大学物理A第9次作业解答共18页文档
- 格式:ppt
- 大小:2.56 MB
- 文档页数:18
第9章 真空中的静电场 习题解答9-1 精密的实验已表明,一个电子与一个质子的电量在实验误差为e 2110-±的范围内是相等的,而中子的电量在e 2110-±的范围内为零。
考虑这些误差综合的最坏情况,问一个氧原子(含8个电子、8个质子、8个中子)所带的最大可能净电荷是多少?若将原子看成质点,试比较两个氧原子间的电力和万有引力的大小,其净力是引力还是斥力?解:(1)一个氧原子所带的最大可能净电荷为 e q 21max 1024-⨯±= (2)两个氧原子间的电力和万有引力的大小之比为6222711221921122222max 0108.2)1067.116(1067.6)106.11024(1085.84141------⨯≈⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯=≤r r rm G r q f f G e ππε氧 其净力是引力。
9-2 如习题9-2图所示,在直角三角形ABC 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强。
解:根据点电荷场强大小的公式22014q qE kr r==πε, 点电荷q 1在C 点产生的场强大小为112014q E AC =πε 994-1221.810910 1.810(N C )(310)--⨯=⨯⨯=⨯⋅⨯ 方向向下。
点电荷q 2在C 点产生的场强大小为2220||14q E BC =πε994-1224.810910 2.710(N C )(410)--⨯=⨯⨯=⨯⋅⨯, 方向向右。
C 处的总场强大小为E =44-110 3.24510(N C )==⨯⋅,总场强与分场强E 2的夹角为12arctan33.69E E ==︒θ.9-3 半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电荷线密度分别为+λ和-λ,求圆心处的场强。
第9章 真空中的静电场 习题解答9-1 精密的实验已表明,一个电子与一个质子的电量在实验误差为e 2110-±的范围内是相等的,而中子的电量在e 2110-±的范围内为零。
考虑这些误差综合的最坏情况,问一个氧原子(含8个电子、8个质子、8个中子)所带的最大可能净电荷是多少?若将原子看成质点,试比较两个氧原子间的电力和万有引力的大小,其净力是引力还是斥力?解:(1)一个氧原子所带的最大可能净电荷为 e q 21max 1024-⨯±= (2)两个氧原子间的电力和万有引力的大小之比为6222711221921122222max 0108.2)1067.116(1067.6)106.11024(1085.84141------⨯≈⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯=≤r r rm G r q f f G e ππε氧 其净力是引力。
9-2 如习题9-2图所示,在直角三角形ABC 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强。
解:根据点电荷场强大小的公式22014q qE kr r==πε, 点电荷q 1在C 点产生的场强大小为112014q E AC =πε 994-1221.810910 1.810(N C )(310)--⨯=⨯⨯=⨯⋅⨯ 方向向下。
点电荷q 2在C 点产生的场强大小为2220||14q E BC =πε994-1224.810910 2.710(N C )(410)--⨯=⨯⨯=⨯⋅⨯, 方向向右。
C 处的总场强大小为E =44-110 3.24510(N C )==⨯⋅,总场强与分场强E 2的夹角为12arctan33.69E E ==︒θ.9-3 半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电荷线密度分别为+λ和-λ,求圆心处的场强。
第九章 真空中的静电场9–1 如图9-1所示,电量为+q 的三个点电荷,分别放在边长为a 的等边三角形ABC 的三个顶点上,为使每个点电荷受力为零,可在三角形中心处放另一点电荷Q ,则Q 的电量为 。
解:由对称性可知,只要某个顶点上的电荷受力为零即可。
C 处电荷所受合力为零,需使中心处的点电荷Q 对它的引力F 与A ,B 两个顶点处电荷的对它的斥力F 1,F 2三力平衡,如图9-2所示,即)21(F F F +-=因此12cos30F F ︒=即2202cos304πq aε=︒解得q Q 33=9-2 真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+λ 和-λ,点P 1和P 2与两带电线共面,其位置如图9-3所示,取向右为坐标x 正向,则1P E = ,2P E = 。
解:(1)P 1点场强为无限长均匀带电直线λ,-λ在该点产生的场强的矢量和,即λλ-+=E E E 1P其大小为i i i E dd d P 000ππ2π21ελελελ=+=方向沿x 轴正方向。
(2)同理可得i i i E dd d P 000π3π2)3(π22ελελελ-=-=方向沿x 轴负方向。
图9–2图9-3C B图9–19-3 一个点电荷+q 位于一边长为L 的立方体的中心,如图9-4所示,则通过立方体一面的电通量为 。
如果该电荷移到立方体的一个顶角上,那么通过立方体每一面的电通量是 。
解:(1)点电荷+q 位于立方体的中心,则通过立方体的每一面的电通量相等,所以通过每一面的通量为总通量的1/6,根据高斯定理1d in Sq ε⋅=∑⎰⎰E S ,其中S 为立方体的各面所形成的闭合高斯面,所以,通过任一面的电通量为0d 6Sqε⋅=⎰⎰E S 。
(2)当电荷+q 移至立方体的一个顶角上,与+q 相连的三个侧面ABCD 、ABFE 、BCHF 上各点的E 均平行于各自的平面,故通过这三个平面的电通量为零,为了求另三个面上的电通量,可以以+q 为中心,补作另外7个大小相同的立方体,形成边长为2L 且与原边平行的大立方体,如图9–5所示,这个大立方体的每一个面的电通电都相等,且均等于6εq ,对原立方体而言,每个面的面积为大立方体一个面的面积的1/4,则每个面的电通量也为大立方体一个面的电通量的1/4,即此时通过立方体每一面的电通量为0111d 4624Sqε⋅⋅=⎰⎰E S 。
第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。
求2t s =时,回路中感应电动势的大小和方向。
解:310)62(-⨯+-=Φ-=t dtd ε 当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。
已知导轨处于均匀磁场B ϖ中,B ϖ的方向与回路的法线成60°角,如图所示,B ϖ的大小为B =kt (k 为正常数)。
设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φρρ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。
3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。
求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。
解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0ρρ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。
设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υρ垂直离开导线。
第九章 电磁感应 电磁场理论练 习 一一.选择题1. 在一线圈回路中,规定满足如图1所示的旋转方向时,电动势ε,磁通量Φ为正值。
若磁铁沿箭头方向进入线圈,则有( B )(A ) d Φ /dt < 0, ε < 0 ; (B ) d Φ /dt > 0, ε < 0 ; (C ) d Φ /dt > 0, ε > 0 ; (D ) d Φ /dt < 0, ε > 0。
2. 一磁铁朝线圈运动,如图2所示,则线圈内的感应电流的方向(以螺线管内流向为准)以及电表两端电势U A 和U B 的高低为( C )(A ) I 由A 到B ,U A >U B ; (B ) I 由B 到A ,U A <U B ; (C ) I 由B 到A ,U A >U B ; (D ) I 由A 到B ,U A <U B 。
3. 一长直螺线管,单位长度匝数为n ,电流为I ,其中部放一面积为A ,总匝数为N ,电阻为R 的测量线圈,如图3所示,开始时螺线管与测量线圈的轴线平行,若将测量线圈翻转180°,则通过测量线圈某导线截面上的电量∆q 为( A )(A ) 2μ0nINA /R ; (B ) μ0nINA /R ; (C ) μ0NIA /R ; (D ) μ0nIA /R 。
4. 尺寸相同的铁环和铜环所包围的面积中,磁通量的变化率相同,则环中( A ) (A )感应电动势相同,感应电流不同; (B )感应电动势不同,感应电流相同; (C )感应电动势相同,感应电流相同; (D )感应电动势不同,感应电流不同。
二.填空题1.真空中一长度为0l 的长直密绕螺线管,单位长度的匝数为n ,半径为R ,其自感系数L可表示为0220l R n L πμ=。
2. 如图4所示,一光滑的金属导轨置于均匀磁场B 中,导线ab 长为l ,可在导轨上平行移动,速度为v ,则回路中的感应电动势ε=θsin Blv ,a 、b 两点的电势a U < b U (填<、=、>),回路中的电流I=R Blv /sin θ,电阻R 上消耗的功率P=R Blv /)sin (2θ。
第9章 静电场9-1 两小球处于如题9-1图所示的平衡位置时,每小球受到张力T ,重力mg 以及库仑力F 的作用,则有mg T =θcos 和F T =θsin ,∴θmgtg F =,由于θ很小,故lxmgmg mg x q F 2sin tg 41220=≈==θθπε ∴3/1022⎪⎪⎭⎫⎝⎛mg l q πε9-2 设q 1,q 2在C 点的场强分别为1E 和2E,则有14299m V 108.103.0108.1109--⋅⨯=⨯⨯⨯=方向沿AC 方向 方向沿CB 方向∴ C 点的合场强E的大小为: 设E 的方向与CB 的夹角为α,则有9-3 坐标如题9-3图所示,带电圆弧上取一电荷元l q d d λ=,它在圆心O 处的场强为201d 41d RlE λπε=,方向如题9-3图所示,由于对称性,上、下两带电圆弧中对应电荷元在圆心O 处产生的d E 1和d E 2在x 方向分量相 互抵消。
0=∴x E ,圆心O 处场强E 的y 分量为方向沿y 轴正向。
9-4 (1)如题9-4图(a),取与棒端相距d 1的P 点为坐标原点,x 轴向右为正。
设带电细棒电荷元x q d d λ=至P 点的距离x ,它在P 点的场强大小为 20d 41d x xE P λπε=方向沿x 轴正向各电荷元在P 点产生的场强方向相同,于是方向沿x 轴方向。
(2)坐标如题9-4图(b)所示,在带电细棒上取电荷元x q d d λ=与Q 点距离为r ,电荷元在Q 点所产生的场强20d 41d r xE λπε=,由于对称性,场d E 的x 方向分量相互抵消,所习题9-1图习题9-4图(a )习题9-3图习题9-2图以E x =0,场强d E 的y 分量为θλπεθsin d 41sin d d 20r xE E y ==因θθθπθθd csc d d ,d 2d ,csc d 22222=-=⎪⎭⎫⎝⎛-==x ctg tg x r ∴ θθπελθλπεd sin d 4sin d 41d 2020==r xE y其中 22222221)2/(d 2/c o s ,)2/(d 2/c o s L L L L +-=+=θθ代入上式得方向沿y 轴正向。
磁感应强度9-1 如图9-1所示,一条无穷长载流20 A 的直导线在P 点被折成1200的钝角,设d =2cm ,求P 点的磁感应强度。
解:P 点在OA 延长线上,所以OA 上的电流在P 的磁感应强度为零。
作OB 的垂线PQ ,︒=∠30OPQ ,OB 上电流在P 点的磁感应强度大小0021(sin sin )(sin sin30)4cos3024I I B d PQμμπββππ=-=+︒︒247m Wb/1073.1)211(2302.0420104--⨯=+⨯⨯⨯⨯=ππ,方向垂直于纸面向外。
9-2半径为R 的圆弧形导线与一直导线组成回路,回路中通有电流I ,如图9-2所示,求弧心O 点的磁感应强度(图中 ϕ 为已知量)。
解: 圆环电流在圆心处的磁场 RIB 20μ=∴圆弧ABC 在O 处的磁场 )22(201πϕπμ-=R I B 方向垂直纸面向里 又直线电流的磁场 021(sin sin )4IB aμθθπ=-,∴直线AB 在O 处的磁场 0002[sin sin()]2sin 4222224cos2I I I tg B a R R μμμϕϕϕϕϕπππ=--=⋅= 方向垂直纸面向里弧心O 处的磁场 012(22)42I B tg B B R μϕπϕπ=+=-+ 9-3 两根长直导线沿半径方向引到铁环上A 、B 两点,并与很远的电源相连。
如图9-3所示,求环中心的磁感应强度。
解:设铁环被A 、B 两点分成两圆弧的弧长分别为l 1、l 2,电阻分别为R 1、R 2,电流分别为I 1、I 2。
由图知 R 1与R 2并联,∴l l R R I I 121221== 即 l I l I 2211=∴I 1在O 点的磁感应强度Rl I R lR I B 21101101422πμπμ=⋅=方向垂直于纸面向外 ∴I 2在O 点的磁感应强度Rl I R l RI B 22202202422πμπμ=⋅=方向垂直于纸面向内图9-1即 B 1、B 2大小相等,方向相反。
⼤学物理第9章习题答案第4篇电磁学第9章静电场9.1 基本要求1掌握静电场的电场强度和电势的概念以及电场强度叠加原理和电势叠加原理。
掌握电势与电场强度的积分关系。
能计算⼀些简单问题中的电场强度和电势。
了解电场强度与电势的微分关系。
2理解静电场的规律:⾼斯定理和环路定理。
理解⽤⾼斯定理计算电场强度的条件和⽅法。
3了解导体的静电平衡条件,了解介质的极化现象及其微观解释。
了解各向同性介质中D和E之间的关系。
了解介质中的⾼斯定理。
4了解电容和电能密度的概念。
9.2基本概念1电场强度E :试验电荷0q 所受到的电场⼒F 与0q 之⽐,即0q =F E 2电位移D :电位移⽮量是描述电场性质的辅助量。
在各向同性介质中,它与场强成正⽐,即ε=D E 3电场强度通量e Φ:e Sd Φ=E S电位移通量:D Sd Φ=D S4电势能pa E :0pa aE q d ∞=?E l (设0p E ∞=)5电势a V :0pa a aE V d q ∞==? E l (设0V ∞=)电势差ab U :ab a b U V V =- 6场强与电势的关系(1)积分关系 a aV d ∞=7电容C:描述导体或导体组(电容器)容纳电荷能⼒的物理量。
孤⽴导体的电容:Q C V =;电容器的电容:Q C U= 8静电场的能量:静电场中所贮存的能量。
电容器所贮存的电能:22222CU Q QUW C ===电场能量密度e w :单位体积的电场中所贮存的能量,即22e E w ε=9.3基本规律1库仑定律:12204rq q rπε=F e 2叠加原理(1)电场强度叠加原理:在点电荷系产⽣的电场中任⼀点的场强等于每个点电荷单独存在时在该点产⽣的场强的⽮量和。
(2)电势叠加原理:在点电荷系产⽣的电场中,某点的电势等于每个点电荷单独存在时在该点产⽣的电势的代数和。
3⾼斯定理:真空中静电场内,通过任意闭合曲⾯的电场强度通量等于该曲⾯所包围的电量的代数和的1/ε 0倍。
第九章真空中的静电场一. 选择题1. 关于电场强度的定义,下列说法正确的是(A) 电场中某点场强的方向就是点电荷放在该点所受电场力的方向(B) 场强可由定义,其中为试验电荷,可正可负,为试验电荷所受电场力(C) 以点电荷为中心的球面上各点场强相同(D) 以上说法都不正确[ ]2. 有一边长为a的正方形平面,在其中垂线上距中心O点a/2处,有一电量为q的正点电荷,如图示,则通过该平面的电场强度通量为(A)(B)(C)(D) [ ]3. 点电荷Q被曲面S所包围,从无穷远处引入另一点电荷q至曲面外一点,则引入前后(A) 通过曲面S的电通量不变,曲面上各点场强不变(B) 通过曲面S的电通量变化,曲面上各点场强变化(C) 通过曲面S的电通量不变,曲面上各点场强变化(D) 通过曲面S的电通量变化,曲面上各点场强不变[ ]4. 已知一高斯面所包围的体积内电荷的代数和,则可以肯定(A) 高斯面上各点场强均为零(B) 穿过高斯面上每一面元的电场强度通量均为零(C) 穿过整个高斯面的电场强度通量为零(D) 以上说法都不正确[ ]5. 一具有球对称分布的电场E-r关系曲线如图所示,该电场是下列哪种带电体产生的(A) 半径为R均匀带电球面(B) 半径为R均匀带电球体(C) 半径为R非均匀带电球体(D) 无法判断[ ]6. 真空中有一半径为R的细圆环,均匀分布有正电荷q,若无穷远处电势为零,则环心处的场强和电势的值为(A) (B)(C) (D) [ ]7. 电荷分布在有限空间内,则任意两点A和B之间的电势差取决于(A) 从A移到B的试验电荷电量的大小(B) A和B处电场强度的大小和方向(C) 试验电荷由A移到B的路径(D) 由A移到B电场力对单位电荷所做的功[ ]8. 在点电荷+q的电场中,若取图中P点处为电势零点,则M点的电势为(A) (B)(C) (D) [ ]9. 真空中有一点电荷Q,在与它相距r的a点处有一试验电荷q,现使试验电荷q从a点沿半圆弧轨道运动到b点,如图示,则电场力对q做功为(A) (B)(C) (D) 0 [ ]二. 填空题10. 电量为的试验电荷放在电场中某点时,受到的向下的力,则该点的电场强度大小为______________,方向_______________.( 3N/C ;向上 )11. 如图,在点电荷q和–q电场中,做三个高斯面、、,则____________,____________,____________.(; 0 ; )12. 长为L的均匀带电细棒,电荷线密度为λ,求距细棒为x的一点的场强,当时,E =____________,当时,E =____________.(; )13. 图中曲线表示一具有球对称电场的电势分布U-r曲线,r表示离对称中心的距离,该电场是____________________________的电场.( 半径为R均匀带正电球面)14. 边长a为的正方形顶点处各放置电量为q的四个点电荷,无穷远处电势为零,则正方形中心处的电势为_______________________.( )15. 静电场中,场强沿任意闭合路径的线积分等于零,其数学表示式是________________,这表明静电场中的电场线特征是_________________________.( ;不可能闭合 )16. 场强不变的空间,电势_____________为常数,电势不变的空间,场强_____________为零.(填“一定”或“不一定”) ( 不一定;一定)三. 计算题17. 如图所示,真空中一长为L的均匀带电细杆,总电荷为q,试求在细杆延长线上距杆的一端距离为d的P点的电场强度.解:如解图,取杆左端为原点,x轴向右为正在带电细杆任意位置x处取一小段线元,其电量它在点P产生的电场强度方向沿x轴正向由于所有小段电荷元在P点产生的场强方向相同,所以方向沿x轴正向18. 用绝缘细线弯成半径R的半圆环,其上均匀地分布着电荷Q,试求环心处的电场强度.解:如解图,建立坐标系Oxy在环上任意位置(与x轴成角)取一段圆弧线元,其电量方向如图,在圆环对称处同样取一段圆弧线元,其在环心处场强与对称分布,它们在x轴上分量抵消为零,由此可知,总场强沿y轴负向,则方向沿y轴负向19. 如图所示,在点电荷q的电场中,取半径为R的圆形平面,设q在垂直于平面并通过圆心O的轴线上A处,A点与圆心O点的距离为d. 试计算通过此平面的电场强度通量.解:如题解图,过圆平面的电通量与通过以A为球心,r =AB为半径,以圆平面的周界为周界的球冠的电通量相同,该球冠面积为根据高斯定理,通过半径r=AB的整个球面的电通量为且均匀分布,所以通过球冠的电通量为20. 半径为R的无限长圆柱体上电荷均匀分布,圆柱体单位长度的电荷为λ. 用高斯定理求圆柱体内外距轴线距离为r处的电场强度.解:电场分布具有柱对称性,方向沿径向.作同轴圆柱形高斯面,高为l ,半径为r,如题解图.由高斯定理当r > R 时,当r < R 时,21. 两无限大均匀带电平板,其电荷面密度分别为σ(σ>0)及-σ,板间距为d,如图示.求:(1)Ⅰ、Ⅱ、Ⅲ三个区域的电场强度;(2)两板间的电势差.解:(1)无限大均匀带电平板电场为匀强场,方向垂直平面面密度为σ的平面两侧电场大小为面密度为-σ的平面两侧电场大小为则Ⅰ区Ⅱ区(方向向右)Ⅲ区(2)两板间电势差为22. 如图,电荷q均匀分布在长为2L的细杆上,求在杆中垂线上距杆为d的P点处的电势(设无限远处电势为零).解:如题解图,建立坐标系,在任意位置x处取线元d x,其电量其在P点电势为。
大学物理第9章答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN综合练习题一、填空题1、把一根导线弯成形状固定的平面曲线放在均匀磁场B 中,绕其一端α点以角速率ω逆时针方向旋转,转轴与B 平行,如图9-52所示。
则整个回路电动势为 ,ab 两端的电动势为 。
2、引起动生电动势的非静电力是力,其非静电场强度k E = 。
3、如图9-53所示,在通有电流为I 的长直导线近旁有一导线段ab 长l ,离长直导线距离d ,当它沿平行于长直导线的方向以速度υ平移时,导线中的i ε=____ 。
4、感应电场是由 产生的,它的电场线是 的,它对导体中的自由电荷的作用力大小为 。
5、如图9-54所示,导体AB 长为L ,处在磁感应强度为B 的匀强磁场中,磁感应线垂直纸面向里,AB 搁在支架上成为电路的一部分。
当电路接通时,导体AB 弹跳起来,此时导体AB 中的电流方向为 。
6、 半径为r 的小导线圆环置于半径为R 的大导线圆环的中心,二者在同一平面内。
且r R <<。
若在大导线圆环中通有电流0sin i I t ω=,其中ω,0I 为常量,t 为时间。
则任意时刻,小导线圆环中感应电动势的大小为 。
7、一个折成角形的金属导线aoc (ao oc l ==)位于xoy 平面中,磁感强度为B 的匀强磁场垂直于xoy 平面,如图9-55所示。
当aoc 以速度υ沿x 轴正方向运动时,导线a ,c 两点的电势差ac V = ;当aoc 以速度υ沿y 轴正方向运动时,导线上o ,a 两点的电势差oa V = 。
8、自感为0.25H 的线圈中,当电流在(1/16)s 内由2A 均匀减少到零时,线圈中自感电动势的大小为 。
图9-52图-539、在磁感强度为B 的磁场中,以速率υ垂直切割磁力线运动的—长度为L 的金属杆,相当于 。
它的电动势为 ,产生此电动势的非静电力是 。
二、选择题1、如图9-56所示,当闭合线圈ABCD 以速度υ平行长直导线运动时,判断下哪种说法是正确的: ( )A 、线圈磁通不变,线圈上电动势处处相等,故无电流;B 、AB 、CD 切割磁力线,线圈的动生电动势不为零,线圈中存在感应电流;C 、线圈中AB 、CD 存在动生电动势,但线圈总的动生电动势为零,故无感应电流;D 、以上说法都不对。
第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。
求2t s =时,回路中感应电动势的大小和方向。
解:310)62(-⨯+-=Φ-=t dtd ε 当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。
已知导轨处于均匀磁场B 中,B 的方向与回路的法线成60°角,如图所示,B 的大小为B =kt (k 为正常数)。
设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。
3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。
求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。
解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。
设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。
第九章 电磁场 填空题 (简单)1、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈,直导线中的电流由上向下,当线圈以垂直于导线的速度背离导线时,线圈中的感应电动势 ,当线圈平行导线向上运动时,线圈中的感应电动势 。
(填>0,<0,=0)(设顺时针方向的感应电动势为正)(<0, =0)2、磁场的高斯定律表明磁场是 ,因为磁场发生变化而引起电磁感应,是不同于回路变化时产生的 。
相同之处是 。
(无源场,动生电动势,磁通量发生改变)3、只要有运动电荷,其周围就有 产生;而法拉弟电磁感应定律表明,只要 发生变化,就有 产生。
(磁场,磁通量,感应电动势)4、一磁铁自上向下运动,穿过一闭合导体回路,(如图7),当磁铁运动到a 处和b 处时,回路中感应电流的方向分别是 和 。
(逆时针,顺时针)5、电磁感应就是由 生 的现象,其主要定律为 ,其中它的方向是由 定律来决定,即 。
(磁,电,电磁感应定律,楞次,见p320)6、当穿过某回路中的磁通量发生变化时,电路中 (填一定或不一定)产生感应电流;电路中 (填一定或不一定)产生感应电动势。
(不一定, 一定)7、在电磁感应中,感应电动势的大小与闭合回路的磁通量 成正比。
(对时间的变化率) 8、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈,直导线中的电流由上向下,当线圈平行导线向下运动时,线圈中的感应电动势 , 当线圈以垂直于导线的速度靠近导线时,线圈中的感应电动势 。
(填>0,<0,=0)(设顺时针方向的感应电动势为正)(=0,>0)9、将条形磁铁插入与冲击电流计串连的金属环中,有-5q=2.010c ⨯的电荷通过电流计,若连接电流计的电路总电阻25R =Ω,则穿过环的磁通量的变化=∆Φ Wb 。
(4510q R --⨯=-⨯)10、电磁波是变化的 和变化的 在空间以一定的速度传播而形成的。