信息技术设备的无线电干扰极限值和测量方法
- 格式:doc
- 大小:40.00 KB
- 文档页数:10
无线电干扰查处方法及经验分析无线电干扰查处方法及经验分析一、无线电波的传播特性及信号分析无线电波按传播途径可分为以下四种:天波—由空间电离层反射而传播;地波—沿地球表面传播;直射波—由发射台到接收台直线传播;地面反射波—经地面反射而传播。
无线电波离开天线后,既在媒介质中传播,也沿各种媒介质的交界面(如地面)传播,具有一定的规律性,但对它产生影响的因素却很多。
无线电波在传播中的主要特性如下:(1)直线传播均匀媒介质(如空气)中,电波沿直线传播。
(2)反射与折射电波由一种媒介质传导另一种媒介质时,在两种介质的分界面上,传播方向要发生变化。
由第一种介质射向第二中介质,在分界面上出现两种现象。
一种是射线返回第一种介质,叫做反射;另一种现象是射线进入第二种介质,但方向发生了偏折,叫做折射。
一般情况下反射和折射是同时发生的。
入射角等于反射角,但不一定等于折射角。
反射和折射给测向准确性带来很大的不良影响;反射严重是,测向设备误指反射体,给干扰查找造成极大困难。
(3)绕射电波在传播途中,有力图绕过难以穿透的障碍物的能力。
绕射能力的强弱与电波的频率有关,又和障碍物大小有关。
频率越低的电波,绕射能力越弱;障碍物越大,绕射越困难。
工作于80米(375MHZ)波段的电波,绕射能力是较强的,除陡峭高山(相对高度在200米以上)外,一般丘陵均可逾越。
2米波段的电波绕射能力就很差了,一座楼房,或一个小山丘,都可能使信号难以绕过去。
(4)干涉直射波与地面反射波或其它物体的反射波在某处相遇时,测向收到的信号为两个电波合成后的信号,其信号强度有可能增强(两个信号跌叠加)也可能减弱(两个信号相互抵消)。
这种现象称为波的干涉。
产生干涉的结果,使得测向机在某些接收点收到的信号强,而某些接收点收到的信号弱,甚至收不到信号,给判断干扰信号距离造成错觉。
天线发射到空间的电波的能量是一定的,随着传播距离的增大,不仅在传播途中能量要损耗,而且能量的分布也越来越广,单位面积上获得的能量越来越小。
关于无线干扰测试的测量技术和要求在无线系统中,无线信道的干扰会给用户带来很多问题,它会降低指定信号的接收率。
干扰可能来自有意、无意或偶然辐射体,并在已获授权或未获授权频谱中出现。
随着无线电频谱资源的日渐匮乏,制造商始终坚持提高频谱利用率以便获得最高的容量和性能(例如,共享或重复使用)。
由此,无线通信系统必须在有限的无线电干扰下工作。
然而,随着频谱需求的增加,无线系统干扰也会增加。
因此,为使所有无线系统正常工作,干扰的识别和降低显得格外重要。
在无线环境中执行干扰测试绝非易事,它要求采用新的测量技术并对现有的测量仪器提出更高要求。
高效执行干扰测试需要使用先进的测量工具——例如高性能频谱分析仪——对不同无线系统之间的干扰进行测量、监测和管理干扰分类无线通信系统存在多种不同的干扰类型。
干扰通常分为以下几类:●带内干扰——是指来自各种通信系统或无意辐射体发射的但落入指定系统工作带宽内的无效信号。
●同信道干扰——常见的无线电干扰,是由同一个无线系统的其它无线电工作造成的。
●带外干扰——来自于在指定频段内工作的无线系统,但由于不恰当的过滤、非线性和/或泄露,干扰也会将能量发射到其它无线系统的频段中。
●相邻信道干扰——是指定频率信道中的发射在其它相邻信道中产生无效能量的结果,通常位于同一个系统中。
●上行(反向)链路干扰——可影响基站接收机以及从移动设备至基站的相关通信。
●下行链路干扰——通常可损坏基站和移动设备之间的下行链路通信。
无线系统的干扰分类对工程师的响应有着决定性影响。
例如,当设计简单或过滤不足的发射机产生的谐波进入较高频段时,就会出现带外干扰。
正确过滤掉发射机的谐波,这样可确保无线系统不会影响在更高频段中工作的其它系统。
干扰测量技术当无线系统没有按预期运行且疑似有无线电干扰时,应使用现代高性能频谱分析仪确认在工作频率信道中的多余信号。
这类工具非常适合测量干扰信号功率随时间、频率和位置的变化。
由于干扰测试通常要求收集无线系统环境的测量结果与数据,我们推荐用户使用重量轻、采用电池供电、性能可与传统台式仪器媲美的仪器识别多余信号的过程可能会揭示这个信号的详情:信号的传输时间、出现次数、载波频率和带宽,甚至是干扰发射机的物理位置。
无线干扰测试的测量技术和要求在无线系统中,无线信道的干扰会给用户带来很多问题,它会降低指定信号的接收率。
干扰可能来自有意、无意或偶然辐射体,并在已获授权或未获授权频谱中出现。
随着无线电频谱资源的日渐匮乏,制造商始终坚持提高频谱利用率以便获得最高的容量和性能(例如,共享或重复使用)。
由此,无线通信系统必须在有限的无线电干扰下工作。
然而,随着频谱需求的增加,无线系统干扰也会增加。
因此,为使所有无线系统正常工作,干扰的识别和降低显得格外重要。
在无线环境中执行干扰测试绝非易事,它要求采用新的测量技术并对现有的测量仪器提出更高要求。
高效执行干扰测试需要使用先进的测量工具——例如高性能频谱分析仪——对不同无线系统之间的干扰进行测量、监测和管理。
干扰分类无线通信系统存在多种不同的干扰类型。
干扰通常分为以下几类:●带内干扰——是指来自各种通信系统或无意辐射体发射的但落入指定系统工作带宽内的无效信号。
●同信道干扰——常见的无线电干扰,是由同一个无线系统的其它无线电工作造成的。
●带外干扰——来自于在指定频段内工作的无线系统,但由于不恰当的过滤、非线性和/或泄露,干扰也会将能量发射到其它无线系统的频段中。
●相邻信道干扰——是指定频率信道中的发射在其它相邻信道中产生无效能量的结果,通常位于同一个系统中。
●上行(反向)链路干扰——可影响基站接收机以及从移动设备至基站的相关通信。
●下行链路干扰——通常可损坏基站和移动设备之间的下行链路通信。
无线系统的干扰分类对工程师的响应有着决定性影响。
例如,当设计简单或过滤不足的发射机产生的谐波进入较高频段时,就会出现带外干扰。
正确过滤掉发射机的谐波,这样可确保无线系统不会影响在更高频段中工作的其它系统。
干扰测量技术当无线系统没有按预期运行且疑似有无线电干扰时,应使用现代高性能频谱分析仪确认在工作频率信道中的多余信号。
这类工具非常适合测量干扰信号功率随时间、频率和位置的变化。
由于干扰测试通常要求收集无线系统环境的测量结果与数据,我们推荐用户使用重量轻、采用电池供电、性能可与传统台式仪器媲美的仪器(图1)。
信息技术设备抗扰度限值和测量方法1.信息技术设备应具有一定的抗扰度,能够在一定范围内抵御外部干扰。
Information technology equipment should have a certain anti-jamming ability to resist external interference within a certain range.2.抗扰度限值是指设备在正常工作条件下所能承受的干扰程度的上限。
The anti-jamming limit refers to the maximum level of interference that the equipment can withstand under normal working conditions.3.为了评估设备的抗扰度,需要制定相应的测量方法和标准。
In order to evaluate the anti-interference of the equipment, corresponding measurement methods and standards need to be established.4.测量方法应该能够客观地反映设备在受到干扰时的表现。
The measurement method should objectively reflect the performance of the equipment when subjected to interference.5.常见的抗扰度测量方法包括电磁兼容性测试、干扰抑制比测试等。
Common anti-jamming measurement methods include electromagnetic compatibility testing and interference suppression ratio testing.6.电磁兼容性测试可以评估设备在电磁环境中的抗扰度。
信息技术设备抗扰度限值和测量方法随着信息技术的不断发展,信息技术设备的抗扰度性能已经成为了各种设备的重要指标之一。
信息技术设备的抗扰度限值和测量方法一直是工程技术领域研究的热点之一。
本文将就信息技术设备的抗扰度限值和测量方法进行详细的介绍和分析。
一、信息技术设备的抗扰度限值信息技术设备的抗扰度限值是指设备在一定环境条件下能够承受的外部扰动的程度。
通常来说,信息技术设备的抗扰度限值是通过测试和实验来测定的。
而设备的抗扰度限值与其所处的环境条件密切相关,比如温度、湿度等环境因素都会对设备的抗扰度限值有影响。
因此,在确定信息技术设备的抗扰度限值时,需要充分考虑到所处的环境条件,以便更加全面和准确地评估设备的抗扰度性能。
在现实生活中,信息技术设备会受到各种外部扰动的影响,比如电磁场干扰、噪声干扰等。
为了保证设备在各种环境条件下都能正常工作,需要对设备的抗扰度限值进行详细的测量和分析,以便确定其抗扰度性能是否符合要求。
二、信息技术设备的抗扰度测量方法1.电磁场干扰测试电磁场干扰是信息技术设备常见的扰动源之一,因此对于设备的抗电磁场干扰能力的测试是十分重要的。
常见的电磁场干扰测试方法有辐射干扰测试和传导干扰测试。
辐射干扰测试是通过在设备周围产生电磁辐射场,观察设备的工作状态来评估其抗辐射干扰能力;传导干扰测试是通过在设备的输入、输出端口施加外部电磁场,观察设备的工作状态来评估其抗传导干扰能力。
2.噪声干扰测试噪声干扰是信息技术设备另一个常见的扰动源,因此对于设备的抗噪声干扰能力的测试也是必不可少的。
常见的噪声干扰测试方法有噪声电压测试和噪声电流测试。
噪声电压测试是通过在设备的电源端口施加外部电压噪声,观察设备的工作状态来评估其抗噪声电压干扰能力;噪声电流测试是通过在设备的信号输入输出端口施加外部电流噪声,观察设备的工作状态来评估其抗噪声电流干扰能力。
3.温度湿度测试温度湿度是信息技术设备另一个重要的环境因素,对设备的工作性能和寿命都有较大的影响。
EMC检测主要标准EN55011 《工科医(ISM)射频设备的干扰限值和测量方法》CISPR11、GB4824EN55013 《声音和电视广播接收机及有关设备的无线电干扰特性限值和测量方法》CISPR13、GB13837EN55014-1《家用电器、电动工具及类似器具的无线电干扰限值和测量方法》CISPR14-1 GB4343EN55015《电气照明和类似设备的无线电干扰特性限值和测量方法》CISPR15、GB17743EN55022 《信息技术设备的无线电干扰限值和测量方法》CISPR22、GB9254EN61000-6-1《通用标准--家用、商业、轻工业环境的无线电设备的抗扰度限值和测量方法》EN61000-6-2《通用标准--工业环境的无线电设备抗扰度限值和测量方法》EN61000-6-3 《通用标准--家用、商业、轻工业环境的干扰限值和测量方法》EN61000-6-4 《通用标准--工业环境的干扰限值和测量方法》EN61547 《电气照明和类似设备的无线电抗扰度限值和测量方法》EN55014-2《家用电器、电动工具及类似器具的无线电抗扰度限值和测量方法》GB4343.2EN55024 《信息技术设备的抗扰度限值和测量方法》GB17618EN61000-3-2 《低压电气及电子设备发出的谐波电流限值(单项输入电流≦16A)》EN61000-3-3 《输入电流≦16A的低压供电系统电压波动和闪烁》EN50091-2 《UPS的EMC限制》FCC Part 15 《射频设备的无线电干扰限值和测量方法》(美国)FCC Part 18 《工科医类产品的干扰限值和测量方法》(美国)EMC检测主要项目空间辐射(Radiation) EN55011,13,22 FCC Part 15&18, VCCI传导干扰(Conduction) EN55011,13,14-1,15,22, FCC Part 15&18, VCCI喀呖声(Click) EN55014-1功率辐射(Power Clamp) EN55013,14-1磁场辐射(Magnetic Emission) EN55011,15低频干扰(Low Frequency Immunity) EN50091-2静电放电(ESD) IEC61000-4-2、EN61000-4-2、GB/T17626.2辐射抗扰度(R/S) IEC61000-4-3、EN61000-4-3 、GB/T17626.3脉冲群抗扰度(EFT/B) IEC61000-4-4、EN61000-4-4 、GB/T17626.4浪涌抗扰度(SURGE) IEC61000-4-5、EN61000-4-5、GB/T17626.5传导骚扰抗扰度(C/S) IEC61000-4-6、EN61000-4-6 、GB/T17626.6工频磁场抗扰度(M/S) IEC61000-4-8、EN61000-4-8、GB/T17626.8电压跌落(DIPS) IEC61000-4-11、EN61000-4-11、GB/T17626.11谐波电流(Harmonic) IEC61000-3-2、EN61000-3-2电压闪烁(Flicker) IEC61000-3-3、EN61000-3-3实验室展示空间辐射Radiated EmissionEN55011 CISPR11 GB4824 EN55013 CISPR13 GB13837EN55022 CISPR22 GB9254 FCC Part 15/18VCCI传导干扰Conducted EmissionEN55011 CISPR11 GB4824 EN55013 CISPR13 GB13837EN55014 CISPR14 GB4343 EN55015 CISPR15 GB17743EN55022 CISPR22 GB9254 FCC Part 15/18 VCCI功率辐射Power Clamp EN55013 CISPR13 GB13837EN55014 CISPR14 GB4343磁场辐射Magnetic EmissionEN55011 CISPR11 GB4824 EN55015 CISPR15GB17743静电放电ESD IEC61000-4-2 EN61000-4-2 GB/T17626.2辐射抗干扰R/S IEC61000-4-3EN61000-4-3GB/T17626.3电快速瞬变脉冲群EFT/B IEC61000-4-4EN61000-4-4GB/T17626.4雷击抗扰度SURGE IEC61000-4-5EN61000-4-5GB/T17626.5传导抗扰度C/S IEC61000-4-6EN61000-4-6GB/T17626.6工频磁场抗扰度M/S IEC61000-4-8EN61000-4-8GB/T17626.8电压暂降、中断抗扰度DIPSIEC61000-4-11EN61000-4-11GB/T17626.11谐波电流Harmonic IEC61000-3-2EN61000-3-2电压波动和闪变Flicker IEC61000-3-3EN61000-3-3。
信息技术设备抗扰度限值和测量方法引言在现代社会中,信息技术设备已经成为人们生活和工作中不可或缺的一部分。
然而,随着社会的发展和科技的进步,信息技术设备面临着越来越多的干扰和干扰。
为了保障信息技术设备的正常运行和数据传输的安全性,必须对其抗扰度进行限制和测量。
本文将对信息技术设备抗扰度限值和测量方法进行详细介绍。
一、抗扰度限值的意义抗扰度限值是指信息技术设备在面对外部干扰和干扰时所能承受的最大限度。
在现代社会中,各种信息技术设备如计算机、手机、无线网络设备等都面临着各种各样的干扰和干扰,如电磁干扰、无线电频干扰、电压干扰等。
如果这些干扰和干扰超过了信息技术设备的抗扰度限值,就会导致设备的运行异常、数据传输错误甚至硬件损坏。
因此,设定抗扰度限值对保障信息技术设备的稳定运行和数据传输的安全性至关重要。
二、抗扰度限值的设定抗扰度限值的设定一般由相关的国家标准或行业标准进行规定。
这些标准是基于对信息技术设备的抗扰度进行充分的研究和实验得出的,旨在保障信息技术设备在面对各种干扰和干扰时的正常运行和数据传输的安全性。
一般来说,抗扰度限值会根据信息技术设备的类型、功能和使用环境的不同而有所差异。
例如,对于计算机和服务器等重要的信息技术设备,抗扰度限值一般会相对较高,以保证其在面对各种干扰和干扰时仍能正常运行和数据传输的稳定性;而对于手机和无线网络设备等轻型信息技术设备,抗扰度限值则可能会相对较低,因为它们一般在更加复杂和多变的使用环境中,需要更高的抗扰度。
需要特别指出的是,抗扰度限值不仅仅是对信息技术设备本身的要求,也是对用户和使用环境的要求。
这就意味着,用户在日常使用信息技术设备时,也要注意避免对设备产生过大的干扰和干扰,以保证设备的正常运行。
同时,使用环境的电磁辐射、无线电频干扰等干扰因素也需要在设计和规划中得到充分的考虑,以保障信息技术设备的正常运行。
三、抗扰度测量方法抗扰度的测量方法是用来判断信息技术设备的抗扰度是否达到了设定的限值。