电工学-电路及其分析方法
- 格式:ppt
- 大小:2.83 MB
- 文档页数:69
第二章电路的分析方法电路分析是指在已知电路构和元件参数的情况下,求出某些支路的电压、电流。
分析和计算电路可以应用欧姆定律和基尔霍夫定律,但往往由于电路复杂,计算手续十分繁琐。
为此,要根据电路的构特点去寻找分析和计算的简便方法。
2.1 支路电流法支路电流法是分析复杂电路的的基本方法。
它以各支路电流为待求的未知量,应用基尔霍夫定律(KCL 和KVL )和欧姆定律对结点、回路分别列出电流、电压方程,然后解出各支路电流。
下面通过具体实例说明支路电流法的求解规律。
例2-1】试用支路电流法求如图2-1 所示电路中各支路电流。
已知U S1 130V ,U S2 117V ,R1 1 ,R2 0.6 ,R 24 。
【解】该电路有3 条支路(b=3),2个结点(n=2),3 个回路(L=3 )。
先假定各支路电流的参考方向和回路的绕行方向如图所示。
因为有3 条支路则有3 个未知电流,需列出3 个独立方程,才能解得3个未知量。
根据KCL 分别对点A、B 列出的方程实际上是相同的,即结点A、B 中只有一个结点电流方程是独立的,因此对具有两个结点的电路,只能列出一个独立的KCL 方程。
再应用KVL 列回路电压方程,每一个方程中至少要包含一条未曾使用过的支路(即没有列过方程的支路)的电流或电压,因此只能列出两个独立的回路电压方程。
根据以上分析,可列出3 个独立方程如下:结点A I1 I2 I 0回路ⅠI1R1 I2R2 U S1 U S2回路ⅡI2 R2 IR U S2I1 10A, I2 5A, I=5A 联立以上3 个方程求解,代入数据解得支路电流通过以上实例可以总出支路电流法的解题步骤是:1.假定各支路电流的参考方向,若有n个点,根据KCL 列出(n-1)个结点电流方程。
2.若有b 条支路,根据KVL 列(b-n+1)个回路电压方程。
为了计算方便,通常选网孔作为回路。
5 3.解方程组,求出支路电流。
【例 2-2】如图 2-2 所示电路,用支路电流法求各支路电流。
上篇: 电工技术第一章: 电路分析基础1.1: 电路的基本概念、定律、分析方法 1.1.1:基本要求(1) 正确理解电压、电流正方向的意义。
(2) 在正确理解电位意义的基础上,求解电路各点电位。
(3) 加强电压源的概念,建立电流源的概念。
(4) 了解电路有载工作、开路与短路的状态,强化额定值概念。
(5) 熟悉电路基本定律并能正确应用之。
(6) 学会分析、计算电路的基本方法 1.1.2: 基本内容 1.1.2.1基本概念1 电压、电流的正方向 在分析计算电路之前,首先在电路图上标注各元件的未知电流和电压的正方向(这些假设的方向,又名参考方向),如图1-1-1所示。
3R I图1-1-1根据这些正方向,应用电路的定理、定律列写方程(方程组),求解后若为正值..,说明假设的方向与实际的方向相同;求解后若为负值..,说明假设的方向与实际方向相反。
对于电路中的某个(些)已知的方向,有两种可能,其一是实际的方向,其二也是正方向,这要看题目本身的说明。
2电路中的电位计算求解电路某点的电位,必须首先确定参考点,令该点电位为零,记为“⊥”, 电路其余各点与之比较,高者为正(电位),低者为负(电位),如图1-1-2所示:U图 1-1-2设C 为参考点,则:c 点的电位: V C =0(V) a 点的电位: V a = +6 (V) b 点的电位: V b =-9 (V)ab 两点间的电压:U ab = V a - V b = (+6)-(-9) =15(V)注·电位具有单值性(参考点一旦设定,某点的电位是唯一的)。
·电位具有相对性(参考点选择不同,某点的电位也不同)。
·任意两点间的电位差叫电压,例如U ab = V a - V b ,显然电压具有单值性和绝对性(与参考点选择无关) 1.1.2.2基本定律 1 欧姆定律(1)一段无源支路(元件)的欧姆定律。
在图1-1-3中,U ab = R ·I (取关联正方向)。
电路基础原理电路分析方法总结电路分析是电子学的基础,是我们了解电路工作原理和解决电路问题的关键。
在电路分析中,我们需要掌握一些基础原理和分析方法。
本文将对电路基础原理和电路分析方法进行总结。
一、基础原理1. 电流和电压关系:根据欧姆定律,电流和电压之间满足线性关系。
电路中的电流可以通过欧姆定律(I = V/R)计算得到,其中I为电流,V为电压,R为电阻。
2. 电阻和电功率:电阻是电路中的一个重要参数,它的大小决定了电流的大小。
在电阻上消耗的功率可以通过功率定律(P = V x I)计算得到,其中P为功率,V为电压,I为电流。
3. 串联和并联电路:在电路中,电阻可以串联或并联连接。
串联连接时,电阻值相加;并联连接时,电阻值按倒数相加的倒数。
这两种连接方式在电路分析中经常出现。
二、分析方法1. 基尔霍夫定律:基尔霍夫第一定律(电流定律)指出,进入和离开一个节点的电流之和为零。
基尔霍夫第二定律(电压定律)指出,电路中任意一个闭合回路中各个元件电压之和等于电源电压之和。
基尔霍夫定律可以帮助我们找到节点电流和支路电压的关系,从而分析电路。
2. 罗尔定律:罗尔定律是基于基尔霍夫定律的一个推论,它指出,电压源与电阻串联时,电压源的电压等于电阻两端电压之和。
利用罗尔定律可以简化串联电路的分析。
3. 欧姆定律:欧姆定律通过电流、电压和电阻之间的关系提供了解决电路问题的基础。
在分析电路时,可以使用欧姆定律计算电流、电压和电阻之间的关系。
4. 超节点分析法:超节点分析法适用于含有电压源和电容的电路。
通过将电容两端的电压看作未知变量,可以简化电路分析过程。
5. 网孔分析法:网孔分析法适用于含有电流源和电感的电路。
通过定义每个网孔的电流,可以利用基尔霍夫定律方程组解出电路中各个电流的值。
通过以上分析方法,我们可以解决各种复杂电路的问题。
在实际应用中,我们还可以借助计算机辅助分析工具,如电路仿真软件,来更精确地分析电路工作情况。
电路分析方法与技巧概述电路分析是电子工程领域中的重要内容,它涉及到电路的设计、分析和故障排除等方面。
对于电子工程师来说,精通电路分析方法和技巧是必不可少的能力。
本文将概述一些常用的电路分析方法和技巧,帮助读者更好地理解和应用于实际工作中。
一、基本电路分析方法1. 套用基本电路定律在电路分析中,我们可以利用欧姆定律、基尔霍夫电流定律和基尔霍夫电压定律等基本电路定律来推导和解决电路中的各种问题。
通过套用这些定律,可以很方便地计算电流、电压和功率等关键参数。
2. 应用电路简化技巧有时电路过于复杂,难以直接分析。
这时,我们可以利用一些电路简化技巧来简化电路,从而更容易理解和分析。
比如使用电阻并联、电容串联等常见的简化方法,可以将复杂的电路转化为简单的等效电路,便于后续的分析。
二、频域分析方法1. 傅里叶级数展开法傅里叶级数展开法是一种将周期函数分解成无穷多个正弦函数或余弦函数之和的方法。
在电路分析中,可以通过将电路中的各种信号分解成不同频率的正弦波,从而得到电路的频域特性,如频率响应和频谱分析等。
2. 傅里叶变换法傅里叶变换是一种将信号从时域转化为频域的工具,它可以将时域中的信号分解成各个频率成分的叠加。
在电路分析中,可以通过傅里叶变换将复杂的信号分解成各个频率成分,进一步分析电路的频率响应、滤波器设计等问题。
三、矩阵分析方法1. 节点分析法节点分析法是一种基于基尔霍夫电流定律的电路分析方法,它通过对电路中各个节点的电流进行分析,建立节点电流方程组,并通过求解方程组得到电路中各个节点的电流值。
2. 支路分析法支路分析法是一种基于基尔霍夫电压定律的电路分析方法,它通过对电路中各个支路的电压进行分析,建立支路电压方程组,并通过求解方程组得到电路中各个支路的电压值。
四、仿真分析方法1. 电路仿真软件随着计算机技术的发展,电路仿真软件的应用越来越广泛。
通过使用电路仿真软件,可以在计算机上建立电路模型,并进行各种电路分析和实验。
电路分析的基本方法与技巧在电子领域中,电路分析是非常重要的基础工作,它涉及到电路的结构、特性和工作原理等方面。
正确的电路分析方法可以帮助我们准确地理解和分析电路,为电路设计和故障排除提供有力支持。
本文将介绍电路分析的基本方法与技巧,帮助读者更好地掌握这一领域的知识。
一、基本电路分析方法1. 找出电路拓扑结构:首先,我们需要根据电路图找出电路的拓扑结构,即电路中各个元件之间的连接方式和顺序。
这有助于我们建立电路方程和分析电路特性。
2. 应用基本定律:根据基本电路定律,如欧姆定律、基尔霍夫定律、电压分割定律和电流合流定律等,可以得到电路中各个节点和回路的电压、电流关系。
这些定律是电路分析的基础,应当熟练掌握和灵活运用。
3. 建立和求解电路方程:利用基本定律,可以建立电路的方程组。
对于线性电路,我们可以利用线性代数的方法求解电路方程组,得到电路中各个元件的电流和电压值。
对于非线性电路,可以利用数值方法进行求解。
二、电路分析的常用技巧1. 简化电路:对于复杂的电路,可以采用电路简化的方法,将其转化为更为简单的等效电路。
例如,利用串、并联的简化规则可以简化电路中的电阻、电容和电感等元件,从而简化分析过程。
2. 使用等效电路:等效电路是指能够代替原始电路并具有相同性能的电路。
例如,利用戴维南定理可以将电路中的电源与负载分离,并将电源转化为电压或电流源,以简化电路分析。
3. 采用符号化计算工具:借助计算机软件或符号化计算工具,可以简化电路分析的计算过程。
例如,利用电路仿真软件可以模拟电路的工作过程,得到电路中各个元件的电流和电压波形。
4. 运用频率域和时域分析:电路分析中,可以采用频率域和时域分析的方法。
频率域分析主要用于分析电路的频率响应特性,如幅频特性和相频特性;时域分析主要用于分析电路的动态特性,如响应过程和稳态响应等。
5. 考虑电路的非理想性:实际电路中,元件具有一定的非理想性,如电阻的温度漂移、电容的损耗和电感的串扰等。
电工学(Ⅰ):电工技术第1章电路的基本概念与分析方法第1章电路的基本概念与分析方法电路的基本概念与基本定律是分析和计算电路的基础。
本章以电阻电路为例,讨论几种常用的电路分析方法,如电源等效变换法、支路电流法、结点电压法、叠加法、戴维宁定理及诺顿定理等。
1.1电路1.1.1电路的基本组成及其作用1. 电路的组成电路是由电源、负载和中间环节组成的。
最简单的电路模型如图1 1所示。
其中电池是电源,它们把其他形式的能量转变为电能,供给用电负载——电珠。
图1 1最简电路模型在实际应用中,发电机是电源,给电路及用电设备提供能量;电灯、电动机、电炉等是负载,它们取用电能,分别把电能转变为光能、机械能、热能等。
变压器和输电线及开关等中间环节是联接电源和负载的部分,它们起传输分配和控制电能的作用。
2. 电路的作用(1) 利用电路可以实现能量的传输、分配和转换。
例如,在电力系统中,发电机组把热能、水能、原子能转换成电能,通过变压器、输电线路和开关输送和分配到用户,用户根据实际需要又把电能转换成机械能、光能和热能等。
(2) 电路的另一重要作用是传递和处理信号。
通过电路元件,可以将信号源施加的信号变换或加工成所需要的输出信号。
例如,电子设备中放大器的作用是把微弱的输入信号加以放大,成为满足工作需要的输出强信号。
无论电能的传输、分配和转换,还是信号的传递和处理,其中电源或信号源的电压(电流)称为激励,它驱动电路工作;在激励作用下,电路中某一元件上的电压或通过元件的电流称为响应。
激励表示电源供给电路的能量,响应表示在电路某一元件上消耗的能量。
1.1.2电路的基本物理量1. 电流电流是电荷有规则的定向运动而形成的,在数值上它等于单位时间内通过某一导体横截面的电荷量。
设在时间dt内通过某一导体横截面S的电荷量为dq,则电流为i=dqdt(1 1)如果dqdt为常数,即电流不随时间而变化,则称之为恒定电流,常用大写的字母I表示,即I=Qt(1 2)式中,Q是在时间t内通过导体横截面S的电荷量。