上信息,帮助⽼师解决:①(2)班与(3)班的捐款⾦额各是多元;②(1)班的学⽣⼈数.(⼆)综合运⽤诊断5.某学校计划组织385名师⽣租车旅游,现知道出租公司有42座和60座客车,42座客车的租⾦为每辆320元,60座客车的租⾦为每辆460元.(1)若学校单独租⽤这两种客车各需多少钱?(2)若学校同时租⽤这两种客车8辆(可以坐不满),⽽且⽐单独租⽤⼀种车辆节省租⾦,请选择最节省的租车⽅案.(三)拓⼴、探究、思考A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建⼀间A型板房和⼀间B型板房所需板材及能安置的⼈数板房型号甲种板材⼄种板材安置⼈数A型板房54m226m2 5B型板房78m241m28问:这400间板房最多能安置多少灾民?全章测试(⼀)⼀、填空题:1.⽤“>”或“<”填空:(1)m +3______m -3;(2)4-2x ______5-2x ;(3);23______13--yy (4)a <b <0,则a 2______b 2;(5)若23yx -<-,则2x ______3y . 2.若使3233->-yy 成⽴,则y ______. 3.不等式x >-4.8的负整数解是______.⼆、选择题:4.x 的⼀半与y 的平⽅的和⼤于2,⽤不等式表⽰为( ).(A)2212>+y x (B)2212>++y x (C)222>+y x(D)221>+y x5.因为-5<-2,所以( ). (A)-5x <-2x (B)-5x >-2x (C)-5x =-2x (D)三种情况都可能 6.若a ≠0,则下列不等式成⽴的是( ). (A)-2a <2a (B)-2a <2(-a )(C)-2-a <2-a(D)aa 2(D)x >-1三、解不等式(组),并把解集在数轴上表⽰出来:9..11252476312-+≥---x x x10.<+-+--≤+.121331),3(410)8(2x x x x四、解答题:11.x 取何整数时,式⼦729+x 与2143-x 的差⼤于6但不⼤于8.12.当k 为何值时,⽅程1)(5332+-=-k x k x 的解是(1)正数;(2)负数;(3)零.13.已知⽅程组?-=+=-k y x k y x 513,2的解x 与y 的和为负数.求k 的取值范围.14.不等式m m x ->-2)(31的解集为x >2.求m 的值.15.某车间经过技术改造,每天⽣产的汽车零件⽐原来多10个,因⽽8天⽣产的配件超过200个.第⼆次技术改造后,每天⼜⽐第⼀次技术改造后多做配件27个,这样只做了4天,所做配件个数就超过了第⼀次改造后8天所做配件的个数.求这个车间原来每天⽣产配件多少个?16.仔细观察下图,认真阅读对话:根据对话的内容,试求出饼⼲和⽜奶的标价各是多少?全章测试(⼆) ⼀、填空题1.当m______时,⽅程5(x-m)=-2有⼩于-2的根.2.满⾜5(x-1)≤4x+8<5x的整数x为______.3.若11=--xx,则x的取值范围是______.4.已知b<0<a,且a+b<0,则按从⼩到⼤的顺序排列a、-b、-|a|、-|-b|四个数为______.⼆、选择题5.若0<a<b<1,则下列不等式中,正确的是( ).,11;11;1;1babababa<><>④③②①(A)①、③(B)②、③(C)①、④(D)②、④6.下列命题结论正确的是( ).(A)(1)、(2)、(3)(B)(2)、(3)(C)(3)(D)没有⼀个正确7.若不等式(a+1)x>a+1的解集是x<1,则a必满⾜( ).(A)a<0 (B)a>-1 (C)a<-1 (D)a<18.已知x<-3,那么|2+|3+x||的值是( ).(A)-x-1 (B)-x+1 (C)x+1 (D)x-19.如下图,对a、b、c三种物体的重量判断正确的是( ).(A)a<c(B)a<b(C)a>c(D)b<c三、解不等式(组):10.3(x+2)-9≥-2(x-1).11..57321<+<-x12.>--+<-.041131xxxx13.求≤-->32,134xxx的整数解.14.如果关于x的⽅程3(x+4)-4=2a+1的解⼤于⽅程3)43(41xa的解,求a的取值范围.15.某单位要印刷⼀批北京奥运会宣传资料,在需要⽀付制版费600元和每份资料0.3元印刷费的前提下,甲、⼄两个印刷⼚分别提出了不同的优惠条件,甲印刷⼚提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,⼄印刷⼚提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费。
人教版七年级数学下册第九章不等式与不等式组检测题 (word 版,含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题题一、选择题1.下列说法不一定成立的是( )A. 若a>b ,则a +c>b +cB. 若a +c>b +c ,则a>bC. 若a>b ,则ac 2>bc 2D. 若ac 2>bc 2,则a>b2.如图是关于x 的不等式2x -a ≤-1的解集,则a 的取值是( )A. a ≤-1B. a ≤-2C. a =-1D. a =-2 3.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( ) ①去分母,得5(x +2)>3(2x -1); ②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④ 4.不等式组的解集表示在数轴上正确的是( )5.在关于x ,y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )6.若不等式组2x -1>3(x -1),x<m 的解集是x <2,则m 的取值范围是( ) A. m =2 B. m >2 C. m <2 D. m ≥2 7.如果关于x 的不等式组无解,那么m 的取值范围为( )A. m ≤-1B. m <-1C. -1<m ≤0D. -1≤m <0 8.若关于x 的不等式组的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 239.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( ) A. 60 B. 70 C. 80 D. 90 10.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是( ) A. 11 B. 8 C. 7 D. 5 二、填空题。
一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( )A .a <3B .a ≥3C .a >3D .a ≤32.程序员编辑了一个运行程序如图所示,规定:从“输入一个值x 到结果是否75>”为一次程序操作,如果要程序运行两次后才停止,那么x 的取值范围是( )A .18x >B .37x <C .1837x <<D .1837x <≤3.若关于x 的不等式组0122x a x x ->⎧⎨->-⎩只有两个整数解,则a 的取值范围是( )A .21a -≤<-B .21a -≤≤-C .21a -<<-D .21a -<≤- 4.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( )A .3a ≤-B .3a <-C .3a >D .3a ≥5.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<- D .1162a --6.若|65|56x x -=-,则x 的取值范围是( )A .56x >B .56x <C .56x ≥D .56x ≤7.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数 答错题数得分 A20 0 100 B18 2 88 C14 6 64 D15570E9 11 34下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分D .某参赛选手得分可能为负数8.整数a 使得关于x ,y 的二元一次方程组931ax y x y -=⎧⎨-=⎩的解为正整数(x ,y 均为正整数),且使得关于x 的不等式组()1211931x x a ⎧+≥⎪⎨⎪-<⎩无解,则a 的值可以为( )A .4B .4或5或7C .7D .119.若a b <,则下列不等式中不正确的是( )A .11+<+a bB .a b ->-C .22a b --<--D .44a b< 10.若关于x 的方程 332x a += 的解是正数,则a 的取值范围是( )A .23a <B .23a >C .a 为任何实数D .a 为大于0的数11.如果点P(m ,1m -)在第四象限,则m 的取值范围是( ) A .0m >B .01m <<C .1m <D .1m12.爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米及以外的地方).已知人员撤离速度是7米/秒,导火索燃烧速度是10.3厘米/秒,为了确保安全,这次爆破的导火索至少为( ) A .100厘米B .101厘米C .102厘米D .103厘米13.不等式组36030x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .14.下列命题是假命题的是( ).A .两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B .在实数7.5-15327-,π-,22中,有3个有理数,2个无理数C .在平面直角坐标系中,点(21,7)P a a -+在x 轴上,则点P 的坐标为(7,0)-D .不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为715.下列不等式说法中,不正确的是( ) A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<--二、填空题16.a b ≥,1a -+_____1b -+17.不等式组351231148x x x x ⎧+>-⎪⎪⎨⎪--⎪⎩的解集是__.18.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则整数解是________,m 的取值范围是________.19.若不等式2(x+3)>1的最小整数解是方程2x-ax=3的解,则a 的值为__________________. 20.若关于x 的不等式组2()12153xm x 的解集为76x -<<-,则m 的值是______.21.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.22.已知a 、b 的和,a 、b 的积及b 的相反数均为负,则a ,b ,a -,+a b ,b a -的大小关系是________.(用“<”把它们连接起来)23.不等式组()2x 15x 742x 31x 33⎧+>-⎪⎨+>-⎪⎩的解集为______24.方程组43165x y k x y -=+⎧⎨+=⎩的解x 、y 满足条件0783x y ,则k 的取值范围_____.25.若关于x 的一元一次不等式组21122x a x x ->⎧⎨->-⎩的解集是21x -<<,则a 的取值是__________.26.现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,则甲种运输车至少需要安排 ________辆.三、解答题27.解不等式:431132x x +-->,并把解集在数轴上表示出来.28.(1)解方程组26m n m n =⎧⎨+=⎩ (2)解不等式组26015a a +<⎧⎨-≤⎩(3)计算:()33532a a a a ⋅⋅+ (4)计算:()()34++x x29.解方程或不等式(组)(1)2(21)1690x --=.(2)211143x x +-+. (3)421223x x x x+⎧-<⎪⎨⎪-⎩30.解不等式(组),并将解集表示在数轴上: (1)6194x x ->-(2)13215232(3)4x x x x -+⎧-≥⎪⎨⎪-->⎩。
中考数学不等式与不等式祖专题训练含答案一、单选题1.截至6月10日24时,广东新冠病毒疫苗累计接种超过6340万人,若接种人数为x ,x 为自然数,则“超过6340万”用不等式表示为( ) A .x <6340万B .x ≤6340万C .x >6340万D .x ≥6340万2.贵阳市今年5月份的最高气温为,270C 最低气温为180C ,已知某一天的气温为tC ,则下面表示气温之间的不等关系正确的是( )A .1?827t <<B .1?827t ≤<C .1?827t <≤D .1?827t ≤≤3.不等式组3122x x -≥⎧⎨-⎩>的解集在数轴上表示正确的是( )A .B .C .D .4.将“x 的2倍与5的和不是正数”用不等式表示为( ) A .250x +>B .250x +≥C .250x +<D .250x +≤5.将不等式组 422113x x -<⎧⎪⎨≤⎪⎩的解集在数轴上表示出来应是( )A .B .C .D .6.在“中国共产党建党百年知识竞赛”中共有20道题,每一题答对得10分,答错或不答都扣5分.墩墩得分要超过90分,设他答对了x 道题,则根据题意可列不等式为( )A .105(20)90x x --≥B .105(20)90x x -->C .10(20)90x x --≥D .10(20)90x x -->7.下列说法不一定成立的是( ) A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >①内错角相等,两直线平行; ①若33x y ->-,则x y >;①三角形的一个外角大于任何一个与之不相邻的内角; ①若1a <-,则21a > A .1个B .2个C .3个D .4个9.关于x ,y 的方程组3249x y ax y -=⎧⎨+=⎩,已知40a ,则x y +的取值范围为( )A .02x y <+<B .13x y -<+<C .04x y <+<D .12x y -<+<10.小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是( ) A .18千克B .22千克C .28千克D .30千克11.如果点()391M m m --,在第二象限,则m 的取值范围是( ) A .1m <B .3m <C .13m <<D .3m >12.若关于x ,y 的方程组2822mx y x y +=⎧⎨-=-⎩的解为整数,且关于x 的不等式组11324x xx m +⎧<-⎪⎨⎪<⎩无解,则满足条件的非负整数m 的值有( ) A .4个B .3个C .2个D .1个13.不等式组315,26x x ->⎧⎨≤⎩的解集在数轴上表示正确的是( )A .AB .BC .CD .D14.若0xy ≤x ,y 满足的条件是( ). A .0x ≥,0y ≥ B .0x ≥,0y ≤ C .0x ≤,0y ≥D .0x ≤,0y ≤15.不等式215x +>的解集是( ) A 2x <BCD 3x >16.对于任意实数x ,现规定[]x 表示不大于x 的最大整数,例如][2122],1[1=-=-...若325x +⎡⎤=⎢⎥⎣⎦,则x 的取值范围是( ) A .7x ≥ B .12x ≤ C .712x ≤< D .712x <≤17.不等式组213{34x x +≤+>的解集是( ) A .x >1 B .x ≤1 C .x =1 D .无解18.已知a b <,则下列不等式一定成立的是( ) A .22a b +<+B .22a b -<-C .c a c b -<-D .22a b <19.已知二次函数2243y x x =-++,当3m x m ≤≤+时,函数y 的最大值为5,则m 的取值范围是( ) A .1m ≥-B .2m ≥-C .21m -≤≤D .12m -≤≤20.关于x 的不等式组20113x a x x +>⎧⎪-⎨-≤⎪⎩的整数解有4个,那么a 的取值范围( )A .4<a <6B .4≤a <6C .4<a≤6D .2<a≤4二、填空题21.不等式210x ->的解集是______.22.不等式组372510x x -<⎧⎨-≤⎩的解集是________.23.不等式组12x x m ≤≤⎧⎨>⎩无解,求m 的取值范围______.24.不等式组31534x x -<⎧⎨+>⎩的解是____________.25.若不等式组1241x ax +>⎧⎨-≤⎩有解,则a 的取值范围是________.262=成立,则x 的取值范围是___________. 27.不等式10->的解集是____________.28.把“a 的3倍与2的和不小于6”用不等式表示得______. 29.不等式13-3x >0的正整数解是______________________ . 30.不等式215x -≤的正整数解的个数有_______个.31.若0m n<<,则2{22x mx nx n>>-<的解集为.32.某品牌电脑的成本为2000元,售价为2800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x折销售,请依据题意列出关于x的不等式:_____.33.不等式-3x-1≥-10的正整数解为______________34.不等式3x-7<0的非负整数解是________________.35.如果x=2是不等式2x a2->3的一个解,则a的取值范围______.36.若关于x的分式方程11222kx x--=--的解是正数,则k的取值范围是______.37.设a,b是任意两个实数,max{a,b}表示a,b两数中较大的数.例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{﹣4,﹣3}=﹣3.若max{3x+1,﹣x+2}=﹣x+2,则x的取值范围是_____.38.已知关于x,y的方程组22324x y mx y m-=⎧⎨+=+⎩的解满足不等式组3050x yx y+≤⎧⎨+>⎩,则满足条件的m的整数值为________.39.我国已研制出新型新冠疫苗一一重组亚单位疫苗(CHO细胞),预计4月初开始接种.3月底我市部分小区率先开始了新型新冠疫苗接种预约,这部分小区平均每个小区有144名业主申报,其中申报人数低于120名的小区平均每个小区有112名业主申报,申报人数不低于120名的小区平均每个小区有168名业主申报.根据统计结果发现,若每个小区同时新增20名业主申报,则此时申报人数低于120名的小区平均每个小区有116名,申报人数不低于120名的小区平均每个小区有180名业主申报,且该市这部分小区个数高于100,且低于130,则这部分小区有______个.40.已知﹣1<a<0___.三、解答题41.解不等式组:12256xx x+⎧⎨≤+⎩,并把它的解集在数轴上表示出来.42.已知整数x同时满足不等式211132x x+--<和3x-4≤6x-2,并且满足方程3(x+a)-5a+2=020212a-的值43.解不等式组:12 382xx+<⎧⎨-<-⎩44.某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?45.解不等式组(121(1)2-⎛⎫∏++ ⎪⎝⎭(2)32123x xxx>-⎧⎪+⎨>⎪⎩46.(1)解方程:31122xx x-+=--(2)解不等式组:426,{21136x xx x≥-++<+.47.某校在五一期间组织学生外出旅游,如果单独租用45座的客车若干辆,恰好坐满;如果单独租用60座的客车,可少租一辆,并且余30个座位.(1)求外出旅游的学生人数是多少,单租45座的客车需多少辆?(2)已知45座的客车每辆租金250元,60座的客车每辆租金300元,为节省租金,并且保证每个学生都有座,决定同时租用两种客车,使得租车总数比单租45座的客车少一辆,问45座的客车和60座的客车分别租多少辆才能使得租金最少?48.面临毕业季,某电脑营销商瞄准时机,在五月底筹集到资金12.12万元,用于一次性购进A、B两种型号的电脑共30台.根据市场需求,这些电脑可以全部销售,全部销售后利润不少于1.6万元,其中电脑的进价和售价见下表:设营销商计划购进A型电脑x台,电脑全部销售后获得的利润为y元.(1)试写出y与x的函数关系式;(2)该营销商有几种购进电脑的方案可供选择?(3)该营销商选择哪种购进电脑的方案获利最大?最大利润是多少?49.某学校准备为“中国传统文化知识竞赛”购买奖品,已知在某商场购买3个甲种奖品和2个乙种奖品需要65元,购买4个甲种奖品和3个乙种奖品需要90元.(1)求甲、乙两种奖品的单价各是多少元;(2)该校计划购买甲、乙两种奖品共60个,且购买奖品的总费用不超过600元.恰逢该商场搞促销,所有商品一律八折销售,求该校在该商场最多能购买多少个甲种奖品.50.春节将至,洪崖洞的某礼品店准备将腊肉、香肠、野生葛根粉以礼盒形式销售,腊肉、香肠、野生葛根粉的成本之比为4:5:7.商家打算将3斤腊肉、2斤香肠、4斤野生葛根粉作为甲礼盒;将4斤腊肉、2斤香肠、4斤野生葛根粉作为乙礼盒;将2斤腊肉、4斤香肠、4斤野生葛根粉作为丙礼盒.已知每个礼盒的成本价是这三种年货的成本价之和,每个甲礼盒在成本价的基础上提高20%之后进行销售,每个乙礼盒的利润等于2斤野生葛根粉的成本价,每个丙礼盒的售价为1斤腊肉成本价的18倍.腊月二十九当天,该礼品店销售了40个甲礼盒,销售乙礼盒与丙礼盒的数量之和不少于55个,不超过58个.该礼品店通过核算,当天订单的利润率为25%,则腊月二十九当天一共销售了______个礼盒.参考答案:1.C【分析】根据关键词“超过”就是大于,然后列出不等式即可. 【详解】解:由题意得:x >6340万, 故选:C .【点睛】此题主要考查了由实际问题抽象出一元一次不等式,关键是抓住关键词语,选准不等号. 2.D【详解】【分析】根据题意,用不等式表示.【详解】一天的最高气温为270C ,最低气温为180C ,一天的气温为t 0C ,用不等关系表示为1827t ≤≤. 故选D【点睛】本题考核知识点:不等式. 解题关键点:用不等式表示题意. 3.C【分析】先求出不等式组的解集,再根据解集中是否含有等号确定圆圈的虚实,方向,表示即可.【详解】① 不等式组3122x x -≥⎧⎨-⎩①>②中,解①得,x ≤2, 解①得,x >-1,①不等式组3122x x -≥⎧⎨-⎩①>②的解集为-1<x ≤2,数轴表示如下:故选C .【点睛】本题考查了一元一次不等式组的解集的数轴表示方法,熟练掌握解不等式的基本要领,准确用数轴表示是解题的关键. 4.D【分析】根据题意可直接列出不等式排除选项.【详解】解:由题意得:250x +≤; 故选D .【点睛】本题主要考查一元一次不等式的应用,熟练掌握一元一次不等式的应用是解题的关键. 5.B【分析】分别求出两个不等式的解集,即可求解. 【详解】解:422113x x -<⎧⎪⎨≤⎪⎩①②,解不等式①得:1x >, 解不等式①得:3x ≤, ①不等式组的解集为13x <≤,把不等式组的解集在数轴上表示出来,如下: 故选:B【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键. 6.B【分析】设他答对了x 道题,根据题意列出不等式即可求解. 【详解】解:设他答对了x 道题,则根据题意可列不等式为, 105(20)90x x -->,故选B .【点睛】本题考查了列一元一次不等式,理解题意,找到不等关系是解题的关键. 7.C【详解】解:A .在不等式a b >的两边同时加上c ,不等式仍成立,即a c b c +>+,说法正确,不符合题意;B .在不等式a c b c +>+的两边同时减去c ,不等式仍成立,即a b >,说法正确,不符合题意;C .当c =0时,若a b >,则不等式22ac bc >不成立,符合题意;D .在不等式22ac bc >的两边同时除以不为0的2c ,该不等式仍成立,即a b >,说法正确,不符合题意 故选C . 8.A【分析】根据平行线的判定可以判断①;根据不等式的性质可以判定①①;根据三角形外角的性质可以判定①.【详解】解:①内错角相等,两直线平行,故①是真命题,不符合题意; ①若33x y ->-,则x y <,故①是假命题,符合题意;①三角形的一个外角大于任何一个与之不相邻的内角,故①是真命题,不符合题意; ①若1a <-,则21a >,故①是真命题,不符合题意; 故选A .【点睛】本题主要考查了,判断命题真假,平行线的判定,不等式的性质,三角形外角的性质,熟知相关知识是解题的关怀. 9.B【分析】两方程相加、化简可得3x y a +=+,结合40a 知133a -<+<,据此可得答案.【详解】解:3249x y ax y -=⎧⎨+=⎩,3339x y a ∴+=+, 3x y a ∴+=+,40a -<<,133a ∴-<+<,即x y +的取值范围为13x y -<+<, 故选:B .【点睛】本题考查的是解一元一次不等式组,根据方程组得出3x y a +=+,并结合a 的取值范围得出3a +的范围是解题的关键. 10.A【详解】解:设小明的体重为m 千克,依题意得m+50<70 解得m <20即小明的体重<20千克①18<20①小明的体重可能是18千克. 故选A . 11.A【分析】根据点P (3m -9,1-m )在第二象限及第二象限内点的符号特点,可得一个关于m 的不等式组,解之即可得m 的取值范围. 【详解】解:①点P (3m -9,1-m )在第二象限, ①坐标符号是(-,+),①39010m m -<⎧⎨->⎩,解得m <1. 故选:A .【点睛】本题考查各象限内点的坐标的符号,解决本题的关键是转化为不等式或不等式组的问题. 12.C【分析】解方程组得6141x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩,解不等式1132x x +<-得8x >,结合4x m <且不等式组无解知2m ≤,继而从在2m ≤的非负整数中找到使6141x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩为整数的个数.【详解】解:解方程组2822mx y x y +=⎧⎨-=-⎩得6141x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩,解不等式1132x x+<-,得:8x >, 又4x m <且不等式组无解,48m ∴≤, 解得2m ≤,在2m ≤的非负整数中使6141x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩为整数的有0、2共2个, 故选:C .【点睛】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握解二元一次方程组和一元一次不等式组,并根据不等式组无解得出m 的取值范围. 13.C【详解】31526x x ->⎧⎨≤⎩①②, 解①得,2x >;解①得,3x ≤;①原不等式组的解集是23x <≤,故选C.14.C【分析】根据二次根式有意义的条件得出20x y ≥,结合题意即可得出结果.【详解】解:根据题意得,20x y ≥,①20x ≥,①0y ≥,①0xy ≤,①0x ≤,故选C .【点睛】题目主要考查二次根式有意义的条件及不等式的性质,熟练掌握二次根式有意义的条件是解题关键.15.C【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】解:移项,得:2x >5-1,合并同类项,得:2x >4,系数化为1,得:x >2,故选:C .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.C【详解】①325x +⎡⎤=⎢⎥⎣⎦,①3235x +≤<,解得712x ≤<. 17.D【详解】21 3......{3 4......x x +≤+>①②解不等式①,得x≤1,解不等式①,得x>1,所以不等式组无解集;故选D .18.A【分析】根据不等式的性质逐项判断即可.【详解】A 、a b <,22a b ∴+<+,故本选项正确;B 、a b <,22a b ∴->-,故本选项错误;C 、a b <,c a c b ∴->-,故本选项错误;D 、a b <,22a b ∴<或22a b >,故本选项错误.故选A .【点睛】本题考查不等式的性质,不等式的基本性质1 :若a<b 和b<c ,则a<c (不等式的传递性);不等式的基本性质2:不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立;不等式的基本性质3:不等式的两边都乘以(或除以)同一个正数,所得的不等式仍成立;不等式的两边都乘以(或除以)同一个负数,必须把不等号的方向改变,所得的不等式成立.19.C【分析】先根据二次函数的解析式确定对称轴及最大值,再结合图象判断:当自变量m +3在对称轴上或在对称轴右侧即m +3≥1时且自变量m 在对称轴上或在对称轴左侧即m ≤1时,函数能取到最大值5,由此列出不等式组,解不等式组即可.【详解】解:()22243=215y x x x =-++--+,①对称轴是x =1,①﹣2<0,①函数的最大值为5.又①当m ≤x ≤m +3时,函数y 的最大值为5, ①311m m +≥⎧⎨≤⎩, 解得:﹣2≤m ≤1.故选:C .【点睛】本题考查二次函数的最值问题,熟练掌握二次函数的图象和性质是解题的关键. 20.C【详解】分析:先根据一元一次不等式组解出x 的取值,再根据不等式组20113x a x x +>⎧⎪-⎨-≤⎪⎩的整数解有4个,求出实数a 的取值范围. 详解:2011,3x a x x +>⎧⎪⎨--≤⎪⎩①② 解不等式①,得 2a x ;>- 解不等式①,得1x ≤;原不等式组的解集为12a x -<≤. ①只有4个整数解,①整数解为:2,101--,,, 322a ∴-≤-<-, 4 6.a ∴<≤故选C.点睛:考查解一元一次不等式组的整数解,分别解不等式,写出不等式的解题,根据不等式整数解的个数,确定a 的取值范围.21.5x -<【分析】不等式两边都除以-2即可得出答案;【详解】解:210x ->,不等式两边都除以-2得:5x -<故答案为:x <-5【点睛】本题考查了解不等式,熟练掌握不等式的性质是解题的关键22.x <3【分析】分别求出每个不等式的解,再取各个解的公共部分,即可求解.【详解】解:372510x x -<⎧⎨-≤⎩①②, 由①得:x <3,由①得:x ≤15,①不等式的解为:x <3,故答案是:x <3.【点睛】本题主要考查解不等式组,掌握“大大取大,小小取小,大小小大取中间,大大小小无解”,是解题的关键.23.2m ≥【分析】根据不等式组12x x m ≤≤⎧⎨>⎩无解,可得12x ≤≤与x >m 在数轴上没有公共部分,即可求解. 【详解】不等式组12x x m≤≤⎧⎨>⎩无解, 12x ∴≤≤与x >m 在数轴上没有公共部分,2m ∴≥,故答案为:2m ≥.【点睛】本题考查了一元一次不等式组无解的情况,熟练掌握知识点是解题的关键. 24.1<x <2【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:31534x x -<⎧⎨+>⎩①②, 解不等式①,得x <2,解不等式①,得x >1,所以 原不等式组的解集为1<x <2,故答案为:1<x <2.【点睛】本题考查的是一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.25.72a < 【分析】先解不等式组,再根据题意,“大小小大”列关于a 的不等式求解.【详解】解:1241x a x +>⎧⎨-≤⎩①②, 由①得:-1x a >,由①得:25x ≤,52x ≤①不等式组有解, ①5-12a <, 解得:72a <, 故答案为:72. 【点睛】本题考查了含参数不等式组的问题,首先要先解不等式组,再根据题意列出参数所满足的不等式,再进行计算求解.26.1x ≥【分析】根据二次根式有意义的条件分别求出等号两边被开方数中x 的范围,再取其公共部分即可.2(–10)x ≥,则x 为任意实数;2要满足10x -≥,则1x ≥,所以1x ≥.故答案为:1x ≥.【点睛】本题考查了二次根式有意义的条件,属于基本知识题型,熟知二次根式的被开方数非负是解题关键.27.x <【分析】直接按照解不等式的一般步骤求解即可.【详解】10->解:移项,得1>,不等式两边同除以x <故答案为:x <【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的解题步骤是解题的关键.28.3a +2≥6##236a +≥【分析】由“a 的3倍与2的和不小于6”得出关系式为:a 的3倍+2≥6,把相关数值代入即可.【详解】解:①a 的3倍为3a ,①a 的3倍与2的和不小于6:3a +2≥6.故答案为:3a +2≥6.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.29.36125402x y x y +=⎧⎪⎨=⨯⎪⎩【详解】先求出不等式解集,再找出满足条件的正整数解即可.解:1330x ->的313x ->-133x < 满足条件的正整数解为:1,2,3,4故答案为x=1,2,3,430.3【分析】先求出不等式的解,再找出其正整数解即可得.【详解】215x -≤,251x ≤+,26x ≤,3x ≤,则不等式的正整数解为1,2,3,共有3个,故答案为:3.【点睛】本题考查了求一元一次不等式的整数解,掌握不等式的解法是解题关键. 31.无解.【详解】试题考查知识点:解不等式组思路分析:根据条件确定2m 、2n 、-2n 的大小关系具体解答过程:①0m n <<①2m <2n <0<-2n①x >-2n >0,x <2n <0没有交集①x >-2n 与x <2n 没有交集①原不等式组无解试题点评:32.2800×10x ﹣2000≥2000×5%. 【分析】设最低可打x 折,根据品牌手机的利润率不低于5%,可列出不等式求解.【详解】设这种品牌的电脑打x 折销售,依据题意得:2800200020005%10x ⨯-≥⨯, 故答案为:2800200020005%10x ⨯-≥⨯. 【点睛】本题考查了一元一次不等式的应用,根据利润=售价-进价,可列不等式求解. 33.1,2,3【分析】先求出不等式的解集,再求出不等式的正整数解即可.【详解】解:-3x -1≥-10,-3x≥-10+1,-3x≥-9,x≤3,①不等式-3x -1≥-10的正整数解为1,2,3.故答案为1,2,3【点睛】本题考查了解一元一次不等式和不等式的整数解.求出不等式的解集是解题的关键.34.0,1,2【分析】先确定不等式的解集,后确定非负整数解.【详解】①3x -7<0,①x <73,①要确定非负整数解,①0≤x <73, ①非负整数解有0,1,2;故答案为:0,1,2.【点睛】本题考查了一元一次不等式的解集和特解问题,规范求不等式的解集是解题的关键.35.a <-2.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得出不等式的解,再结合x=2是不等式的一个解列出关于a 的不等式,解之可得.【详解】解:①22x a ->3, ①2x-a >6,2x >a+6,则x >62a +, ①x=2是不等式的一个解, ①62a +<2, 解得a <-2,故答案为:a <-2.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.36.4k <且0k ≠【分析】根据题意,将分式方程的解x 用含k 的表达式进行表示,进而令0x >,再因分式方程要有意义则2x ≠,进而计算出k 的取值范围即可.【详解】解: 2(2)11x k -+-=420x k --=42k x -= 根据题意0x >且2x ≠①402422k k -⎧>⎪⎪⎨-⎪≠⎪⎩ ①40k k <⎧⎨≠⎩①k 的取值范围是4k <且0k ≠.【点睛】本题主要考查了分式方程的解及分式方程有意义的条件、一元一次不等式组的求解,熟练掌握相关计算方法是解决本题的关键.37.14x ≤##0.25x ≤ 【分析】根据max {3x +1,﹣x +2}=﹣x +2,即可得出关于x 的一元一次不等式,解之即可得出结论.【详解】解:①max {3x +1,﹣x +2}=﹣x +2,①3x +1≤﹣x +2,解得:14x ≤, 故答案为:14x ≤. 【点睛】本题考查了解一元一次不等式,解题的关键是根据max {3x +1,﹣x +2}=﹣x +2,找出关于x 的一元一次不等式.38.-3和-2【分析】根据题意,先求出方程组的解,然后解代入不等式组,即可求出m 的取值范围,然后得到m 的整数解即可.【详解】解:由题意得:x-2y=m 2x+3y=2m+4⎧⎨⎩①② 由①2-⨯①,解得:4y=7, 把4y=7代入①,得:8x=m+7, 把8x=m+7,4y=7代入不等式组,得: 843(m+)+07784m++5>077⎧⨯≤⎪⎪⎨⎪⨯⎪⎩③④, 解不等式①,得:4m -3≤,解不等式①,得:m>-4,①不等式组的解集为:4-4m -3<≤, ①满足条件的m 的整数解有:-3和-2,故答案为:-3和-2.【点睛】本题考查了解二元一次方程组,解一元一次不等式组,解题的关键是熟练掌握解方程组和解不等式组的方法和步骤.39.112【分析】先设低于120名的有x 个小区,不低于120名的有y 个小区,每个小区增加20名业主,则设低于120名的会在x 个小区的基础上减少e 个,根据“这部分小区平均每个小区有144名业主参加”可知一共有()144x y +名业主,再根据增加20户前与后两种情况的等量关系列式,可以得到x ,y 含有e 的关系式,再结合“该市这部分小区个数高于100,且低于130”即可得出答案.【详解】解:设低于120名的有x 个小区,不低于120名的有y 个小区,再设每个小区增加20名业主后,低于120名的会在x 个小区的基础上减少e 个小区,不低于120名的会在y 个小区的基础上增加e 个小区①增加20名业主后,低于120名的有()x e -个小区,不低于120户的有()y e +个小区, 由题意得:()144112168x y x y +=+,①43x y =①,同时有:()()()()11618020144x e y e x y x y -++=+++,化简得:34x y e -=①,由①①解得: 2.4 3.2x e y e ==,,①x ,y ,e 都是正整数,且100130x y <+<①100 5.6130e <<,①20e =,①4864x y ==,,①112x y +=故答案为:112.【点睛】本题主要考查方程与实际问题,能够读懂题意,找到等量关系并准确的表达出来是解题的关键.40.2a- 【分析】根据题意得到10a a->,10a a +<,根据完全平方公式把被开方数变形,根据二次根式的性质计算即可.【详解】解:原式==①10a -<<,①201a <<, ①1a a>, 210a +>, ①10a a->,2110a a a a ++=<,原式112a a a a a ==---=- 故答案为:2a -. 【点睛】本题考查二次根式的化简和不等式的性质,解题关键是熟练掌握二次根式的性质.41.﹣2≤x ≤1,数轴见解析【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解不等式x +1≤2,得:x ≤1,解不等式2x ≤5x +6,得:x ≥﹣2,则不等式组的解集为﹣2≤x ≤1,将不等式组的解集表示在数轴上如下:【点睛】此题主要考查在数轴上表示不等式组的解集,熟练掌握,即可解题.42.0【分析】先解两个不等式,确定解集的公共部分,再确定不等式组的整数解,把整数解代入方程解方程求解a 的值,从而可得答案.【详解】解:由两个不等式组成不等式组:2111323462x x x x +-⎧-<⎪⎨⎪-≤-⎩①② 解不等式①,得x <1,解不等式①,得x ≥-23①不等式组的解集为-23≤x <1①整数x 为0,①3(0+a )-5a +2=0,解得a =1202121120a -=+-=【点睛】本题考查的是一元一次不等式组的解法,求一个数的立方根,一元一次方程的解与解法,代数式的值,掌握以上知识是解题的关键.43.1x <【分析】直接根据一元一次不等式的解法进行求解即可. 【详解】解: 12382x x +<⎧⎨-<-⎩①② 解不等式①,得:1x <;解不等式①,得2x <;∴不等式组的解集为1x <.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握不等式组的解法是解题的关键.44.(1)购进甲种花卉每盆16元,乙种花卉每盆8元;(2)10≤x ≤12.5,故有三种购买方案,在所有的购进方案中,购买甲种花卉12盆,乙种花卉76盆时,获利最大,最大利润是148元.【分析】(1)根据题意设购进甲种花卉每盆x 元,乙种花卉每盆y 元,列出相应的二元一次方程组,从而可以求得购进甲、乙两种花卉,每盆各需多少元;(2)根据题意可以列出相应的不等式组,从而可以得到有几种购进方案,利用一次函数的性质得到哪种方案获利最大,最大利润是多少.【详解】解:(1)设购进甲种花卉每盆x 元,乙种花卉每盆y 元,20507204030880x y x y +=⎧⎨+=⎩, 解得:168x y =⎧⎨=⎩, 即购进甲种花卉每盆16元,乙种花卉每盆8元;(2)设甲种花卉购进m 盆,则 80016688001688m m m m -⎧≥⎪⎪⎨-⎪≤⎪⎩, 解得,10≤m ≤12.5,又m 为整数,m ∴=10,11,12,故有三种购买方案,由利润W=80016614100,8m m m -+⨯=+ 40,∴>W 随m 的增大而增大,故当m =12时, 80016768m -=, 即购买甲种花卉12盆,乙种花卉76盆时,获得最大利润,此时W=4×12+100=148,即该花店共有几三种购进方案,在所有的购进方案中,购买甲种花卉12盆,乙种花卉76盆时,获利最大,最大利润是148元.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式组的应用,解题的关键是明确题意、列出相应的方程组或不等式组.45.(1)5;(2) 115x -<<. 【分析】(1)分别计算算数平方根,0指数幂,负指数幂,再把结果相加减;(2)依据解不等式的步骤分别计算两个不等式,求公共解.【详解】(1)原式2145=-+=(2)32(1)12(2)3x x x x >-⎧⎪+⎨>⎪⎩ 分别解两个一元一次不等式,过程如下:解①得,32x x ->-22x >-1x >-解①得,16x x +>51x <,15x < ①115x -<< 【点睛】本题考查0指数幂,算术平方根,负指数幂,解不等式组.(1)中熟记0指数幂,算术平方根,负指数幂的计算公式并能正确运用是解题的关键;(2)在解不等式时,需注意去分母和系数化为1时,要用到等式的性质2或者性质3,应注意不等号的方向改不改变.46.(1)解得x=2,检验,无解;(2)33x ≤<-【详解】试题分析:(1) 分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2) 先求出①的解集,再求出①的解集,求两者的公共部分.试题解析: (1)31 122x x x-+=-- 去分母得:3−x −1=x −2,移项合并得:2-2x =-2,解得:x =2,经检验x =2是分式方程的增根,原方程无解. (2)426, 2x x 1136x x ①②≥-⎧⎪⎨++<+⎪⎩由①得,2x ≥-6所以x ⩾−3由①得,4+2x <x +1+6。
专题14:不等式与不等式组(填空题专练)一、填空题1.若a <b ,则-5a______-5b(填“>”“<”或“=”).【答案】>【解析】试题解析:∵a <b ,∴-5a >-5b ;2.不等式2x+4>0的解集是________.【答案】x>-2【解析】根据一元一次不等式的解法,移项得2x >-4,系数化为1,可得x >-2.故答案为x >-2.3.若不等式()33a x a -≤-的解集在数轴上表示如图所示,则a 的取值范围是__________.【答案】3a <【分析】不等式两边同时除以3a -即可求解不等式,根据不等式的性质可以得到3a -一定小于0,据此即可求解.【解答】由题意得30a -<,解得:3a <,故答案为:3a <.【点评】本题考查了解一元一次不等式,解答此题一定要注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.4.若不等式组 x m 1,x 2m 1>+⎧⎨<-⎩ 无解,则 m 的取值范围是___________. 【答案】m≤2【分析】先解不等式,再根据不等式无解判断求解即可;【解答】由不等式组x m 1,x 2m 1>+⎧⎨<-⎩无解可得121m m +≥-, 解得:2m ≤.故答案是2m ≤.【点评】本题主要考查了解一元一次不等式组的,准确理解计算是解题的关键.5.若a b <,则2ac ______________2bc .【答案】≤【分析】根据不等式的性质得出大小.【解答】∵c 2≥0, a<b ,∴ac 2 ≤bc 2.故答案是:≤.【点评】考查了不等式的性质,解题关键是熟记并利用了不等式的性质.6.如果2m ,m ,1﹣m 这三个实数在数轴上所对应的点从左到右依次排列,那么m 的取值范围是________.【答案】m <0【分析】如果2m ,m ,1-m 这三个实数在数轴上所对应的点从左到右依次排列,即已知2m <m ,m <1-m ,2m <1-m ,即可解得m 的范围.【解答】根据题意得:2m <m ,m <1-m ,2m <1-m ,解得:m <0,m <12,m <13, ∴m 的取值范围是m <0.故答案为m <0.7.不等式4x ﹣6≥7x ﹣12的非负整数解为________________.【答案】0,1,2【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【解答】解:移项得:4x -7x ≥-12+6,合并同类项得:-3x ≥-6;化系数为1得: x ≤2;因而不等式的非负整数解是:0,1,2.【点评】正确解不等式,求出解集是解决本题的关键.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.8.不等式组5234x x -≤-⎧⎨-<⎩的解集是______________. 【答案】-1<x≤3【解析】分析:分别解不等式,找出解集的公共部分即可.详解:解不等式①,得 3x ≤;解不等式②,得1x >-; 原不等式组的解集为13x -<≤.故答案为13x -<≤.点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.9.已知关于x 的不等式23x a ->-的解集如图所示则a 的值为____________.【答案】1【分析】求出不等式的解集并与图示作比较,可以求得a 的值.【解答】解:解2x −a>−3可得32a x ->, 又由图示可知1x >-,两相比较可得312a -=-,解得: 1a =.故答案为1.【点评】本题考查不等式的解集,熟练掌握不等式解集在数轴上的表示方法是解题关键.10.如果|1|1x x +=+,|32|32x x +=--,那么x 的取值范围是________. 【答案】213x -≤≤- 【分析】根据正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值等于0,建立不等式组求解.【解答】∵|1|1x x +=+,|32|32x x +=--∴10320x x +≥⎧⎨+≤⎩解得213x -≤≤- 故答案为:213x -≤≤-.【点评】本题考查绝对值与不等式组,熟练掌握绝对值的性质建立不等式组是解题的关键.11.方程组431,65x y kx y-=+⎧⎨+=⎩的解x、y满足条件0<3x-7y<1,则k的取值范围______.【答案】43<k<53【分析】将两个等式相减,可得3x-7y=3k-4,再根据0<3x-7y<1即可解出k的范围.【解答】43165x y kx y-=+⎧⎨+=⎩①,②,①-②,得3x-7y=3k-4,则0<3k-4<1,解得43<k<53,故答案是43<k<53.【点评】此题主要考察二元一次方程组与不等式的综合,熟知二元一次方程组的解法是解题的关键.12.当y_____,时,代数式324y-的值至少为1.【答案】≤-1 2【分析】根据“至少”的含义是“大于或等于”列夫等式求解即可. 【解答】由题意得32 4y-≥1,解之得y≤-1 2 .故答案为≤-1 2 .【点评】本题考查了一元一次不等式的应用,根据题意正确列出不等式是解答本题的关键.13.不等式12x>-3的解集是______.【答案】x>-6【解析】不等式左右两边同时除以12可得:x>-6.故答案为x>-6.点睛:掌握不等式的性质.14.若关于x 的不等式组121x m x m ≤+⎧⎨-⎩>无解,则m 的取值范围是________ 【答案】m≥2 【解析】试题解析:由于不等式组121x m x m ≤+⎧⎨-⎩>无解, 所以2m-1≥m+1,解得:m≥2.故答案为m≥2. 15.不等式组2x x a >⎧⎨<⎩无解,则a 的取值范围是_____. 【答案】a ≤2【分析】根据不等式组2x x a >⎧⎨<⎩无解,可得出a≤2,即可得出答案. 【解答】∵不等式组2x x a >⎧⎨<⎩无解, ∴a 的取值范围是a≤2;故答案为a≤2.【点评】本题考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).16.关于x 的不等式30x a -≤只有两个正整数解,则a 的取值范围是_______【答案】6≤a <9.【分析】解不等式得x≤3a ,由于只有两个正整数解,即1,2,故可判断3a 的取值范围,求出a 的取值范围. 【解答】原不等式解得x≤3a , ∵解集中只有两个正整数解,则这两个正整数解是1,2,∴2≤3a <3, 解得6≤a <9.故答案为6≤a <9.【点评】本题考查了一元一次不等式的整数解.正确解不等式,求出正整数是解答本题的关键.解不等式应根据不等式的基本性质.17.不等式442xx->-的最小整数解为_____.【答案】5.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最小整数解即可.【解答】442xx ->-,x-4>8-2x,3x>12,x>4,故不等式442xx->-的最小整数解为5.故答案为5.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.18.把m 个练习本分给n 个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n的值为________.【答案】41或42【分析】不足5本说明最后一个人分的本数应在0和5之间,但不包括5.【解答】由题意可得m=3n+80,0<m-5(n-1)<5,解得40<n<42.5,因为n为整数,所以n值为41或42,故答案为:41或42.【点评】本题考查了一元一次不等式组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式组.19.不等式3x﹣2≥4(x﹣1)的所有非负整数解的和为__.【答案】3.【解析】试题解析:3x﹣2≥4(x﹣1),3x﹣2≥4x﹣4,x ≤2,所以不等式的非负整数解为0,1,2,0+1+2=3,【点睛】本题考查了解一元一次不等式,不等式的非负整数解的应用,解此题的关键是能求出不等式的非负整数解,难度适中.20.某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中要有盈利,则亏本的那双皮鞋的进价必须低于_________元【答案】150【分析】设亏本的那双皮鞋的进价为x 元,则亏本的那双皮鞋的售价为(1-10%)x 元,盈利的那双皮鞋的售价为[200-(1-10%)x]元,盈利的那双皮鞋的进价为200(110%)130%x --+元,根据商贩在这次销售中要有盈利,即可得出关于x 的一元一次不等式,解之即可得出结论.【解答】解:设亏本的那双皮鞋的进价为x 元,则亏本的那双皮鞋的售价为(1-10%)x 元,盈利的那双皮鞋的售价为[200-(1-10%)x]元,盈利的那双皮鞋的进价为200(110%)130%x --+元, 依题意,得:(1-10%)x-x+[200-(1-10%)x]200(110%)130%x ---+>0, 解得:x <150.故答案为:150.【点评】本题考查了一元一次不等式的应用,找准等量关系,正确列出一元一次不等式是解题的关键. 21.若关于x 的方程3(4)25x a +=+的解大于关于x 的方程(41)(34)43a x a x +-=的解,则a 的取值范围为________.【答案】718a > 【分析】先求出两个方程的解,然后解关于a 的一元一次不等式,即可得到答案.【解答】解:解方程3(4)25x a +=+,得:273a x -=, 解方程(41)(34)43a x a x +-=, 得:163x a =-. 由题意得:271633a a ->-.解得:718a >. 故答案为:718a >. 【点评】本题考查的是解一元一次方程和解一元一次不等式,根据题意列出关于x 的不等式是解答此题的关键.22.用“>”或“<”填空:(1)如果1a b>,0b >,那么a ________b ; (2)如果1a b<,0b >,那么a ____b ; (3)如果1a b <,0b <,那么a ____b ; (4)当a b >,b ____0时,或者0a <,b ___0时,有0ab >.【答案】> < > > <【分析】(1)根据不等式的性质2进行分析;(2)根据不等式的性质2进行分析;(3)根据不等式的性质3进行分析;(4)根据不等式的性质2和3进行分析;【解答】解:(1)因为1a b >,0b >,在不等式两边同时乘以b ,不等号方向不变, 得a >b ,故答案是:>;(2)因为1a b <,0b >,在不等式两边同时乘以b ,不等号方向不变, 得a <b ,故答案是:<;(3)因为1a b<,0b <,在不等式两边同时乘以b ,不等号方向改变, 得a >b ,故答案是:>;(4)当a b >,b >0时,a >0,在不等式b >0两边同时乘以a ,不等式方向不变,即0ab >;当0a <,b <0时,在不等式b <0两边同时乘以a ,不等式方向改变,即0ab >.故答案是:>;<.【点评】本题考查了不等式的性质2和3:不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.要特别注意性质(3),很容易出错.23.若不等式组01x a x a -⎧⎨-⎩-的解集中的任何一个x 的值均不在2≤x ≤5的范围内,则a 的取值范围为________.【答案】a ≤1或a ≥5 【分析】解不等式组01x a x a ->⎧⎨-<⎩,求出x 的范围,根据任何一个x 的值均不在2≤x≤5范围内列出不等式,解不等式得到答案.【解答】解:不等式组01x a x a ->⎧⎨-<⎩的解集为:a <x <a+1, ∵任何一个x 的值均不在2≤x≤5范围内,∴x <2或x >5,∴a+1≤2或a≥5,解得,a≤1或a≥5,∴a 的取值范围是:a≤1或a≥5,故答案为:a≤1或a≥5.【点评】本题考查的是不等式的解集的确定,根据不等式的解法正确解出不等式是解题的关键,根据题意列出新的不等式是本题的重点.24.已知不等式3x -0a ≤的正整数解恰是1,2,3,4,那么a 的取值范围是_________________.【答案】1215a ≤<【分析】用含a 的式子表示出不等式的解集,由不等式的正整数解,得到x 的范围,再根据x 与a 的关系列不等式(组)求解.【解答】因为3x -a ≤0,所以x ≤3a , 因为原不等式的正整数解恰是1,2,3,4,即4353a a ⎧≥⎪⎪⎨⎪<⎪⎩,解得12≤x <15. 故答案为12≤x <15.【点评】由不等式(组)的整数解确定所含字母的取值范围的解法是:①解不等式(组),用字母系数表示出解集;②由不等式(组)的整数解确定不等式(组)的解集;③综合①②列出关于字母系数的不等式(注意是否可取等于)求解.25.一次测验共出5道题,做对一题得一分,已知26人的平均分不少于4.8分,最低的得3分,至少有3人得4分,则得5分的有______ 人.【答案】22【解析】解:设得5分的人数为x 人,得3分的人数为y 人.则可得326531226 4.8x y x y ++=⎧⎨++>⨯⎩,解得:x >21.9. ∵一共26人,最低的得3分,至少有3人得4分,∴得5分最多22人,即x ≤22.∴21.9<x ≤22且x 为整数,所以x =22.故得5分的人数应为22人.故答案为22.点睛:此题考查不等式组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.解题过程中一定要符合题目的意思,以事实为依据.26.我们知道,适合二元一次方程的一对未知数的值叫做这个二元一次方程的一个解.类似地,适合二元一次不等式的一对未知数的值叫做这个二元一次不等式的一个解.对于二元一次不等式x +2y≤8,它的正整数解有________个.【答案】12【分析】先把y 作为常数,解不等式得82x y ,根据x ,y 是正整数,得820y,求出y 的正整数值,再分情况进行讨论即可.【解答】解:28x y ,82x y , x ,y 是正整数, 820y ,解得04y <<,即y 只能取1,2,3,当1y =时,06x <,正整数解为:11x y =⎧⎨=⎩,21x y =⎧⎨=⎩,31x y =⎧⎨=⎩,41x y =⎧⎨=⎩,51x y =⎧⎨=⎩,61x y =⎧⎨=⎩, 当2y =时,04x ,正整数解为:12x y =⎧⎨=⎩,22x y =⎧⎨=⎩,32x y =⎧⎨=⎩,42x y =⎧⎨=⎩, 当3y =时,02x <,正整数解为:13x y =⎧⎨=⎩,23x y =⎧⎨=⎩; 综上,它的正整数解有12个.故答案为:12.【点评】本题考查了一元一次不等式的整数解,求出y 的整数值是本题的关键.27.关于x 的不等式()321a x -<的解集是132x a >-,则a 的取值范围是_____. 【答案】32a > 【分析】分析可知符合不等式性质3,320a -<,解出a 即可. 【解答】解:()321a x -<的解集是132x a >-, 320a ∴-<, 解得32a >. 故答案为32a >. 【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.28.关于x 的不等式组23284a x x a ->⎧⎨+>⎩的解集中每一个值均不在18x ≤≤的范围内,则a 的取值范围是____________.【答案】6a ≥或2a ≤【分析】先求出不等式组的解集,根据已知得出关于a 的不等式组,求出不等式组的解集即可.【解答】解:23284a x x a ->⎧⎨+>⎩①②∵解不等式①得23x a <-,解不等式②得24x a >-,∴不等式组的解集是2423a x a -<<-.∵关于x 的不等式组23284a x x a ->⎧⎨+>⎩的解集中每一个值均不在18x ≤≤的范围内, ∴248a -≥或231a -≤,解得6a ≥或2a ≤.【点评】本题考查了解一元一次不等式组,能根据不等式组的解集和已知得出关于a 的不等式组是解此题的关键.注意理解:解集中每一个值均不在18x ≤≤的范围内的意义.29.如果关于x 的不等式组3020x a x b -≥⎧⎨-≤⎩的整数解仅有1,2,那么适合这个不等式组的整数a ,b 组成的有序数对(),a b 共有_______个;如果关于x 的不等式组px d f qx e g +>⎧⎨+<⎩(其中p ,q 为正整数)的整数解仅有()1212,,,n n c c c c c c <<<,那么适合这个不等式组的整数d ,e 组成的有序数对(),d e 共有______个.(请用含p 、q 的代数式表示)【答案】6 pq【分析】(1)求出不等式组的解集,根据不等式组的解集和已知得出b 232≤<,a 013<≤,求出a b 的值,即可求出答案;(2)求出不等式组的解集,根据不等式组的解集和已知得出111f d c c p --<,1n n g e c c q-<+,即11f pc d p f pc -<+-,n n g qc q e g qc --<-;结合p ,q 为正整数,d ,e 为整数可知整数d 的可能取值有p 个,整数e 的可能取值有q 个,即可求解.【解答】解:(1)解不等式组3020x a x b -≥⎧⎨-≤⎩,得不等式组的解集为:32a b x , ∵关于x 的不等式组3020x a x b -≥⎧⎨-≤⎩的整数解仅有1,2, ∴b 232≤<,a 013<≤,∴4≤b <6,0<a≤3,即b 的值可以是4或5,a 的值是1或2或3,∴适合这个不等式组的整数a ,b 组成的有序数对(a ,b )可能是(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),∴适合这个不等式组的整数a ,b 组成的有序数对(a ,b )共6个;(2)解不等式组px d f qx e g+>⎧⎨+<⎩(其中p ,q 为正整数), 解得:f d g e x p q--<<, ∵不等式组px d f qx e g +>⎧⎨+<⎩(其中p ,q 为正整数)的整数解仅有c 1,c 2,…,c n (c 1<c 2<…<c n ), ∴111f d c c p --<,1n n g e c c q-<+, ∴11f pc d p f pc -<+-,n n g qc q e g qc --<-,∵p ,q 为正整数∴整数d 的可能取值有p 个,整数e 的可能取值有q 个,∴适合这个不等式组的整数d ,e 组成的有序数对(d ,e )共有pq 个;故答案为:6;pq .【点评】本题考查了一元一次不等式组的整数解,解题的关键是掌握解一元一次不等式组的一般步骤. 30.一年一度的“八中之星”校园民谣大赛是每年八中艺术节的重要活动之一,吸引了众多才华横溢的八中同学参赛.该比赛裁判小组由若干人组成,每名裁判员给选手的最高分不超过10分.今年大赛一名选手演唱后的得分情况是:全体裁判员所给分数的平均分是9.84分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.82分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.9分.那么,所有裁判员所给分数中的最低分最少可以是________分.【答案】9.36【分析】设裁判员有x 名,根据全体裁判员所给分数的平均分是9.84分可得总分为9.84x ,如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.82分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.9分,可求出最高分的代数式从而列出不等式,得到最高分就能求出最低分.【解答】设裁判员有x 名,那么总分为9.84x ;去掉最高分后的总分为9.82(x-1),由此可知最高分为9.84x-9.82(x-1)=0.02x+9.82;去掉最低分后的总分为9.9(x-1),由此可知最低分为9.84x-9.9(x-1)=9.9-0.06x.因为最高分不超过10,所以0.02x+9.82≤10,即0.02x≤0.18,所以x≤9.当x取7时,最低分有最小值,则最低分为9.9-0.06x=9.9-0.54=9.36.故答案是:9.36.【点评】考查理解题意的能力,关键是表示出最高分的代数式,列出不等式求出最高分,然后求出最低分,根据平均分求出人数.31.若关于x的不等式组1423xxx m+⎧-≥⎪⎨⎪>⎩的所有整数解的和是﹣9,则m的取值范围是_____.【答案】-5≤m<-4.【解析】【分析】先求出不等式的解集,根据已知不等式组的整数解得和为-9即可得出答案.【解答】解:1423xxx m+⎧-≥⎪⎨⎪>⎩①②解不等式①得:x≤-2,∴m<x≤-2又∵不等式组的所有整数解得和为-9,∴-4+(-3)+(-2)=-9∴-5≤m<-4;故答案为:-5≤m<-4.【点评】本题主要考查了解一元一次不等式组,是一道较为抽象的题,利用数轴就能直观的理解题意,列出关于m的不等式组,临界数-5的取舍是易错的地方,要借助数轴做出正确的取舍.32.关于x的不等式组211x ax-≥⎧⎨-≤⎩只有4个整数解,则a的取值范围是_____.【答案】-3<a≤-2【解析】【分析】先求不等式组211x ax-≥⎧⎨-≤⎩得解集,然后根据整数解的情况,确定a的范围.【解答】解:解不等式组211x ax-≥⎧⎨-≤⎩得:a≤x≤1组4个整数解为:1,0,-1,-2,所以-3<a≤-2故答案为:-3<a≤-2【点评】本题考查了不等式组的解法和根据整数解确定参数,其中解不等式组是解答本题的关键.33.对非负实数x“四舍五入”到个位的值记为<x>,即已知n为正整数,如果n-12≤x<n+12,那么<x>=n.例如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…则满足方程<x>=1x 1.62+的非负实数x的值为____.【答案】2.8【解析】【分析】设12x+1.6=k,k为非负整数,则x=2k-3.2,根据定义得到共有k的不等式,即可求出k的取值范围,由k为非负整数确定k的值进而确定x的值即可.【解答】设12x+1.6=k,k为非负整数,则x=2k-3.2,由<2k-3.2>=k可得:k-12≤2k-3.2<k+12(k≥0)解得:2.7≤k<3.7,∵k为非负整数,∴k=3,∴x=2×3-3.2=2.8.故答案为:2.8【点评】考查了一元一次不等式的应用,理解定义,列出不等式得出k的取值范围是解题关键.34.若关于x,y的方程组3133x y kx y+=+⎧⎨+=⎩的解为x,y,且-2<k<4,则x-y的取值范围是__.【答案】-2<x-y<1【解析】根据题意可知:3133x y kx y+=+⎧⎨+=⎩①②,①-②可得2x-2y=k-2,然后由-2<k<4,根据不等式的基本性质可得-4<k-2<2,所以可得x-y的取值范围为-2<x-y<1. 故答案为:-2<x-y<1.35.若关于x,y的二元一次方程组32225x y mx y m-=+⎧⎨+=-⎩中x的值为正数,y的值为负数,则m的取值范围为____________.【答案】83<m<19【解析】将m看做已知数求出方程组32225x y mx y m-=+⎧⎨+=-⎩的解表示出x=387m-与y=197m-,根据x为正数,y为负数列出不等式组387197mm-⎧⎪⎪⎨-⎪⎪⎩><,求出不等式组的解集即可确定出m的范围83<m<19.故答案为:83<m<19.点睛:此题考查了二元一次方程组的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.。
人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。
一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( )A .a <3B .a ≥3C .a >3D .a ≤3 2.若点A (a ,b )在第二象限,则点B (﹣a ,b+1)在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.不等式()31x -≤5x -的正整数解有( ) A .1个B .2个C .3个D .4个4.不等式组64325x x x -<⎧⎨≥+⎩的解集是( )A .x ≥5B .x ≤5C .x >3D .无解5.如果a 、b 表示两个负数,且a b >,则( ) A .1ab> B .1b a> C .11a b> D .1ab <6.若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( ) A .74a -<<-B .74a -≤≤-C .74a -≤<-D .74a -<≤-7.下列说法中不正确的是( ) A .若a b >,则a 1b 1->- B .若3a 3b >,则a b > C .若a b >,且c 0≠,则ac bc >D .若a b >,则7a 7b -<-8.已知关于x 的方程9314x kx -=+有整数解,且关于x 的不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩有且只有4个整数解,则不满足条件的整数k 为( ). A .8-B .8C .10D .269.若a b <,则下列不等式中不正确的是( ) A .11+<+a bB .a b ->-C .22a b --<--D .44a b < 10.如果点P(m ,1m -)在第四象限,则m 的取值范围是( ) A .0m >B .01m <<C .1m <D .1m11.小圆想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分为4组,第n 组有n x 首,1,2,3,4n =;②对于第n 组诗词,第n 天背诵第一遍,第(1)n +天背诵第二遍,第(3)n +天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4n =; ③每天最多背诵8首,最少背诵2首,第1天 第2天 第3天 第4天 第5天 第6天 第7天第1组 1x 1x1x第2组 2x2x2x第3组 3x3x3x第4组4x4x4x7天后,小圆背诵的诗词最多为( ) A .10首B .11首C .12首D .13首12.若关于x 的不等式组327x x a-<⎧⎨<⎩的解集是x a <,则a 的取值范围是( ).A .3aB .3a >C .3aD .3a <13.对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次就停止了,那么x 的取值范围是( )A .822x <B .822x <C .864x <≤D .2264x <≤14.不等式1322x x -+>的解在数轴上表示正确的是( ) A . B .C .D .15.某班共有48人,人人都会下棋,会下象棋的人数是会下围棋人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的有( ) A .20人B .19人C .11人或13人D .19人或20人二、填空题16.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x +⎡⎤=⎢⎥⎣⎦,则x 的取值可以是______________(任写一个).17.若0a b c ++=,且a b c >>,以下结论:①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =; ③22()a b c =+ ④||||||||a b c abc a b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >.其中正确的结论是______(填写正确结论的序号).18.不等式组3121213x x +>-⎧⎪⎨-≥⎪⎩的最大整数解为______. 19.为了方便同学们进行丰富阅读,南开中学图书馆订购了A ,B ,C 三类新书,共900本,其中A 类数量是B 类数量的4倍,C 类数量不超过A 类数量的5528倍,且A 类数量不超过400本.新书开始借阅后,深受同学欢迎,图书管理员提供了两种方案来增订这三类书若干本(两种方案增订的图书总量相同),方案一:按2:3:5的比例增订A ,B ,C 三类书;方案二:按4:1:5的比例增订A ,B ,C 三类书,经计算,若按方案一增订,则增订后A ,B 两类书总数量之比为7:2,那么按方案二增订时,增订后A ,C 两类书总数量之比为______.20.若()a 1x a 1-<-的解集为x 1>,则a 的取值范围是________.21.随着中秋节的逐渐临近,红梅超市计划购进甜味型、咸味型、麻辣味型三种共50盒月饼,其中咸味型月饼数量不超过甜味型月饼数量,且咸味型月饼数量不少于麻辣味型月饼数量的一半.已知甜味型月饼每盒60元,咸味型月饼每盒80元,麻辣味型月饼每盒100元.在价格不变的条件下,小王实际购进甜味型月饼是计划的56倍,麻辣味型月饼购进了12盒,结果小王实际购进三种月饼共35盒,且比原计划少支付1240元,则小王原计划购进甜味型月饼_____盒.22.已知不等式组43103x x a -≤≤-⎧⎪⎨->⎪⎩有解,那么a 的取值范围是___________.23.不等式组63024x x x -⎧⎨<+⎩的解集是__.24.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________.25.定义一种法则“⊗”如下:()()a ab a b b a b >⎧⊗=⎨≤⎩,如:122⊗=,若(25)33m -⊗=,则m 的取值范围是_______.26.在实数范围内规定一种新的运算“☆”,其规则是:a ☆b=3a+b ,已知关于x 的不等式:x ☆m>1的解集在数轴上表示出来如图所示.则m 的值是________ .三、解答题27.某水果店购买某种水果的进价为18元/千克,在销售过程中有10%的水果损耗,该水果店以a 元/千克的标价出售该种水果. (1)为避免亏本,求a 的最小值.(2)若该水果店以标价销售了70%的该种水果,在扣除10%损耗后,剩下的20%水果按10元/千克的价格售完.为确保销售该种水果所得的利润率不低于20%,求a 的最小值. 28.为了积极争创“天府旅游名县”,鼓励全民参与健身运动,2019年12月29日,广汉市在城北全民健身中心举行了“2019年广汉市三星堆迷你马拉松(10公里)”比赛.组委会为了奖励活动中取得了好成绩的参赛选手,计划购买一批纪念品发放.已知甲、乙两商场以同样价格出售同样的纪念品,并且又各自推出不同的优惠方案:在甲商场累计购买该纪念品超过1000元后,超出1000元的部分按90%收费;在乙商场累计购买该纪念品超过500元后,超出500元的部分按95%收费,组委会到哪家商场购买花费少? 29.一直关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a<-. (1)求a 的取值范围; (2)试化简1a a 2-++.30.长沙市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品2件,乙种纪念品3件,需要400元;若购进甲种纪念品3件,乙种纪念品5件,需要650元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共70件,其中乙种纪念品的数量不少于40件,考虑到资金周转,用于购买这70件纪念品的资金不能超过5750元,那么该商店共有几种进货方案?。
一、选择题1.如图,按下面的程序进行运算,规定:程序运行到“判断结果是否大于28”为一次运算,若运算进行了3次才停止,则x 的取值范围是( )A .24x <≤B .24x ≤<C .24x <<D .24x ≤≤ 2.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ).A .10 cm 3以上,20 cm 3以下B .20 cm 3以上,30 cm 3以下C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下3.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( )A .3a >B .3a ≤C .3a <D .3a ≥ 4.不等式组43x x <⎧⎨≥⎩的解集在数轴上表示为( ) A . B .C .D .5.若a b <,则下列各式中不一定成立的是( )A .11a b -<-B .33a b <C .a b ->-D .ac bc < 6.若a b <,则下列不等式中不正确的是( )A .11+<+a bB .a b ->-C .22a b --<--D .44a b < 7.如果点P(m ,1m -)在第四象限,则m 的取值范围是( )A .0m >B .01m <<C .1m <D .1m 8.不等式组36030x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A . B .C .D .9.不等式组32153x x ->⎧⎨-<-⎩的解集在数轴上的表示是( ) A . B .C .D .10.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1x >-B .12x -<≤C .12x -≤<D .1x >-或2x ≤ 11.若关于x 的不等式组132(2)x a x x ≥-⎧⎨≤+⎩仅有四个整数解,则a 的取值范围是( ) A .12a ≤≤ B .12a ≤<C .12a <≤D .12a << 二、填空题12.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是3x m y m =⎧⎨=+⎩(m 为常数),方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩的解x 、y 满足3x y +>,则m 的取值范围为______. 13.若0a b c ++=,且a b c >>,以下结论:①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =;③22()a b c =+ ④||||||||a b c abc a b c abc +++的值为0或2;⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >. 其中正确的结论是______(填写正确结论的序号).14.不等式组2x a x >⎧⎨>⎩的解为2x >,则a 的取值范围是______. 15.若不等式00x b x a -<⎧⎨+>⎩的解集为23x <<,则a ,b 的值分别为_______________. 16.当前我国的新冠疫情虽然有所控制,但防控仍不可掉以轻心,为做好秋季防疫工作,王老师带现金6820元为年级采购了额温枪和消毒酒精两种防疫物品,额温枪每个125元,消毒酒精每瓶55元,购买后剩余100元、10元、1元的钞票若干张(10元钞票和1元钞票剩余数量均不超过9张,且采购额温枪的数量大于消毒酒精的数量).若把购买两种防疫物品的数量交换,剩余的100元和10元的钞票张数恰好相反,但1元钞票的张数不变,则购买消毒酒精的数量为__________________瓶.17.在平面直角坐标系 xOy 中,点(,)P a b 的“变换点”Q 的坐标定义如下:当a b 时,Q点坐标为(,)b a -;当a b <时,Q 点坐标为(,)a b -.(1)(2,3)-的变换点坐标是_____________.(2)若(,0.52)a a -+的变换点坐标是(,)m n ,则m 的最大值是_____________. 18.若关于x 的不等式组0521x m x -<⎧⎨-≤⎩的整数解有且只有4个,则m 的取值范围是:__________.19.令a 、b 两个数中较大数记作{}max ,a b 如{}max 2,33=,已知k 为正整数且使不等式{}max 21,33k k +-+≤成立,则关于x 方程21136x k x ---=的解是_____________. 20.不等式组()2x 15x 742x 31x 33⎧+>-⎪⎨+>-⎪⎩的解集为______ 21.若关于x 的一元一次不等式组21122x a x x ->⎧⎨->-⎩的解集是21x -<<,则a 的取值是__________. 三、解答题22.(1)解方程组:43220x y x y +=⎧⎨+=⎩(2)解不等式组:3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩ 23.解下列不等式:(1)()()212531x x -+<-+(2)解不等式组 ()32421152x x x x ⎧--≥⎪⎨-+<⎪⎩24.阅读:我们知道,00a a a a a ≥⎧=⎨-<⎩于是要解不等式|3|4x -≤,我们可以分两种情况去掉绝对值符号,转化为我们熟悉的不等式,按上述思路,我们有以下解法:解:(1)当30x -≥,即3x ≥时:34x -≤解这个不等式,得:7x ≤由条件3x ≥,有:37x ≤≤(2)当30x -<,即3x <时,(3)4x --≤解这个不等式,得:1x ≥-由条件3x <,有:13x -≤<∴如图,综合(1)、(2)原不等式的解为17x -≤≤根据以上思想,请探究完成下列2个小题:(1)|1|2x +≤;(2)|2|1x -≥.25.某电影院某日某场电影的票价是:成人票30元,学生票15元,满50人可以购团体票(不足50人可按50人计算,票价打9折).某班在4位老师的带领下去电影院看电影,学生人数为x 人.(1)若按个人票购买,该班师生买票共付费_________元(用含x 的代数式表示);若按团体票购买,该班师生买票共付费___________(用含x 的代数式表示,且46x ≥) (2)①如果该班学生人数为36人,该班师生买票最少可付费多少元?②如果该班学生人数为42人,该班师生买票最少可付费多少元?(3)用含x的代数式表示该班买票最少应付多少元?一、选择题1.下列各式中正确的是( )A .若a b >,则11a b -<-B .若a b >,则22a b >C .若a b >,且0c ≠,则ac bc >D .若||||a b c c >,则a b > 2.已知点()3,2P a a --关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( ).A .B .C .D .3.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( )A .1种B .2种C .3种D .4种4.若a +b >0,且b <0,则a 、b 、-a 、-b 的大小关系为( )A .-a <-b <b <aB .-a <b <a <-bC .-a <b <-b <aD .b <-a <-b <a 5.下列变形中,不正确的是( )A .若a>b ,则a+3>b+3B .若a>b ,则13a>13bC .若a<b ,则-a<-bD .若a<b ,则-2a>-2b. 6.不等式组23x x ≥-⎧⎨<⎩的整数解的个数是( ) A .4个 B .5个 C .6个 D .无数个 7.已知01m <<,则m 、2m 、1m( ) A .21m m m >> B .21m m m >> C .21m m m>> D .21m m m >> 8.若a b <,则下列不等式中不正确的是( ) A .11+<+a b B .a b ->- C .22a b --<-- D .44a b < 9.下列命题是假命题的是( ).A .两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B .在实数7.5-,15,327-,π-,()22中,有3个有理数,2个无理数 C .在平面直角坐标系中,点(21,7)P a a -+在x 轴上,则点P 的坐标为(7,0)-D .不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为7 10.不等式1322x x -+>的解在数轴上表示正确的是( ) A .B .C .D .11.下列不等式说法中,不正确的是( )A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<--二、填空题12.若()a 1x a 1-<-的解集为x 1>,则a 的取值范围是________.13.“x 的4倍与1的差不大于3”用不等式表示为 ________________ .14.不等式组的解集为23113x x -<⎧⎨-≤⎩的解集为______. 15.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________.16.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________.17.点()1,2P x x -+不可能在第__________象限.18.已知点N 的坐标为()8a a -,,则点N 一定不在第____象限19.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.20.已知a>b,则15a+c_____15b+c(填“>”“<”或“=”).21.不等式组()2x15x742x31x33⎧+>-⎪⎨+>-⎪⎩的解集为______三、解答题22.解关于x的不等式组:2311 23x xx x<+⎧⎪⎨<+⎪⎩23.解下列不等式(组):(1)2132x x-≤;(2)把它的解集表示在数轴上.3(2)4 1213x xxx--≤⎧⎪+⎨>-⎪⎩24.解方程组和不等式(组):(1)解方程组45 3212x yx y-=⎧⎨+=⎩(2)解不等式组:() ()()263 52141x xx x ⎧->+⎪⎨--≤+⎪⎩25.11月份,是猕猴桃上市的季节,猕猴桃酸甜,含有丰富的维生素c和大量的营养元素.万州某水果超市的红心猕猴桃与黄心猕猴桃这两种水果很受欢迎,红心猕猴桃售价12元/千克,黄心猕猴桃售价9元/千克.(1)若第一周红心猕猴桃的销量比黄心猕猴桃的销量多200千克,要使这两种水果的总销售额不低于6600元,则第一周至少销售红心猕猴桃多少千克?(2)若该水果超市第一周按照(1)中红心猕猴桃和黄心猕猴桃的最低销量销售这两种水果,并决定第二周继续销售这两种水果,第二周红心猕猴桃售价不变,销量比第一周增加了4 3a%,黄心猕猴桃的售价保持不变,销量比第一周增加了13a%,结果这两种水果第二周的总销售额比第一周增加了711a%的基础上还多了280元,求a的值.一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( ) A .a <3 B .a ≥3C .a >3D .a ≤3 2.不等式()2533x x ->-的解集为( )A .4x <-B .4x >C .4x <D .4x >- 3.不等式32x x -≤的解集在数轴上表示正确的是( )A .B .C .D .4.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .25.若a +b >0,且b <0,则a 、b 、-a 、-b 的大小关系为( )A .-a <-b <b <aB .-a <b <a <-bC .-a <b <-b <aD .b <-a <-b <a 6.不等式组23x x ≥-⎧⎨<⎩的整数解的个数是( ) A .4个B .5个C .6个D .无数个 7.不等式组3114x x +>⎧⎨-≤⎩的最小整数解是( ) A .5 B .0 C .-1 D .-28.下列说法中不正确的是( )A .若a b >,则a 1b 1->-B .若3a 3b >,则a b >C .若a b >,且c 0≠,则ac bc >D .若a b >,则7a 7b -<- 9.整数a 使得关于x ,y 的二元一次方程组931ax y x y -=⎧⎨-=⎩的解为正整数(x ,y 均为正整数),且使得关于x 的不等式组()1211931x x a ⎧+≥⎪⎨⎪-<⎩无解,则a 的值可以为( )A .4B .4或5或7C .7D .1110.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1x >-B .12x -<≤C .12x -≤<D .1x >-或2x ≤ 11.已知a<b ,则下列四个不等式中,不正确的是( ) A .a+2<b+2 B .22ac bc < C .1122a b < D .-2a-1-2b-1>二、填空题12.关于x 的不等式组x 5x a≤⎧⎨>⎩无解,则a 的取值范围是________. 13.已知不等式组43103x x a -≤≤-⎧⎪⎨->⎪⎩有解,那么a 的取值范围是___________. 14.若不等式组52355x x x a+≤-⎧⎨-+<⎩无解,则a 的取值范围是______. 15.若关于x 的不等式0x a -<的正整数解只有3个,则a 的取值范围是________________. 16.不等式组的解集为23113x x -<⎧⎨-≤⎩的解集为______. 17.已知方程组3951x y a x y a +=+⎧⎨-=+⎩的解为正数,求a 的取值范围是_______. 18.若不等式(2﹣a )x >2的解集是x <22a-,则a 的取值范围是_____. 19.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________. 20.已知关于x 的不等式组0{321x a x -≥->-的整数解共有5个,则a 的取值范围为_________. 21.关于x 、y 的二元一次方程组3234x y a x y a +=+⎧⎨+=-⎩的解满足x+y >2,则a 的取值范围为__________.三、解答题22.解不等式或不等式组,并把解集在数轴上表示出来.(1)432136x x -+>-; (2)2(1)0210x x +<⎧⎨-⎩. 23.一个进行数值转换的运行程序如图所示,从“输入有理数x ”到“结果是否大于0”称为“一次操作”(1)下面命题是真命题有①当输入x =3后,程序操作仅进行一次就停止.②当输入x =﹣1后,程序操作仅进行一次就停止.③当输入x 为负数时,无论x 取何负数,输出的结果总比输入数大.④当输入x <3,程序操作仅进行一次就停止.(2)探究:是否存在正整数x ,使程序只能进行两次操作,并且输出结果小于12?若存在,请求出所有符合条件的x 的值;若不存在,请说明理由.24.某校购买了A 型课桌椅100套和B 型课桌椅150套供学生使用,共付款53000元.已知每套A 型课桌椅比每套B 型课桌椅多花30元.(1)求该校购买每套A 型课桌椅和每套B 型课桌椅的钱数.(2)因学生人数增加,该校需再购买A 、B 型课桌椅共100套,只有资金22000元,求最多能购买A 型课桌椅的套数.25.解下列不等式或不等式组:(1)22x > (2)452(1)x x +>+(3)32123x x x +>⎧⎪⎨≤⎪⎩ (4)211841x x x x ->+⎧⎨+<-⎩。
不等式与不等式组单元测试题一、填空题(每题3分,共30分)1、不等式组12x x <⎧⎨>-⎩的解集是2、将下列数轴上的x 的范围用不等式表示出来3、34125x +-<≤的非正整数解为 4、a>b,则-2a -2b.5、3X ≤12的自然数解有 个.6、不等式12x >-3的解集是 。
7、用代数式表示,比x 的5倍大1的数不小于x 的21与4的差 。
8、若(m-3)x<3-m 解集为x>-1,则m .9、三角形三边长分别为4,a ,7,则a 的取值范围是10、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。
在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛二、选择题(每小题2分,共20分)11、在数轴上表示不等式x ≥-2的解集,正确的是( )A B C D12、下列叙述不正确的是( )A 、若x<0,则x2>xB 、如果a<-1,则a>-aC 、若43-<-a a ,则a>0D 、如果b>a>0,则ba 11-<-13、如图1,设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从大到小....的顺序排列为 A 、 ○□△ B 、 ○△□C 、 □○△D 、 △□○图114、如图2天平右盘中的每个砝码的质量都是1g ,则物体A的质量m(g)取值范围,在数轴上可表示为( )15、代数式1-m 的值大于-1,又不大于3,则m 的取值范围是( ).13.31.22.22A m B m C m D m -<≤-≤<-≤<-<≤ 16、不等式45111x -<的正整数解为( ) A.1个 B.3个 C.4个 D.5个17、不等式组2.01x x x >-⎧⎪>⎨⎪<⎩的解集是(.1.0.01.21A x B x C x D x >-><<-<<18、如果关于x 、y 的方程组322x y x y a +=⎧⎨-=-⎩的解是负数,则a 的取值范围是A.-4<a<5B.a>5C.a<-4D.无解19、若关于x 的不等式组()202114x a x x ->⎧⎪⎨+>-⎪⎩的解集是x>2a,则a 的取值范围是 A. a>4 B. a>2 C. a=2 D.a ≥20、若方程组2123x y m x y +=+⎧⎨+=⎩中,若未知数x 、y 满足x+y>0,则m 的取值范围是 .4.4.4.4A m B m C m D m >-≥-<-≤-三、解答题(第1题20分,第2、3各5分,第4、5题各10分,共50分) 0 0 1 2 B 0 A A 图2 0 12 A 2 1C 1 D21、解下不等式(或不等式组)并在数轴上表示解集。
七年级数学《不等式与不等式(组)》练习题班级_______姓名________成绩_________A 卷 ·基础知识(一)一、选择题(4×8=32)1、下列数中是不等式x 32>50的解的有( ) 76, 73, 79, 80, 74.9, 75.1, 90, 60A、5个 B、6个 C、7个 D、8个2、下列各式中,是一元一次不等式的是( )A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a ,则下列不等式中正确的是( )A、b a +-+-33 B、0 b a - C、b a 3131D、b a 22-- 4、用不等式表示与的差不大于2-,正确的是( )A、2-- e d B、2-- e d C、e d -≥2- D、e d -≤2-5、不等式组⎩⎨⎧22 x x 的解集为( ) A 、x >2- B 、2-<x <2 C 、x <2 D 、 空集6、不等式86+x >83+x 的解集为( )A 、x >21 B 、x <0 C 、x >0 D 、x <21 7、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个8、下图所表示的不等式组的解集为( )-234210-1A 、x 3B 、32 x -C 、 2- xD 、32 x -二、填空题(3×6=18)9、“x 的一半与2的差不大于1-”所对应的不等式是10、不等号填空:若a<b<0 ,则5a - 5b -;a1 b 1;12-a 12-b 11、当a 时,1+a 大于212、直接写出下列不等式(组)的解集①42 -x ②105 x -③ ⎩⎨⎧-21 x x 13、不等式03 +-x 的最大整数解是14、某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是三、解下列不等式,并把它们的解集在数轴上表示出来。
第九章 不等式与不等式组测试1 不等式及其解集学习要求:知道不等式的意义;知道不等式的解集的含义;会在数轴上表示解集.(一)课堂学习检测一、填空题:1.用“<”或“>”填空:⑴4______-6; (2)-3______0;(3)-5______-1; (4)6+2______5+2;(5)6+(-2)______5+(-2); (6)6×(-2)______5×(-2). 2.用不等式表示: (1)m -3是正数______; (2)y +5是负数______; (3)x 不大于2______;(4)a 是非负数______;(5)a 的2倍比10大______;(6)y 的一半与6的和是负数______;(7)x 的3倍与5的和大于x 的31______;(8)m 的相反数是非正数______.3.画出数轴,在数轴上表示出下列不等式的解集:(1)⋅>213x(2)x ≥-4.(3)⋅≤51x(4)⋅-<312x二、选择题:4.下列不等式中,正确的是( ). (A)4385-<-(B)5172< (C)(-2<(-3(D)-|-27|<-(-3)35.“a的2倍减去b的差不大于-3”用不等式可表示为( ).(A)2a-b<-3 (B)2(a-b)<-3(C)2a-b≤-3 (D)2(a-b)≤-3三、解答题:6.利用数轴求出不等式-2<x≤4的整数解.(二)综合运用诊断一、填空题:7.用“<”或“>”填空: ⑴--;(2);125______114--(3)|-3|______-(-; (4)a 2+1______0; (5)0______|x |+4; (6)a +2______a .8.“x 的23与5的差不小于-4的相反数”,用不等式表示为______. 二、选择题:9.如果a 、b 表示两个负数,且a <b ,则( ). (A)1>ba(B)1<ba(C)ba 11< (D)ab <110.如图在数轴上表示的解集对应的是( ).(A)-2<x <4 (B)-2<x ≤4 (C)-2≤x <4(D)-2≤x ≤411.a 、b 是有理数,下列各式中成立的是( ).(A)若a >b ,则a 2>b 2(B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b12.|a |+a 的值一定是( ).(A)大于零(B)小于零(C)不大于零(D)不小于零三、判断题:13.不等式5-x >2的解集有无数多个. ( ). 14.不等式x >-1的整数解有无数多个. ( ). 15.不等式32421<<-x 的整数解有0、1、2、3、4. ( ). 16.若a >b >0>c ,则.0>cab( ).四、解答题:17.若a 是有理数,比较2a 和3a 的大小.(三)拓广、探究、思考18.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.19.对于整数a 、b 、c 、d ,定义bd ac cdb a -=,已知3411<<db ,则b +d 的值为______.测试2 不等式的性质学习要求:知道不等式的三条基本性质,并会用它们解简单的一元一次不等式.(一)课堂学习检测一、填空题:1.已知a <b ,用“<”或“>”填空:⑴a +3______b +3; (2)a -3______b -3; (3)3a ______3b ; (4);2______2b a(5);7______7ba --(6)5a +2______5b +2;(7)-2a -1______-2b -1; (8)4-3b ______6-3a .2.用“<”或“>”填空:(1)若a -2>b -2,则a ______b ; (2)若,33ba <则a ______b ; (3)若-4a >-4b ,则a ______b ;(4),22ba -<-则a ______b . 3.不等式3x <2x -3变形成3x -2x <-3,是根据______. 4.如果a 2x >a 2y (a ≠0).那么x ______y . 二、选择题:5.若a >2,则下列各式中错误的是( ). (A)a -2>0(B)a +5>7(C)-a >-2(D)a -2>-46.已知a >b ,则下列结论中错误的是( ).(A)a -5>b -5 (B)2a >2b (C)ac >bc (D)a -b >07.若a >b ,且c 为有理数,则( ). (A)ac >bc(B)ac <bc(C)ac 2>bc 2(D)ac 2≥bc 28.若由x <y 可得到ax >ay ,应满足的条件是( ). (A)a ≥0(B)a ≤0 (C)a >0 (D)a <0三、解答题:9.根据不等式的基本性质解下列不等式,并将解集表示在数轴上. (1)x -10<0. (2).62121+->x x(3)2x ≥5.(4).131-≥-x10.用不等式表示下列语句并写出解集: ⑴8与y 的2倍的和是正数;(2)a 的3倍与7的差是负数.(二)综合运用诊断一、填空题:11.(1)若x <a <0,则把x 2;a 2,ax 从小到大排列是______.(2)关于x 的不等式mx -n >0,当m ______时,解集是;mnx <当m ______时,解集是⋅>mn x 12.已知b <a <2,用“<”或“>”填空:(1)(a -2)(b -2)______0; (2)(2-a )(2-b )______0;(3)(a -2)(a -b )______0.13.不等式4x -3<4的解集中,最大的整数x =______. 14.如果ax >b 的解集为,abx >则a ______0. 二、选择题:15.已知方程7x -2m +1=3x -4的根是负数,则m 的取值范围是( ).(A)25=m (B)25>m (C)25<m (D)25≤m 16.已知二元一次方程2x +y =8,当y <0时,x 的取值范围是( ).(A)x >4(B)x <4 (C)x >-4 (D)x <-417.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是( ).(A)a <2(B)a <3 (C)a <4 (D)a <5三、解答题:18.当x 取什么值时,式子563-x 的值为(1)零;(2)正数;(3)小于1的数.(三)拓广、探究、思考19.若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .20.解关于x 的不等式ax >b (a ≠0).测试3 解一元一次不等式学习要求:会解一元一次不等式.(一)课堂学习检测一、填空题:1.用“>”或“<”填空:(1)若x ______0,y <0,则xy >0;(2)若ab >0,则b a ______0;若ab <0,则ab______0; (3)若a -b <0,则a ______b ; (4)当x >x +y ,则y ______0.2.当a ______时,式子152-a 的值不大于-3.3.不等式2x -3≤4x +5的负整数解为______. 二、选择题:4.下列各式中,是一元一次不等式的是( ). (A)x 2+3x >1 (B)03<-yx (C)5511≤-x(D)31312->+x x 5.关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是( ).(A)0(B)-3(C)-2(D)-1三、解下列不等式,并把解集在数轴上表示出来:6.2(2x -3)<5(x -1). 7.10-3(x +6)≤1.8.⋅-->+22531x x 9.⋅-≥--+612131y y y10.求不等式361633->---x x 的非负整数解.11.求不等式6)125(53)34(2+<-x x 的所有负整数解.(二)综合运用诊断一、填空题:12.已知a <b <0,用“>”或“<”填空:⑴2a ______2b ;(2)a 2______b 2;(3)a 3______b 3;(4)a 2______b 3;(5)|a |______|b |(6)m 2a ______m 2b (m ≠0). 13.⑴已知x <a 的解集中的最大整数为3,则a 的取值范围是______;(2)已知x >a 的解集中最小整数为-2,则a 的取值范围是______.二、选择题:14.下列各对不等式中,解集不相同的一对是( ).(A)72423xx +<-与-7(x -3)<2(4+2x ) (B)3921+<-x x 与3(x -1)<-2(x +9) (C)31222-≥+x x 与3(2十x )≥2(2x -1) (D)x x ->+414321与3x >-1 15.如果关于x 的方程5432bx a x +=+的解不是负值,那么a 与b 的关系是( ) (A)b a 53>(B)a b 53≥(C)5a =3b (D)5a ≥3b三、解下列不等式:16.(1)3[x -2(x -7)]≤4x . (2).17)10(2383+-≤--y y y(3).151)13(21+<--y y y (4)⋅-+≤--+15)2(22537313x x x(5)).1(32)]1(21[21-<---x x x x (6)⋅->+-+2503.002.003.05.09.04.0x x x四、解答题:17.已知方程组⎩⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0.求m 的取值范围.18.x 取什么值时,代数式413--x 的值不小于8)1(32++x 的值.19.已知关于x 的方程3232xm x x -=--的解是非负数,m 是正整数,求m 的值.*20.当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.(三)拓广、探究、思考21.适当选择a 的取值范围,使<x <a 的整数解:(1)x 只有一个整数解; (2)x 一个整数解也没有.22.解关于x 的不等式2x +1≥m (x -1).(m ≠2)23.已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.测试4 实际问题与一元一次不等式学习要求:会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题.(一)课堂学习检测一、填空题:1.若x 是非负数,则5231x-≤-的解集是______. 2.使不等式x -2≤3x +5成立的负整数有______. 3.代数式231x-与代数式x -2的差是负数,则x 的取值范围为______ 4.6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少..应付给超市______元. 二、选择题:5.三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ). (A)13cm(B)6cm(C)5cm(D)4cm6.一商场进了一批商品,进价为每件800元,如果要保持销售利润不低于15%,则售价应不低于( ). (A)900元(B)920元(C)960元(D)980元三、解答题:7.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?8.某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?(二)综合运用诊断一、填空题:9.直接写出解集:(1)4x -3<6x +4的解集是______; (2)(2x -1)+x >2x 的解集是______; (3)5231052--≤-x x x 的解集是______. 10.若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______. 二、选择题:11.初三⑴班的几个同学,毕业前合影留念,每人交元,一张彩色底片元,扩印一张相片元,每人分一张,将收来的钱尽量用掉的前提下,这张相片上的同学最少有( ). (A)2人(B)3人(C)4人(D)5人12.某出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收元(不足1km按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ). (A)11(B)8(C)7(D)5三、解答题:13.已知:关于x 、y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.14.某工人加工300个零件,若每小时加工50个可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?(三)拓广、探究、思考15.某商场出售A 型冰箱,每台售价2290元,每日耗电1度;而B 型节能冰箱,每台售价比A 高出10%,但每日耗电度.现将A 型冰箱打折出售(打九折后的售价为原价的十分之九),问商场最多打几折时,消费者购买A 型冰箱才比购买B 型冰箱更合算?(按使用期10年,每年365天,每度电元计算)16.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元,在这20名工人中,车间每天安排x 名工人制造甲零件,其余工人制造乙种零件. ⑴若此车间每天所获利润为y (元),用x 的代数式表示y ;(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?测试5 一元一次不等式组(一)学习要求:会解一元一次不等式组,并会利用数轴正确表示出解集.(一)课堂学习检测一、填空题:1.解不等式组⎩⎨⎧>--<+)2(223)1(,423x x 时,解⑴式,得______,解(2)式,得______.于是得到不等式组的解集是______.2.解不等式组⎪⎩⎪⎨⎧-≥--≥-)2(21)1(,3212x x 时,解⑴式,得______,解(2)式,得______,于是得到不等式组的解集是______.3.用字母x 的范围表示下列数轴上所表示的公共部分: (1)________________________; (2)_______________________; (3)________________________.二、选择题:4.不等式组⎩⎨⎧+<+>-5312,243x x x 的解集为( ).(A)x <-4 (B)x >2 (C)-4<x <2 (D)无解5.不等式组⎩⎨⎧>+<-023,01x x 的解集为( ).(A)x >1(B)132<<-x (C)32-<x(D)无解三、解下列不等式组,利用数轴确定不等式组的解集.6.⎩⎨⎧≥-≥-.04,012x x7.⎩⎨⎧>+≤-.074,03x x8.⎪⎩⎪⎨⎧+>-≤-.3342,121x x x x9.-5<6-2x <3.四、解答题:10.解不等式组⎪⎩⎪⎨⎧⋅<-+≤+321),2(352x x x x 并写出不等式组的整数解.(二)综合运用诊断一、填空题:11.当x 满足______时,235x-的值大于-5而小于7. 12.不等式组⎪⎪⎩⎪⎪⎨⎧⋅≤-+<2512,912x x x x 的整数解为______.二、选择题:13.如果a >b ,那么不等式组⎩⎨⎧<<.,b x a x 的解集是( ).(A)x <a(B)x <b(C)b <x <a(D)无解14.不等式组⎩⎨⎧+>+≤+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2 (C)m <1 (D)m >1三、解答题:15.求不等式组73123<--≤x 的整数解. 16.解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x17.当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x 、y 都是负数?18.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x 、y 满足且0<y -x <1,求k 的取值范围.(三)拓广、探究、思考19.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-.02,43x a x 的解集是x >2,求a 的值.20.关于x 的不等式组⎩⎨⎧->-≥-.123,0x a x 的整数解共有5个.求a 的取值范围.测试6 一元一次不等式组(二)学习要求:进一步掌握一元一次不等式组.(一)课堂学习检测一、填空题:1.直接写出解集:(1)⎩⎨⎧->>3,2x x 的解集是______;(2)⎩⎨⎧-<<3,2x x 的解集是______;(3)⎩⎨⎧-><32x x 的解集是______;(4)⎩⎨⎧-<>3,2x x 的解集是______.2.一个两位数,它的十位数字比个位数字小2,如果这个数大于20且小于40,那么此数为______.二、选择题:3.如果式子7x -5与-3x +2的值都小于1,那么x 的取值范围是( ). (A)76<x (B)31>x (C)7631<<x (D)无解4.已知不等式组⎩⎨⎧->--+-≤-).23(2)1(53,1)1(3)3(2x x x x x 它的整数解一共有( ).(A)1个(B)2个(C)3个(D)4个5.若不等式组⎩⎨⎧>≤<k x x 21有解,则k 的取值范围是( ).(A)k <2 (B)k ≥2 (C)k <1 (D)1≤k <2三、解下列不等式组,并把解集在数轴上表示出来:6.⎪⎩⎪⎨⎧⋅>-<-322,352x x x x7.⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x xx8.⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x9..234512x x x -≤-≤-(二)综合运用诊断一、填空题:10.不等式组⎪⎩⎪⎨⎧⋅<->+233,152x x 的所有整数解的和是______,积是______.11.k 满足______时,方程组⎩⎨⎧=-=+.4,2y x k y x 中的x 大于1,y 小于1.二、解下列不等式组:12.⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x13.⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x 三、解答题:14.k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?15.已知关于x 、y 的方程组⎩⎨⎧-=-+=+3472m y x m y x ,的解为正数.(1)求m 的取值范围;(2)化简|3m +2|-|m -5|.(三)拓广、探究、思考16.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.测试7 利用不等关系分析实际问题学习要求:利用不等式(组)解决较为复杂的实际问题;感受不等式(组)在实际生活中的作用.(一)课堂学习检测列不等式(组)解应用题:1.一个工程队原定在10天内至少要挖掘600m 3的土方.在前两天共完成了120m 3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?2.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元,如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?3.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满,问学生有多少人?宿舍有几间?4.今年5月12日,汶川发生了里氏级大地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:(2)班的捐款金额比(3)班的捐款金额多300元;信息三:(1)班学生平均每人捐款的金额大于..51元...48元,小于请根据以上信息,帮助老师解决:①(2)班与(3)班的捐款金额各是多元;②(1)班的学生人数.(二)综合运用诊断5.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.(三)拓广、探究、思考6.在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材30 m2或乙种板材20m2.问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B型板房所需板材及能安置的人数如下表所示:问:这400间板房最多能安置多少灾民?全章测试(一)一、填空题:1.用“>”或“<”填空:(1)m +3______m -3;(2)4-2x ______5-2x ;(3);23______13--yy (4)a <b <0,则a 2______b 2;(5)若23yx -<-,则2x ______3y . 2.若使3233->-yy 成立,则y ______. 3.不等式x >-4.8的负整数解是______. 二、选择题:4.x 的一半与y 的平方的和大于2,用不等式表示为( ). (A)2212>+y x (B)2212>++y x (C)222>+y x(D)221>+y x 5.因为-5<-2,所以( ). (A)-5x <-2x (B)-5x >-2x (C)-5x =-2x(D)三种情况都可能6.若a ≠0,则下列不等式成立的是( ). (A)-2a <2a(B)-2a <2(-a ) (C)-2-a <2-a(D)aa 22<-7.下列不等式中,对任何有理数都成立的是( ). (A)x -3>0 (B)|x +1|>0 (C)(x +5)2>0(D)-(x -5)2≤08.若a <0,则关于x 的不等式|a |x <a 的解集是( ). (A)x <1(B)x >1(C)x <-1(D)x >-1三、解不等式(组),并把解集在数轴上表示出来:9..11252476312-+≥---x x x10.⎪⎩⎪⎨⎧<+-+--≤+.121331),3(410)8(2x x x x四、解答题:11.x 取何整数时,式子729+x 与2143-x 的差大于6但不大于8.12.当k 为何值时,方程1)(5332+-=-k x k x 的解是(1)正数;(2)负数;(3)零.13.已知方程组⎩⎨⎧-=+=-k y x k y x 513,2的解x 与y 的和为负数.求k 的取值范围.14.不等式m m x ->-2)(31的解集为x >2.求m 的值.15.某车间经过技术改造,每天生产的汽车零件比原来多10个,因而8天生产的配件超过200个.第二次技术改造后,每天又比第一次技术改造后多做配件27个,这样只做了4天,所做配件个数就超过了第一次改造后8天所做配件的个数.求这个车间原来每天生产配件多少个?16.仔细观察下图,认真阅读对话:根据对话的内容,试求出饼干和牛奶的标价各是多少?全章测试(二)一、填空题1.当m ______时,方程5(x -m )=-2有小于-2的根. 2.满足5(x -1)≤4x +8<5x 的整数x 为______. 3.若11|1|=--xx ,则x 的取值范围是______. 4.已知b <0<a ,且a +b <0,则按从小到大的顺序排列a 、-b 、-|a |、-|-b |四个数为______.二、选择题5.若0<a <b <1,则下列不等式中,正确的是( ).,11;11;1;1ba b a b a b a <><>④③②①(A)①、③(B)②、③(C)①、④(D)②、④6.下列命题结论正确的是( ).(1)若a >b ,则-a >-b ;(2)若a >b ,则3-2a >3-2b ;(3)8|a |>5|a |. (A)(1)、(2)、(3) (B)(2)、(3) (C)(3)(D)没有一个正确7.若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ). (A)a <0(B)a >-1(C)a <-1(D)a <18.已知x <-3,那么|2+|3+x ||的值是( ). (A)-x -1(B)-x +1(C)x +1(D)x -19.如下图,对a 、b 、c 三种物体的重量判断正确的是( ).(A)a <c(B)a <b(C)a >c(D)b <c三、解不等式(组):10.3(x +2)-9≥-2(x -1). 11..57321<+<-x12.⎪⎪⎩⎪⎪⎨⎧>--+<-.0415221131x x x x 13.求⎪⎩⎪⎨⎧≤-->032,134x x x 的整数解.14.如果关于x 的方程3(x +4)-4=2a +1的解大于方程3)43(414-=+x a x a 的解, 求a 的取值范围.15.某单位要印刷一批北京奥运会宣传资料,在需要支付制版费600元和每份资料元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费。