当前位置:文档之家› 数理统计中的几种统计推断方法

数理统计中的几种统计推断方法

数理统计中的几种统计推断方法
数理统计中的几种统计推断方法

数理统计中的几种统计推断方法

——导学文章之九

数理统计的基本问题是根据样本所提供的信息,对总体的分布以及分布的数字特征作出统计推断。统计推断的主要内容分为两大类:一是参数估计问题,另一类是假设检验问题。

本篇文章主要讨论总体参数的点估计、区间估计和假设检验。 一、点估计

1、矩估计

首先讲“矩”的概念,

定义:设X 是随机变量,k 是一正整数,若k EX 存在,则称k EX 为随机变量X 的k 阶原点矩,记为k a ;若存在,则称它为X 的k 阶中心矩,记为k b 。

显然,数学期望EX 就是1阶原点矩,方差DX 就是2阶中心矩。 简单的说就是用样本矩去估计相应的总体矩,用样本矩的连续函数去估计相应的总体矩的连续函数。矩估计法的理论基础是大数定理。因为大数定理告诉我们样本矩依概率收敛于总体的相应矩,样本矩的连续函数依概率收敛于相应总体矩的连续函数。

我们通常样本的均值X 去估计总体的均值E X :即总体为X 时,我们从中取出n 个样本12,,n X X X ,我们认为总体的均值就是1

1

n

i

i X X n

==∑,(当然这只是对总体均值的一

种估计,当然会有误差)

当2

EX 存在的时候,我们通常用

2

1

1

n

i

i X n

=∑作为总体X 的2EX 的估计

一般地,我们用

1

1

n

k

i

i X n

=∑作为总体X 的k

EX 的估计,用

1

1

()

n

k

i

i X X n

=-∑作为总体的

()

k

E X EX -的估计。

例:设总体X 在[,]a b 上服从均匀分布,参数,a b 未知,12,,n X X X 是一个样本,求,a b 的矩估计量。

解:由矩估计法知道:2

a b EX +=

由于2

2

()DX EX EX =-,因此2

2

2

2

()()

()124

b a a b EX D X EX -+=+=

+

用矩估计法,也即用1

1

n

i

i X X n

==

∑作为E X 的估计,用

2

1

1

n

i

i X n

=∑作为2EX 的估计,

为了计算方便,我们记11

1

n

i

i A X n

==

∑,记2

21

1

n

i

i A X n

==

∑,

即有

12

a b A +=,2

2

2

2()()

12

4

b a a b EX

A -+=

+

=

解得,1

2a b A b a +=???-=??再联立解关于,a b 的方程组得,a b 的矩估计量分别为

1

a A X =-=-

1

b A X =+=+

2、极大似然估计

⑴ 对于连续型总体X ,设它的密度函数为12(;,,)m f x θθθ ,其中12,,m θθθ 是需要估计的未知参数。

设12,,n X X X 是来自总体X 的一个样本,则12,,n X X X 的联合密度函数为:

121

(;,,)n

i m i f x θθθ=∏

对于给定的一组样本值12,,n x x x ,记联合密度

1212121

(,,;,,)(;,,)n

n m i m i L L x x x f x θθθθθθ===∏

则称L 为样本的似然函数

⑵ 若X 为离散型总体,它的概率分布为: 12{}(;,,)m P X x p x θθθ==

对于给定的一组样本观测值12,,n x x x ,记联合密度

1212121

(,,;,,)(;,,)n

n m i m i L L x x x p x θθθθθθ===∏

则称L 为样本的似然函数 ⑶ 具体求法

对于已经给定的样本观测值12,,n x x x 来说,似然函数L 是关于待估计的参数

12,,m θθθ 的函数,因此我们应该想办法通过似然函数L 求出参数12,,m θθθ 值。

这里我们求法的思想来源于多元函数求极大值:

也即,我们把1212(,,;,,)n m L L x x x θθθ= 看作关于12,,m θθθ 的多元函数,我们要求得适当的12,,m θθθ 的值,使得1212(,,;,,)n m L L x x x θθθ= 取最大值。

解释:实际上1212(,,;,,)n m L L x x x θθθ= 表示随机变量12,,n X X X 取得样本值12,,n x x x 时的联合概率,

我们在一次试验中事件1212(,,)(,,)n n X X X x x x = 已经发生,我们就有理由认为,参数必须保证此时的概率最大,也即:参数12(,,)m θθθ 的值应该是使得1212(,,;,,)n m L L x x x θθθ= 最大的点。

这样我们的方法就是多元函数求极大值的方法。

极大似然估计的具体步骤为:

① 求出似然函数1212(,,;,,)n m L L x x x θθθ= ;

② 计算关于12(,,)m θθθ 的函数1212(,,;,,)n m L L x x x θθθ= 的极大值点, 我们由微积分的知识知道,实际问题中的极大值点就是函数的驻点,也就是每个偏导数都为0的点,即

12000n

L

L

L

θθθ??=?????=???????=??? (一般称该方程组为似然方程组)

但是在实际计算中,由于1212(,,;,,)n m L L x x x θθθ= 都是乘积,因此以上方程组求解不太容易,这时候我们由微积分的知识知道到函数1212(,,;,,)n m L L x x x θθθ= 和它的对数函数1212ln ln (,,;,,)n m L L x x x θθθ= 有相同的极大值点,因此我把问题转化为求

1212ln ln (,,;,,)n m L L x x x θθθ= 的极大值点,这样把乘积问题转化为了和差问题,在某

些复杂问题中可以大大减轻计算!

1

2ln 0

ln 0ln 0m L L

L

θθθ??=???

??=?

????

??=???

(一般称该方程组为对数似然方程组)

求解这个方程组即得到

③ 上个步骤求出的 12(,,)m

θθθ 就是参数12(,,)m θθθ 的估计值。 二、区间估计

由于总体的未知参数θ的估计量 12(,,)n

X X X θ 是随机变量,无论这个估计量的性质有多好,通过一个样本值12(,,)n x x x 所得到的估计值,只能是未知参数θ的近似值,而不是θ的真值。并且样本值不同所得到的估计值也不同。那么θ的真值在什么范围内

呢?能不能通过样本,寻找一个区间,以一定的把握包含总体未知参数θ呢?这就是总体未知参数的区间估计问题。

区间估计严格的定义为: 定义:设总体X 的分布函数(,)F x θ含有一个未知参数θ,对于给定值α(01)α<<,若

由样本12(,,)n X X X 确定的两个的两个统计量 112(,,)n X X X θ 和 12(,,)n X X X θ 满足 121212{(,,)(,,)}1n n

P X X X X X X θθθα<<=- 则称随机区间 12(,)θθ是参数θ的置信度为1α-的置信区间, 12θ

θ和分别趁称为置信度为1α-的双侧置信区间的置信下限和置信上限,1α-称为置信度。

单个正态总体的的数学期望和方差的区间估计是我们重点要求掌握的知识点,大家

可以好好阅读教材第189—198面,实际上课本把这种区间估计分各种情形的结论总结成了第209面的表格。大家在理解这些区间估计的实质后,应该把表格的结论和公式记住,往往在实际解题的时候我们只需要套用这些结论就可以了! 三、假设检验

所谓假设检验,顾名思义就是先假设再检验,实际上有点类似于反证法,在实际问题中我们往往需要对未知总体提出某中假设或推断,但是我们的假设可能是错的,也可能是正确的,这时候我们就需要利用一个抽样的样本12(,,)n x x x ,通过一定的方法,检验这个假设是否合理,从而作出接受或者拒绝这个假设的结论。

假设检验的基本原理是——小概率事件原理,也即:我们认为小概率事件在一次试验中几乎不可能发生,如果我们在抽取的样本观测值12(,,)n x x x 下,居然使得小概率事件发生了,我们就有理由否定原假设。

在明确一个假设检验问题的性质与基本前提(包括分布类型是否已知,如果类型已

知,分布中包含哪些未知参数等等)之后,假设检验的一般步骤如下:

⑴ 充分考虑和利用已知的背景知识提出原假设0H 以及对立假设1H ;

⑵ 给定样本,确定合适的检验统计量,并在0H 为真下导出统计量的分布(要求此分布不依赖与任何未知参数);

⑶ 确定拒绝域:即依直观分析先确定拒绝域的形式,然后根据给定的显著性水平α和以上统计量的分布由条件概率00{|}P H H α=拒绝为真确定拒绝域的临界值,从而确定拒绝域;

⑷ 作出判断:由一次具体抽样的样本值计算统计量的值,若统计量的值落入以上拒绝域,则拒绝0H ;否则接受0H 。

我们重点研究单个正态总体数学期望和方差的假设,两个正态总体均值差和方差比的假设检验,教材分别给出了每种不同类型所用的统计量以及基本步骤(见教材第221—250面)。对不同类型的问题,大家现在应该模仿教材的解法套出一些题目。

在实际解题的时候我们需要注意以下问题: ① 不同类型所用的统计量;

② 用到的统计量中的自由度,以便于查表。

贝叶斯统计方法(可编辑修改word版)

贝叶斯方法 贝叶斯分类器是一种比较有潜力的数据挖掘工具,它本质上是一种分类手段,但是它的优势不仅仅在于高分类准确率,更重要的是,它会通过训练集学习一个因果关系图(有向无环图)。如在医学领域,贝叶斯分类器可以辅助医生判断病情,并给出各症状影响关系,这样医生就可以有重点的分析病情给出更全面的诊断。进一步来说,在面对未知问题的情况下,可以从该因果关系图入手分析,而贝叶斯分类器此时充当的是一种辅助分析问题领域的工具。如果我们能够提出一种准确率很高的分类模型,那么无论是辅助诊疗还是辅助分析的作用都会非常大甚至起主导作用,可见贝叶斯分类器的研究是非常有意义的。 与五花八门的贝叶斯分类器构造方法相比,其工作原理就相对简单很多。我们甚至可以把它归结为一个如下所示的公式: 选取其中后验概率最大的c,即分类结果,可用如下公式表示

贝叶斯统计的应用范围很广,如计算机科学中的“统计模式识别”、勘探专家所采用的概率推理、计量经济中的贝叶斯推断、经济理论中的贝叶斯模型等。 上述公式本质上是由两部分构成的:贝叶斯分类模型和贝叶斯公式。下面介绍贝叶斯分类器工作流程: 1.学习训练集,存储计算条件概率所需的属性组合个数。 2.使用1 中存储的数据,计算构造模型所需的互信息和条件互信息。 3.使用2 种计算的互信息和条件互信息,按照定义的构造规则,逐步构建出贝叶斯分类模型。 4.传入测试实例 5.根据贝叶斯分类模型的结构和贝叶斯公式计算后验概率分布。 6.选取其中后验概率最大的类c,即预测结果。 一、第一部分中给出了7 个定义。 定义1 给定事件组,若其中一个事件发生,而其他事件不发生,则称这些事件互不相容。 定义2 若两个事件不能同时发生,且每次试验必有一个发生,则称这些事件相互对立。 定义3 若定某事件未发生,而其对立事件发生,则称该事件失败 定义4 若某事件发生或失败,则称该事件确定。 定义5 任何事件的概率等于其发生的期望价值与其发生所得到

(完整版)问卷调查的常用统计分析方法

问卷调查的常用统计分析方法 问卷调查的方法用得很广泛,对于没有接触过spss的人第一步面临的就是问卷编码问题,有很多外专业的同学都在问这个问题,现在通过举例的方法详细讲解如下,以方便第一次接触SPSS 的同学也能做简单的分析。后面还有分析时的操作步骤,以及比较适用的深入统计分析方法的简单介绍。 调查分析问卷回收,在经过核实和清理后就要用SPSS做数据分析,首先的第一步就是把问题编码录入。 SPSS的问卷分析中一份问卷是一个案,首先要根据问卷问题的不同定义变量。定义变量值得注意的两点:一区分变量的度量,Measure的值,其中Scale是定量、Ordinal是定序、Nominal 是指定类;二注意定义不同的数据类型Type 各色各样的问卷题目的类型大致可以分为单选、多选、排序、开放题目四种类型,他们的变量的定义和处理的方法各有不同,我们详细举例介绍如下: 问卷调查的方法用得很广泛,对于没有接触过spss的人第一步面临的就是问卷编码问题,有很多外专业的同学都在问这个问题,现在通过举例的方法详细讲解如下,以方便第一次接触SPSS的同学也能做简单的分析。后面还有分析时的操作步骤,

以及比较适用的深入统计分析方法的简单介绍。自己写的,错误之处请指正, 调查分析问卷回收,在经过核实和清理后就要用SPSS做数据分析,首先的第一步就是把问题编码录入。 SPSS的问卷分析中一份问卷是一个案,首先要根据问卷问题的不同定义变量。定义变量值得注意的两点:一区分变量的度量,Measure的值,其中Scale是定量、Ordinal是定序、Nominal 是指定类;二注意定义不同的数据类型Type 各色各样的问卷题目的类型大致可以分为单选、多选、排序、开放题目四种类型,他们的变量的定义和处理的方法各有不同,我们详细举例介绍如下: 1 、单选题:答案只能有一个选项 例一当前贵组织机构是否设有面向组织的职业生涯规划系统? A有 B 正在开创C没有D曾经有过但已中断 编码:只定义一个变量,Value值1、2、3、4分别代表A、

统计学第八章方差分析

第八章方差分析 Ⅰ.学习目的 本章介绍方差分析的理论、方法与运用。通过学习,要求:1.了解方差分析的基本概念和思想;2.理解方差分解原理;3.掌握单因素、双因素(有、无交互作用)方差分析的原理和流程;4学会针对资料提出原假设,并能利用Excel进行方差分析。 Ⅱ.课程内容要点 第一节方差分析方法引导 一、方差分析问题的提出 方差分析,简称ANOVA(analysis of variance),就是利用试验观测值总偏差的可分解性,将不同条件所引起的偏差与试验误差分解开来,按照一定的规则进行比较,以确定条件偏差的影响程度以及相对大小。当已经确认某几种因素对试验结果有显著影响时,可使用方差分析检验确定哪种因素对试验结果的影响最为显著及估计影响程度。 二、方差分析的有关术语和概念 1.试验结果:在一项试验中用来衡量试验效果的特征量,也称试验指100

101 标或指标,类似函数的因变量或者目标函数。 2.试验因素:试验中,凡是对试验指标可能产生影响的原因都称为因素,或称为因子,类似函数的自变量。试验中需要考察的因素称为试验因素,简称为因素。一般用大写字母A 、B 、C 、……表示。方差分析的目的就是分析实验因素对实验或抽样的结果有无显著影响。如果在实验中变化的因素只有一个,这时的方差分析称为单因素方差分析;如果在实验中变化的因素不止一个,这时的方差分析就称为多因素方差分析。 3.因素水平:因素在试验中所处的各种状态或者所取的不同值,称为该因素的水平,简称水平。一般用下标区分。同样因素水平有时可以取得具体的数量值,有时只能取到定性值(如好,中,差等)。 4.交互作用:当方差分析过程中的影响因素不唯一时,这种多个因素的不同水平的组合对指标的影响称为因素间的交互作用。 三、方差分析的基本原理 (一)方差分解原理 一般地,试验结果的差异性可由离差平方和表示,离差平方和又可分解为组间方差与组内方差。其中,组间方差为因素对试验结果的影响的加总;组内方差则是各组内的随机影响的加总。如果组间方差明显高于组内方差,说明样本数据波动的主要来源是组间方差,因素是引起波动的主要原因,则认为因素对试验的结果存在显著的影响;否则认为波动主要来自组内方差,即因素对试验结果的影响不显著。 (二)检验统计量 检验因素影响是否显著的统计量是F 统计量: 组内方差的自由度 组内方差组间方差的自由度 组间方差// F

贝叶斯统计习题答案

第一章 先验分布与后验分布 1.1 解:令120.1,0.2θθ== 设A 为从产品中随机取出8个,有2个不合格,则 22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有 5418 .03 .02936.07.01488.07 .01488.0)()|()()|()()|()|(2211111=?+??=+= θπθθπθθπθθπA P A P A P A 4582 .0)|(1)|(4582 .03.02936.07.01488.03 .02936.0)()|()()|()()|()|(122211222=-==?+??=+= A A or A P A P A P A θπθπθπθθπθθπθθπ 1.2 解:令121, 1.5λλ== 设X 为一卷磁带上的缺陷数,则()X P λ ∴3(3)3! e P X λ λλ-== R 语言求:)4(/)exp(*)3(^gamma λλ- 1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有 111222(3)() (3)0.2457 (3)(3)() (3)0.7543 (3) P X X P X P X X P X λπλπλλπλπλ======== == 1.3 解:设A 为从产品中随机取出8个,有3个不合格,则 33 58()(1)P A C θθθ=- (1) 由题意知 ()1,01πθθ=<< 从而有 .10,)1(504)|(504)6,4(/1) 6,4(1 )6,4()1() 1()1()1()1()1()1()()|() ()|()|(53531 1 61 45 31 5 3 5 31 53 3 8 5 33810 <<-==-= --= --= --= =????--θθθθπθθθ θθ θθθ θθ θθθ θθ θθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求 (2)

统计分析的八种方法

统计分析的八种方法 统计分析的八种方法一、指标对比分析法指标对比分析法,又称比较分析法,是统计分析中最常用的方法。是通过有关的指标对比来反映事物数量上差异和变化的方法。有比较才能鉴别。单独看一些指标,只能说明总体的某些数量特征,得不出什么结论性的认识;一经过比较,如与国外、外单位比,与历史数据比,与计划相比,就可以对规模大小、水平高低、速度快慢作出判断和评价。 指标分析对比分析方法可分为静态比较和动态比较分析。静态比较是同一时间条件下不同总体指标比较,如不同部门、不同地区、不同国家的比较,也叫横向比较;动态比较是同一总体条件不同时期指标数值的比较,也叫纵向比较。这两种方法既可单独使用,也可结合使用。进行对比分析时,可以单独使用总量指标或相对指标或平均指标,也可将它们结合起来进行对比。比较的结果可用相对数,如百分数、倍数、系数等,也可用相差的绝对数和相关的百分点(每1%为一个百分点)来表示,即将对比的指标相减。 二、分组分析法指标对比分析法是总体上的对比,但组成统计总体的各单位具有多种特征,这就使得在同一总体范围内的各单位之间产生了许多差别,统计分析不仅要对总体数量特征和数量关系进行分析,还要深入总体的内部进行分组分析。分组分析法就是根据统计分析的目的要求,把所研究的总体按照一个或者几个标志划分为若干个部分,加以整理,进行观察、分析,以揭示其内在的联系和规律性。 统计分组法的关键问题在于正确选择分组标值和划分各组界限。 三、时间数列及动态分析法时间数列。是将同一指标在时间上变化和发展的一系列数值,按时间先后顺序排列,就形成时间数列,又称动态数列。它能反映社会经济现象的发展变动情况,通过时间数列的编制和分析,可以找出动态变化规律,为预测未来的发展趋势提供依据。时间数列可分为绝对数时间数列、相对数时间数列、平均数时间数列。 时间数列速度指标。根据绝对数时间数列可以计算的速度指标:有发展速度、增长速度、平均发展速度、平均增长速度。 动态分析法。在统计分析中,如果只有孤立的一个时期指标值,是很难作出判断的。如果编制了时间数列,就可以进行动态分析,反映其发展水平和速度的变化规律。 进行动态分析,要注意数列中各个指标具有的可比性。总体范围、指标计算方法、计算价格和计量单位,都应该前后一致。时间间隔一般也要一致,但也可以根据研究目的,采取不同的间隔期,如按历史时期分。为了消除时间间隔期不同而产生的指标数值不可比,可采用年平均数和年平均发展速度来编制动态数列。此外在统计上,许多综合指标是采用价值形态来反映实物总量,如国内生产总值、工业总产值、社会商品零售总额等计算不同年份的发展速度时,必须消除价格变动因素的影响,才能正确的反映实物量的变化。

常用统计分析方法

常用统计分析方法 排列图 因果图 散布图 直方图 控制图 控制图的重要性 控制图原理 控制图种类及选用 统计质量控制是质量控制的基本方法,执行全面质量管理的基本手段,也是CAQ系统的基础,这里简要介绍制造企业应用最广的统计质量控制方法。 常用统计分析方法与控制图 获得有效的质量数据之后,就可以利用各种统计分析方法和控制图对质量数据进行加工处理,从中提取出有价值的信息成分。 常用统计分析方法 此处介绍的方法是生产现场经常使用,易于掌握的统计方法,包括排列图、因果图、散布图、直方图等。 排列图 排列图是找出影响产品质量主要因素的图表工具.它是由意大利经济学家巴洛特(Pareto)提出的.巴洛特发现人类经济领域中"少数人占有社会上的大部分财富,而绝大多数人处于贫困状况"的现象是一种相当普遍的社会现象,即所谓"关键的少数与次要的多数"原理.朱兰(美国质量管理学家)把这个原理应用到质量管理中来,成为在质量管理中发现主要质量问题和确定质量改进方向的有力工具. 1.排列图的画法

排列图制作可分为5步: (1)确定分析的对象 排列图一般用来分析产品或零件的废品件数、吨数、损失金额、消耗工时及不合格项数等. (2)确定问题分类的项目 可按废品项目、缺陷项目、零件项目、不同操作者等进行分类。 (3)收集与整理数据 列表汇总每个项目发生的数量,即频数fi、项目按发生的数量大小,由大到小排列。最后一项是无法进一步细分或明确划分的项目统一称为“其它”。 (4)计算频数fi、频率Pi和累计频率Fi 首先统计频数fi,然后按(1)、(2)式分别计算频率Pi和累计频率Fi (1) 式中,f为各项目发生频数之和。 (2)

统计分析的四种方法

统计分析的四种方法文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

统计分析的四种方法 一、指标对比分析法,又称比较分析法,是统计分析中最常用的方法。是通过有关的指标对比来反映事物数量上差异和变化的方法。有比较才能鉴别。单独看一些指标,只能说明总体的某些数量特征,得不出什么结论性的认识; 指标分析对比分析方法可分为静态比较和动态比较分析。静态比较是同一时间条件下不同总体指标比较,也叫横向比较;动态比较是同一总体条件不同时期指标数值的比较,也叫纵向比较。这两种方法既可单独使用,也可结合使用。进行对比分析时,可以单独使用总量指标或相对指标或平均指标,也可将它们结合起来进行对比。比较的结果可用相对数,如百分数、倍数、系数等,也可用相差的绝对数和相关的百分点(每1%为一个百分点)来表示,即将对比的指标相减。 二、分组分析法指标对比分析法是总体上的对比,但组成统计总体的各单位具有多种特征,这就使得在同一总体范围内的各单位之间产生了许多差别,统计分析不仅要对总体数量特征和数量关系进行分析,还要深入总体的内部进行分组分析。分组分析法就是根据统计分析的目的要求,把所研究的总体按照一个或者几个标志划分为若干个部分,加以整理,进行观察、分析,以揭示其内在的联系和规律性。 统计分组法的关键问题在于正确选择分组标值和划分各组界限。 三、时间数列及动态分析法, 时间数列是将同一指标在时间上变化和发展的一系列数值,按时间先后顺序排列,就形成时间数列,又称动态数

列。时间数列可分为绝对数时间数列、相对数时间数列、平均数时间数列。 时间数列速度指标。根据绝对数时间数列可以计算的速度指标:有发展速度、增长速度、平均发展速度、平均增长速度。 动态分析法。在统计分析中,如果只有孤立的一个时期指标值,是很难作出判断的。如果编制了时间数列,就可以进行动态分析,反映其发展水平和速度的变化规律。 进行动态分析,要注意数列中各个指标具有的可比性。总体范围、指标计算方法、计算价格和计量单位,都应该前后一致。时间间隔一般也要一致,但也可以根据研究目的,采取不同的间隔期,如按历史时期分。 四、指数分析法指数是指反映社会经济现象变动情况的相对数。有广义和狭义之分。根据指数所研究的范围不同可以有个体指数、类指数与总指数之分。 用指数进行因素分析。因素分析就是将研究对象分解为各个因素,把研究对象的总体看成是各因素变动共同的结果,通过对各个因素的分析,对研究对象总变动中各项因素的影响程度进行测定。因素分析按其所研究的对象的统计指标不同可分为对总量指标的变动的因素分析,对平均指标变动的因素分析。

简单统计分析方法总结

简单统计分析方法总结 1.连续性资料 1.1 两组独立样本比较 1.1.1 资料符合正态分布,且两组方差齐性,直接采用t检验。 1.1.2 资料不符合正态分布,(1)可进行数据转换,如对数转换等,使之服从正态分布,然后 对转换后的数据采用t检验;(2)采用非参数检验,如Wilcoxon检验。 1.1.3 资料方差不齐,(1)采用Satterthwate 的t’检验;(2)采用非参数检验,如Wilcoxon检验。 1.2 两组配对样本的比较 1.2.1 两组差值服从正态分布,采用配对t检验。 1.2.2 两组差值不服从正态分布,采用wilcoxon的符号配对秩和检验。 1.3 多组完全随机样本比较 1.3.1资料符合正态分布,且各组方差齐性,直接采用完全随机的方差分析。如果检验结果为有统 计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey法,Scheffe法,SNK法等。 1.3.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Kruscal-Wallis法。如果检验 结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用成组的Wilcoxon检验。 1.4 多组随机区组样本比较 1.4.1资料符合正态分布,且各组方差齐性,直接采用随机区组的方差分析。如果检验结果为有 统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey法,Scheffe法,SNK法等。 1.4.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Fridman检验法。如果检验结 果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用符号配对的Wilcoxon检验。 需要注意的问题: (1)一般来说,如果是大样本,比如各组例数大于50,可以不作正态性检验,直接采用t检验或方差分析。因为统计学上有中心极限定理,假定大样本是服从正态分布的。但实际过程中这一条是值得商榷的。 (2)当进行多组比较时,最容易犯的错误是仅比较其中的两组,而不顾其他组,这样作容易增大犯假阳性错误的概率。正确的做法应该是,先作总的各组间的比较,如果总的来说差别有统计学意义,然后才能作其中任意两组的比较,这些两两比较有特定的统计方法,如上面提到的LSD检验,Bonferroni法,tukey法,Scheffe法,SNK法等。**绝不能对其中的两组直接采用t检验,这样即使得出结果也未必正确**

16种常用数据分析方法

一、描述统计 描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。 1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。 2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W险验、动差法。 二、假设检验 1、参数检验 参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。 1)U验使用条件:当样本含量n较大时,样本值符合正态分布 2)T检验使用条件:当样本含量n较小时,样本值符合正态分布 A 单样本t检验:推断该样本来自的总体均数口与已知的某一总体均数口0 (常为理论值或标准值)有无差别; B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在 可能会影响处理效果的各种条件方面扱为相似; C两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。 2、非参数检验 非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。 适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。

A虽然是连续数据,但总体分布形态未知或者非正态; B体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。三、信度分析 检査测量的可信度,例如调查问卷的真实性。 分类: 1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度 2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。 四、列联表分析 用于分析离散变量或定型变量之间是否存在相关。 对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。 五、相关分析 研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相 关程度。 1、单相关:两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量; 2、复相关:三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个 以上的自变量和因变量相关;

教学大纲_贝叶斯统计(双语)

《贝叶斯统计(双语)》教学大纲 课程编号:120872B 课程类型:□通识教育必修课□通识教育选修课 □专业必修课□√专业选修课 □学科基础课 总学时:32 讲课学时:32实验(上机)学时:0 学分:2 适用对象:经济统计学 先修课程:微积分、概率论与数理统计学 毕业要求: 1.应用专业知识,解决数据分析问题 2.可以建立统计模型,获得有效结论 3.掌握统计软件及常用数据库工具的使用 4.关注国际统计应用的新进展 5.基于数据结论,提出决策咨询建议 6.具有不断学习的意识 一、课程的教学目标 贝叶斯统计是上世纪50年代后,才迅速发展起来的一门统计理论。目前,在欧美等西方国家,贝叶斯统计已经成为了与经典统计学派并驾齐驱的当今两大统计学派之一;随着贝叶斯理论和方法的不断发展和完善,以及相应的计算软件的研制,贝叶斯方法在实践中获得了日趋广泛的应用;特别是,贝叶斯决策问题在统计应用中占有越来越重要的地位。在商业经济预测、政府宏观经济管理、国防工业中对武器装备系统可靠性评估、生物医学研究;知识发现和数据挖掘技术等都获得了广泛应用。

本课程通过贝叶斯统计的教学使学习过传统的数理统计课程的学生了解贝叶斯统计的基本思想和基本观点,了解贝叶斯统计与传统的数理统计在理论和处理方法上的区别,了解贝叶斯统计的最新进展,能够系统的掌握贝叶斯统计的基本理论、基本方法,特别是贝叶斯统计极具特色的一些处理方法,引进一个效用函数(utility function)并选择使期望效用最大的最优决策,这样就把贝叶斯的统计思想扩展到在不确定时的决策问题。很好的将统计学与最优化的思想方法和技术很好的进行了结合。贝叶斯统计理论和方法技术的学习,不仅能够提高学生分析和解决实际问题的能力,还能够更进一步提高对经典数理统计的深入理解。 二、教学基本要求 根据贝叶斯统计课程的教学内容,本课程将重点介绍贝叶斯统计推断理论,贝叶斯决策理论。并且注重贝叶斯统计处理方法和基本观点与传统数理统计相应内容对比的讲授方式。注重案例教学,安排学生课后查阅文献资料,以及课堂研讨等方式,了解贝叶斯统计理论和应用最新成果及前沿研究进展。对最新贝叶斯网络和贝叶斯统计的方法除了传统讲授方式外,适当的安排上机实验,了解贝叶斯统计相关软件的使用方法。课程的考核方式:期末开卷+ 论文方式,卷面60%,平时和论文40%。 三、各教学环节学时分配 以表格方式表现各章节的学时分配,表格如下: 教学课时分配

16种统计分析方法

16种常用的数据分析方法汇总 2015-11-10 分类:数据分析评论(0) 经常会有朋友问到一个朋友,数据分析常用的分析方法有哪些,我需要学习哪个等等之类的问题,今天数据分析精选给大家整理了十六种常用的数据分析方法,供大家参考学习。 一、描述统计 描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。 1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策 树法。 2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前 需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W 检验、动差法。 二、假设检验 1、参数检验 参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。 1)U验使用条件:当样本含量n较大时,样本值符合正态分布 2)T检验使用条件:当样本含量n较小时,样本值符合正态分布 A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别; B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在 可能会影响处理效果的各种条件方面扱为相似; C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。 2、非参数检验

非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。 适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。 A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。 三、信度分析 检査测量的可信度,例如调查问卷的真实性。 分类: 1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度 2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致 性如何,常用方法分半信度。 四、列联表分析 用于分析离散变量或定型变量之间是否存在相关。 对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。 列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。 五、相关分析 研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。 1、单相关:两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量; 2、复相关:三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以上的自变量和因变量相关;

SAS统计分析教程方法总结

对定量结果进行差异性分析 1.单因素设计一元定量资料差异性分析 1.1.单因素设计一元定量资料t检验与符号秩和检验 T检验前提条件:定量资料满足独立性和正态分布,若不满足则进行单因素设计一元定量资料符号秩和检验。 1.2.配对设计一元定量资料t检验与符号秩和检验 配对设计:整个资料涉及一个试验因素的两个水平,并且在这两个水平作用下获得的相同指标是成对出现的,每一对中的两个数据来自于同一个个体或条件相近的两个个体。 1.3.成组设计一元定量资料t检验 成组设计定义: 设试验因素A有A1,A2个水平,将全部n(n最好是偶数)个受试对象随机地均分成2组,分别接受A1,A2,2种处理。再设每种处理下观测的定量指标数为k,当k=1时,属于一元分析的问题;当k≥2时,属于多元分析的问题。 在成组设计中,因2组受试对象之间未按重要的非处理因素进行两两配对,无法消除个体差异对观测结果的影响,因此,其试验效率低于配对设计。 T检验分析前提条件:

独立性、正态性和方差齐性。 1.4.成组设计一元定量资料Wil coxon秩和检验 不符合参数检验的前提条件,故选用非参数检验法,即秩和检验。1.5.单因素k(k>=3)水平设计定量资料一元方差分析 方差分析是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。这里,由于仅研究单个因素对观测变量的影响,因此称为单因素方差分析。 方差分析的假定条件为: (1)各处理条件下的样本是随机的。 (2)各处理条件下的样本是相互独立的,否则可能出现无法解析的输出结果。 (3)各处理条件下的样本分别来自正态分布总体,否则使用非参数分析。(4)各处理条件下的样本方差相同,即具有齐效性。 1.6.单因素k(k>=3)水平设计定量资料一元协方差分析 协方差分析(Analysis of Covariance)是将回归分析与方差分析结合起来使用的一种分析方法。在这种分析中,先将定量的影响因素(即难以控制的因素)看作自变量,或称为协变量(Covariate),建立因变量随自变量变化的回归方程,这样就可以利用回归方程把因变量的变化中受不易控制的定量因素的影响扣除掉,从而,能够较合理地比较定性的影响因素处在不同水平下,经过回归分析手段修正以后的因变量的样本均数之间的差别是否有统计学意义,这就是协方差分析解决问题的基本计算原理。

统计过程控制的几种常用方法

统计过程控制 1、统计过程控制的基本知识 1.1统计过程控制的基本概念 统计过程控制(Stastistical Process Control简称SPC)是为了贯彻预防原则,应用统计方法对过程中的各个阶段进行评估和监控,建立并保持过程处于可接受的并且稳定的水平,从而保证产品与服务符合规定要求的一种技术。 SPC中的主要工具是控制图。因此,要想推行SPC必须对控制图有一定深入的了解,否则就不可能通过SPC取得真正的实效。 对于来自现场的助理质量工程师而言,主要要求他们当好质量工程师的助手:(1)在现场能够较熟练地建立控制图; (2)在生产过程中对于控制图能够初步加以使用和判断; (3)能够针对出现的问题提出初步的解决措施。 大量实践证明,为了达到上述目的,单纯了解控制图理论公式的推导是行不通的,主要是需要掌握控制图的基本思路与基本概念,懂得各项操作的作用及其物理意义,并伴随以必要的练习与实践方能奏效。 1.2统计过程控制的作用 (1)要想搞好质量管理首先应该明确下列两点: ①贯彻预防原则是现代质量管理的核心与精髓。 ②质量管理学科有一个十分重要的特点,即对于质量管理所提出的原则、方针、目标都要科学措施与科学方法来保证他们的实现。这体现了质量管理学科的科学性。 为了保证预防原则的实现,20世纪20年代美国贝尔电话实验室成立了两个研究质量的课题组,一为过程控制组,学术领导人为休哈特;另一为产品控制组,学术领导人为道奇。其后,休哈特提出了过程控制理论以及控制过程的具体工具——控制图。道奇与罗米格则提出了抽样检验理论和抽样检验表。这两个研究组的研究成果影响深远,在他们之后,虽然有数以千记的论文出现,但至今仍未能脱其左右。休哈特与道奇是统计质量控制(SQC)奠基人。1931年休哈特出版了他的代表作《加工产品质量的经济控制》这标志着统计过程控制时代的开始。

统计学思考题

第一章导论 1、统计数据可分为哪几种类型?不同类型的数据各有什么特点? 按照所采用的计量尺度的不同,可以将统计数据分为分类数据、顺序数据和数值型数据。按照统计数据 的收集方法,可以将其分为观测数据和实验数据。按照被描述的现象与时间的关系,可以将统计数据分为截面数据和时间序列数据。 分类数据是只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表述的。顺序数据是只能归于某一有序类别的非数字型数据。顺序数据虽然也是类别,但这些类别是有序的,是用文字来表述的。数值型数据是按数字尺度测量的观察值,其结果表现为具体的数值。现实中处理的大多数都是数值型数据。 2、解释分类数据、顺序数据和数值数据的意义。 对分类数据,我们通常计算出各组的频数或频率,计算其众数和异众比率,进行列联表分析和x2检验等;对顺序数据,可以计算其中位数和四分位差,计算等级相关系数等;对数值型数据,可以用更多的统计方法进行分析,如计算各种统计量,进行参数估计和检验等 3、举例说明总体、样本、参数、统计量、变量这几个概念。 总体:是包含所研究的全部个体的集合,它通常由所研究的一些个体组成。如多个企业构成的集合,多个居民户构成的集合,多个人构成的集合 样本:是从总体中抽出的一部分元素的集合。如从一批灯泡中随机抽取100个,这100个灯泡就构成了一个样本。 参数:是用来描述总体特征的概括性数字度量,它是研究者想要了解的总体的某种特征值。在统计中,总体参数通常用希腊字母表示,如,总体平均数用u(miu)表示,总体标准差用(sigma)表示,总体比例用(pai)表示,等。 统计量:是用来描述样本特征的概括性数字度量,它是根据样本数据计算出来的一个量,由于抽样是随机的,因此统计量是样本的函数。样本统计量通常用英文字母来表示。如,样本平均数用(x-bar)表示,样本标准车用s表示,样本比例用p表示,等。 变量:是说明现象某种特征的概念。如,商品销售额,受教育程度,产品的质量等级等。 4、变量可分为哪几类? 变量可以分为分类变量、顺序变量、数值型变量,数值型变量根据其取值的不同,又可分为离散型变量和连续型变量。分类变量是说明事物类别的一个名称,顺序变量是说明事物有序类别的一个名称,数值型变量是说明事物数字特征的一个名称。 5、举例说明离散型变量和连续性变量。 离散型变量是只能取可数值的变量,只能取有限个值,而且其取值都以整位数断开,可以一一列举,如,企业量,产品数量;连续型变量是可以在一个或多个区间中取任何值的变量。它的取值是连续不断的,不 能一一列举,如,年龄,温度,零件尺寸的误差等。 第二章数据的搜集 1、比较概率抽样和非概率抽样的特点。举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。 概率抽样也称随机抽样,是指遵守随机原则进行的抽样,总体中每个单位都有一定的机会被选入样本。它具有以下几个特点:首先,抽样时是按一定的概率以随机抽样原则抽取样本;其次,每个单位被抽中的概率是已知的,或是可以计算出来的;最后,当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率。 非概率抽样是相对于概率抽样而言的,指抽取样本时不是依据随机原则,而是根据研究目的对数据的要求,采用某种方式从总体中抽出部分单位对其实施调查。 如果调查的目的在于掌握研究对象总体的数量特征,根据调查的结果对总体参数进行评估,得到总体参数的置信区间,就应当采用概率抽样的方法。非概率抽样适合探索性的研究,调查的结果用于发现问题,为更深入的数量分析做好准备。非抽样调查也适合市场调查中概念测试,如产品包装测试、广告测试等。第三章数据的图表表示 1、分类数据和顺序数据的整理和图示方法各有那些? 分类数据的整理方法有频数和频数分布,图示方法有条形图、帕累托图、饼图、环形图;顺序数据的整理方法有累积频数和累积频率,图示方法有累积频数分布和频率图。 2、数值型数据的分组方法有哪些?简述组距分组的步骤。 数据分组的方法有单变量值分组和组距分组。 组距分组的步骤:(1)确定组数,一般数据所分组数不应少于5组且不多于15组;(2)确定各组的组距,组距=(最大值-最小值)/组数,组距宜取5或10的倍数;(3)确定上下限,第一组的下限应低于最小变量值,最后一组的上限应高于最大变量值。 3、直方图与条形图有何区别? 直方图与条形图不同。首先,条形图是用条形的长度表示各类别频数的多少,其宽度则是固定的;直方图是用面积表示各组频数的多少,矩形的高度表示每一组的频数或频率,宽度则表示各组的组距,因此其高度与宽度均有意义。其次,由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是 分开排列。最后,条形图主要用于展示分类数据,而直方图则主要用于展示数值型数据。 第四章数据的概括性变量 1、一组数据的分布特征可以从那几个方面进行测度? 一组数据的分布特征可以从三个方面进行测度和描述:一是分布的集中趋势,反映各数据向其中心值靠拢或聚集的程度;二是分布的离散程度,反映各数据远离其中心值的趋势;三是分布的形状,反映数据分布的偏态和峰态。 2、对于比率数据的平均为什么采用几何平均? 3、简述众数、中位数、和平均数的特点和应用场合。 众数是一组数据分布的峰值,不受极端值的影响。其缺点是具有不唯一性,一组数据可能有一个众数,也可能有两个或多个众数,也可能没有众数。众数只有在数据量较多时才有意义,当数据量较少时,不宜采用众数。众数主要适合作为分类数据的集中趋势测度值。 中位数是一组数据中间位置上的代表值,不受数据极端值的影响。当一组数据的分布偏斜程度较大时,使用中位数也许是一个好的选择。中位数主要适合作为顺序数据的集中趋势测度值。 平均数是针对数值型数据计算的,而且利用了全部数据信息,它是实际中应用最广泛的集中趋势测度值。当数据呈对称分布或接近对称分布时,3个代表值相等或接近相等时,这时则应选择平均数作为集中趋势的测度值。但平均数的主要缺点是易受数据极端值的影响,对于偏态分布的数据,平均数的代表性较差。因此,当数据为偏态分布,特别是偏斜程度较大时,可以考虑选择中位数或众数,这时它们的代表性要比平均数好。 4、为什么要计算离散系数? 方差和标准差是反映数据离散程度的绝对值,其数值的大小一方面受原变量值自身水平高低的影响,也就是与变量的平均数大小有关,变量值绝对水平高的,离散程度的测度值自然也就大,绝对水平低的离散程度的测度值自然也就小;另一方面,它们与原变量值的计量单位相同,采用不同计量单位计量的变量值,其离散程度的测度值也就不同。因此,对于平均水平不同或计量单位不同的不同组别的变量值,是不能用标准差直接比较其离散程度的,为消除变量值水平高低和计量单位不同对离散程度测度值的影响,需要计算离散系数。 离散系数也成为变异系数,它是一组数据的标准差与其相应的平均数之比,其计算公式为:v s=s/(x-bar),离散系数是测度数据离散程度的相对统计量,主要是用于比较不同样本数据的离散程度。离散系数大,说 明数据的离散程度也大;离散系数小,说明数据的离散程度也小。 第五章参数估计 1、怎样理解置信区间? 在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间,其中区间的最小值称为置信下限,最大值称为置信上限,由于统计学家在某种程度上确信这个区间会包含真正的总体参数,所以给它取名为置信区间。 2、解释95%的置信区间 如果抽取了许多不同的样本,比如说抽取了100个样本,根据每一个样本构造一个置信区间,这样,由100个样本构造的总体参数的100个置信区间中,有95%的区间包含了总体参数的真值,而5%则没包含,则95%这个值称为置信水平。一般地,如果将构造置信区间的步骤重复多次,置信区间中包含总体参数真值的次数所占的比例成为置信水平,也称为置信度或置信系数。 第六章假设检验 1、什么是假设检验中的显著性水平?统计显著是什么意思? 通常把(a-er-fa)称为显著性水平,显著性水平是一个统计专有名词,在假设检验中,它的含义是当原假设正确时却被拒绝的概率或风险,其实这就是前面所说假设检验中犯弃真错误的概率,它是由人们根据检验的要求确定的,通常取0.05或0.01. 2、什么是假设检验中的两类错误? 对于原假设提出的命题,我们需要做出判断,这种判断可以用“原假设正确”或“原假设错误”来表述。当然,这是依据样本提供的信息进行判断的,也就是由部分来推断,总体。因而判断有可能正确,也有可能错误,也就是说,我们面临着犯错误的可能。所犯的错误有两种类型,第一类错误是原假设H0为真却被我们拒绝了,犯这种错误的概率用(a-er-fa)表示所以成为其真错误;第二类错误是原假设为伪我们却没有拒绝,犯这类错误的概率用(bei-ta)表示,所以成为取伪错误。 3、解释假设检验中的P值。 P值就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明这种情况发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由就越充分。 第七章方差分析 1、什么是方差分析?它研究的是什么? 方差分析就是通过检验各总体的均值是否相等来判断分类型自变量对数值型隐变量是否有显著影响。 方差分析是检验多个总体均值是否相等的统计方法,但本质上它所研究的是分类型自变量对数值型因变量的影响。 2、简述方差分析的基本思想。 为了研究分类型自变量对对数值型因变量的影响,需要从对数据误差来源的分析入手,误差主要分为组内误差和组间误差,组内误差只包含随机误差,而组间误差除了包含随机误差,还会包含系统误差。3、解释组内误差和组间误差的含义。 组内误差(SSE):反映组内误差大小的平方和,也称为残差平方和,是由于抽样的随机性所造成的随机误差。它反映了每个样本内各观测值之间的离散状况。 组间误差(SSA):反映组间误差大小的平方和,也称为因素平方和,是随机误差和系统误差的总和。它反映了样本均值之间的差异程度。 4、解释则内方差和组间方差的含义。 组间误差和组内误差经过平均后的数值称为均方或方差。 组间方差(MSA)=组间平方和/自由度(SSA/k-1) 组内误差(MSE)=组内平方和/自由度(SSE/n-k) 5、简述方差分析的基本步骤。 1、提出假设; 2、构造检验的统计量;(1)计算各样本的均值(2)计算全部观测值的总均值(3)计算各误差平方和(4)计算统计量 3、统计决策; 4、方差分析表; 5、用Excel进行方差分析。 第八章一元线性回归 1、解释相关关系的含义,说明相关系的特点。 相关关系1)变量间关系不能用函数关系精确表达;2)一个变量的取值不能由另一个变量唯一确定;3)当变量x 取某个值时,变量y 的取值可能有几个。 2、相关分析主要解决那些问题? 相关分析就是对两个变量之间线性关系的描述和度量,它要解决的问题包括:(1)变量之间是否存在关系;(2)如果存在关系,它们之间是什么样的关系;(3)变量之间的关系强度如何;(4)样本之间的变量关系是否能代表总体变量之间的关系? 3、解释回归模型、回归方程、估计的回归方程的含义。 回归模型:描述因变量y如何依赖于自变量x和误差项ε的方程。 回归方程:描述因变量y的期望值如何依赖于自变量x的方程。 估计的回归方程:根据样本数据求出的回归方程的估计。 4、解释总平方和、回归平方和、残差平方和的含义,并说明它们之间的联系。 总平方和(SST):是全部观测值Xij与总均值x-两bar的误差平方和。 残差平方和(SSE):反映组内误差大小的平方和。 回归平方和(SSR):反映了y的总变差中由于x与y之间的线性关系引起的y的变化部分。 SST=SSR+SSE 5、解释判定系数(R2)的含义和作用。 含义:判定系数是对估计的回归方程拟合优度的度量。判定系数等于相关系数的平方,即r2=(r)2 作用:反映回归直线的拟合程度;R2越接近1,说明回归方程拟合的越好;R2越接近0,说明回归方程拟合的越差。 6、在回归分析中,F检验和t检验各有什么作用? F检验是检验自变量和因变量之间的线性关系是否显著,或者说,它们之间能否用一个线性模型y= 来表示。 t检验的显著性检验是要检验自变量对因变量的影响是否显著。在一元线性回归模型y= 中,如果白塔1=0,则回归线是一条水平线,表面因变量y的取值不依赖与自变量x,即两个变量之间没有线性关系。 7、简述线性关系检验和回归系数检验的具体步骤。 线性关系检验:1、提出假设,H0:回归系数等于0,两个变量之间的线性关系不显著;2、计算检验统计量F=(SSR/1)/(SSE/(n-2));3、做出决策,根据显著性水平,分子自由度和分母自由度查F分布表,找到相应的临界值,比较与F的大小,判断是否拒绝原假设 回归系数检验:1、提出检验;2、计算检验统计量t;3、做出决策

数理统计中的几种统计推断方法

数理统计中的几种统计推断方法 ——导学文章之九 数理统计的基本问题是根据样本所提供的信息,对总体的分布以及分布的数字特征作出统计推断。统计推断的主要内容分为两大类:一是参数估计问题,另一类是假设检验问题。 本篇文章主要讨论总体参数的点估计、区间估计和假设检验。 一、点估计 1、矩估计 首先讲“矩”的概念, 定义:设X 是随机变量,k 是一正整数,若k EX 存在,则称k EX 为随机变量X 的k 阶原点矩,记为k a ;若存在,则称它为X 的k 阶中心矩,记为k b 。 显然,数学期望EX 就是1阶原点矩,方差DX 就是2阶中心矩。 简单的说就是用样本矩去估计相应的总体矩,用样本矩的连续函数去估计相应的总体矩的连续函数。矩估计法的理论基础是大数定理。因为大数定理告诉我们样本矩依概率收敛于总体的相应矩,样本矩的连续函数依概率收敛于相应总体矩的连续函数。 我们通常样本的均值X 去估计总体的均值E X :即总体为X 时,我们从中取出n 个样本12,,n X X X ,我们认为总体的均值就是1 1 n i i X X n ==∑,(当然这只是对总体均值的一 种估计,当然会有误差) 当2 EX 存在的时候,我们通常用 2 1 1 n i i X n =∑作为总体X 的2EX 的估计 一般地,我们用 1 1 n k i i X n =∑作为总体X 的k EX 的估计,用 1 1 () n k i i X X n =-∑作为总体的 () k E X EX -的估计。 例:设总体X 在[,]a b 上服从均匀分布,参数,a b 未知,12,,n X X X 是一个样本,求,a b 的矩估计量。 解:由矩估计法知道:2 a b EX += 由于2 2 ()DX EX EX =-,因此2 2 2 2 ()() ()124 b a a b EX D X EX -+=+= + 用矩估计法,也即用1 1 n i i X X n == ∑作为E X 的估计,用 2 1 1 n i i X n =∑作为2EX 的估计,

相关主题
文本预览
相关文档 最新文档