最新大学物理第8章试卷答案
- 格式:doc
- 大小:314.00 KB
- 文档页数:8
第8章电磁感应作业题答案一、选择题1、圆铜盘水平放置在均匀磁场中,B得方向垂直盘面向上,当铜盘绕通过中心垂直于盘面得轴沿图示方向转动时,(A) 铜盘上有感应电流产生,沿着铜盘转动得相反方向流动。
(B) 铜盘上有感应电流产生,沿着铜盘转动得方向流动。
(C) 铜盘上有感应电流产生,铜盘中心处电势最高。
(D)铜盘上有感应电流产生,铜盘边缘处电势最高。
答案(D)2.在尺寸相同得铁环与铜环所包围得面积中穿过相同变化率得磁通量,则两环中A.感应电动势相同,感应电流相同;B.感应电动势不同,感应电流不同;ﻫC.感应电动势相同,感应电流不同;ﻫD.感应电动势不同,感应电流相同。
答案(C)ﻫ3. 两根无限长得平行直导线有相等得电流,2.但电流得流向相反如右图,而电流得变化率均大于零,有一矩形线圈与两导线共面,则ﻫ A.线圈中无感应电流;B.线圈中感应电流为逆时针方向;C.线圈中感应电流为顺时针方向;D.线圈中感应电流不确定。
答案: B(解:两直导线在矩形线圈处产生得磁场方向均垂直向里,且随时间增强,由楞次定律可知线圈中感应电流为逆时针方向。
)4.如图所示,在长直载流导线下方有导体细棒,棒与直导线垂直且共面。
(a)、(b)、(c)处有三个光滑细金属框。
今使以速度向右滑动。
设(a)、(b)、(c)、(d)四种情况下在细棒中得感应电动势分别为ℇa、ℇb、ℇc、ℇd,则ﻫﻫA.ℇa=ℇb =ℇc <ℇdB.ℇa =ℇb=ℇc>ℇdC.ℇa=ℇb=ℇc =ℇd D.ℇa>ℇb <ℇc<ℇd答案:C5.一矩形线圈,它得一半置于稳定均匀磁场中,另一半位于磁场外,如右图所示,磁感应强度得方向与纸面垂直向里。
欲使线圈中感应电流为顺时针方向则ﻫA.线圈应沿轴正向平动;ﻫB.线圈应沿轴正向平动;C.线圈应沿轴负向平动;D.线圈应沿轴负向平动答案(A).*6.两个圆线圈、相互垂直放置,如图所示。
当通过两线圈中得电流、均发生变化时,那么ﻫ A.线圈中产生自感电流,线圈中产生互感电流;B.线圈中产生自感电流,ﻫ线圈中产生互感电流;ﻫC.两线圈中同时产生自感电流与互感电流;D.两线圈中只有自感电流,不产生互感电流。
《大学物理》第8章气体动理论练习题及答案练习1一、选择题1. 在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态。
A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 3p1;B. 4p1;C. 5p1;D. 6p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B. pVkT⁄; C. pV RT⁄; D. pV mT⁄。
3. 一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度( )A. 将升高;B. 将降低;C. 不变;D. 升高还是降低,不能确定。
二、填空题1. 解释下列分子动理论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:。
2. 在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) 。
练习2一、选择题1. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是 ( )A. p 1>p 2;B. p 1<p 2;C. p 1=p 2;D. 不能确定。
2. 两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数为n ,单位体积内的气体分子的总平动动能为E k V ⁄,单位体积内的气体质量为ρ,分别有如下关系 ( )A. n 不同,E k V ⁄不同,ρ不同;B. n 不同,E k V ⁄不同,ρ相同;C. n 相同,E k V ⁄相同,ρ不同;D. n 相同,E k V ⁄相同,ρ相同。
3. 有容积不同的A 、B 两个容器,A 中装有刚体单原子分子理想气体,B 中装有刚体双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能E A 和E B 的关系( )A. E A <E B ;B. E A >E B ;C. E A =E B ;D.不能确定。
最新大学物理-(第4版)主编赵近芳-第8章课后答案8.1 选择题(1) 关于可逆过程和不可逆过程有以下几种说法:①可逆过程一定是准静态过程.②准静态过程一定是可逆过程.③不可逆过程发生后一定找不到另一过程使系统和外界同时复原.④非静态过程一定是不可逆过程.以上说法,正确的是:[](A) ①、②、③、④. (B) ①、②、③.(C) ②、③、④. (D) ①、③、④.[答案:D. 准静态过程不一定是可逆过程.因准静态过程中可能存在耗散效应,如摩擦、粘滞性、电阻等。
](2) 热力学第一定律表明:[](A) 系统对外做的功不可能大于系统从外界吸收的热量.(B) 系统内能的增量等于系统从外界吸收的热量.(C) 不可能存在这样的循环过程,在此循环过程中,外界对系统做的功不等于系统传给外界的热量.(D) 热机的效率不可能等于1.[答案:C。
热力学第一定律描述个热力学过程中的能量守恒定性质。
](3) 如题8.1图所示,bca为理想气体绝热过程,b1a和b2a是任意过程,则上述两过程中气体做功与吸收热量的情况是: [](A) b1a过程放热,做负功;b2a过程放热,做负功.(B) b1a过程吸热,做负功;b2a过程放热,做负功.(C) b1a过程吸热,做正功;b2a过程吸热,做负功.(D) b1a过程放热,做正功;b2a过程吸热,做正功.题8.1图[答案:B。
b1acb构成正循环,ΔE = 0,A净> 0,Q = Q b1a+ Q acb= A净>0,但Q acb= 0,∴Q b1a >0 吸热; b1a压缩,做负功b 2a cb 构成逆循环,ΔE = 0,A 净 < 0,Q = Q b 2a + Q acb = A 净 <0,但 Q acb = 0,∴ Q b 2a <0 放热 ; b 2a 压缩,做负功](4) 根据热力学第二定律判断下列哪种说法是正确的. [ ](A) 功可以全部变为热,但热不能全部变为功.(B) 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体.(C) 气体能够自由膨胀,但不能自动收缩.(D) 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有规则运动的能量.[答案:C. 热力学第二定律描述自然热力学过程进行的条件和方向性。
第8章变化的电磁场一、选择题1.若用条形磁铁竖直插入木质圆坏,则在坏中是否产生感应电流和感应电动势的判断](A)产生感应电动势,也产生感应电流(B)产生感应电动势,不产生感应电流(C)不产生感应电动势,也不产生感应电流(D)不产生感应电动势,产生感应电流T 8-1-1 图2.关于电磁感应,下列说法中正确的是[](A)变化着的电场所产生的磁场一定随吋间而变化(B)变化着的磁场所产生的电场一定随时间而变化(C)有电流就有磁场,没有电流就一定没有磁场(D)变化着的电场所产牛:的磁场不一定随时间而变化3.在有磁场变化着的空间内,如果没有导体存在,则该空间[](A)既无感应电场又无感应电流(B)既无感应电场又无感应电动势(C)有感应电场和感应电动势(D)有感应电场无感应电动势4.在有磁场变化着的空间里没有实体物质,则此空间屮没有[](A)电场(B)电力(C)感生电动势(D)感生电流5.两根相同的磁铁分别用相同的速度同时插进两个尺寸完全相同的木环和铜环内,在同一时刻,通过两环包闱面积的磁通量[](A)相同(B)不相同,铜环的磁通量大于木环的磁通量(C)不相同,木环的磁通量大于铜环的磁通量(D)因为木环内无磁通量,不好进行比佼_6.半径为G的圆线圈置于磁感应强度为一B的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为几当把线圈转动使其法向与〃的夹角曰=6(?时,线圈中通过的电量与线圈面积及转动的时间的关系是](A)与线圈面积成反比,与时间无关(B)与线圈面积成反比,与时间成正比(C)与线圈面积成正比,与时间无关(D)与线圈面积成正比,与时间成正比7.一个半径为r的圆线圈置于均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R・当线圈转过30。
时,以下各量中,与线圈转动快慢无关的量是[](A)线圈中的感应电动势(B)线圈中的感应电流(C)通过线圈的感应电量(D)线圈回路上的感应电场& 一闭合圆形线圈放在均匀磁场中,线圈平面的法线与磁场成30。
第8章 磁场8-10一均匀密绕直螺线管的半径为 ,单位长度上有 匝线圈,每匝线圈中的电流为 ,用毕奥—萨伐尔定律求此螺线管轴线上的磁场。
分析:由于线圈密绕,因此可以近似地把螺线管看成一系列圆电流的紧密排列,且每一匝圆电流在轴线上任一点的磁场均沿轴向。
解: 取通过螺线管的轴线并与电流形成右旋的方向(即磁场的方向)为x 轴正向,如习题8-10图解(a )所示。
在螺线管上任取一段微元dx ,则通过它的电流为dI nIdx =,把它看成一个圆线圈,它在轴线上O 点产生的磁感应强度dB 为2022322()R nIdxdB R x μ=+由叠加原理可得,整个螺线管在O 点产生的磁感应强度B 的大小为212022322()x Lx R nIdxB dB R x μ==+⎰⎰0212212221221[]2()()nIx x R x R x μ=-++ 由图可知12122212221212cos os ()()x x R x R x ββ==++ c ,代入上式并整理可得 021(cos cos )2nIB μββ=-式中12ββ和分别为x 轴正向与从O 点引向螺线管两端的矢径r 之间的夹角。
讨论:(1)若螺线管的长度远远大于其直径,即螺线管可视为无限长时,20β=,1βπ=,则有nI B 0μ=上式说明,无限长密绕长直螺线管内部轴线上各点磁感应强度为常矢量。
理论和实验均证明:在整个无限长螺线管内部空间里,上述结论也适用。
即无限长螺线管内部空间里的磁场为均匀磁场,其磁感应强度B 的大小为0nI μ,方向与轴线平行;(2)若点O位于半无限长载流螺线管一端,即12πβ=,20β=或12πβ=,2βπ=时,无论哪一种情况均有nI B 021μ=------(8-19) 可见半无限长螺线管端面中心轴线上磁感应强度的大小为管内的一半;综上所述,密绕长直螺线管轴线上各处磁感应强度分布见习题8-10图解(b )所示,从图中也可看出,长直螺线管内中部的磁场可以看成是均匀的。
V 第八章 热力学基础8-1如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是:(B ) (A) b1a 过程放热,作负功;b2a 过程放热,作负功(B) b1a 过程吸热,作负功;b2a 过程放热,作负功(C) b1a 过程吸热,作正功;b2a 过程吸热,作负功 (D) b1a 过程放热,作正功;b2a 过程吸热,作正功8-2 如图,一定量的理想气体由平衡态A 变到平衡态B ,且它们的压强相等,则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( B ) (A)对外作正功 (B)内能增加 (C)从外界吸热 (D)向外界放热8-3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强温度都相同,现将3J 热量传给氦气,使之升高到一定温度,若使氢气也升高同样温度,则应向氢气传递热量为( C ) (A) 6 J (B) 3 J (C) 5J (D) 10 J 8-4 有人想象了如题图四个理想气体的循环过程,则在理论上可以实现的为( )(A) (B)(C) (D)8-5一台工作于温度分别为327o C和27o C的高温热源和低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功( B )(A) 2 000 J (B) 1 000 J(C) 4 000 J (D) 500 J8-6 根据热力学第二定律( A )(A) 自然界中的一切自发过程都是不可逆的(B) 不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(D)任何过程总是沿着熵增加的方向进行8-7 一定质量的气体,在被压缩的过程中外界对气体做功300J,但这一过程中气体的内能减少了300J,问气体在此过程中是吸热还是放热?吸收或放出的热量是多少?解:由于外界对气体做功,所以:300J=W-由于气体的内能减少,所以:J∆E=300-根据热力学第一定律,得:J∆+=W=EQ300-600300=--又由公式WQ e 2=得:J 421005.1⨯==eW Q 8-12理想卡诺热机在温度为27C 0和127C 0的两个热源之间工作,若在正循环中,该机从高温热源吸收1200J 的热量,则将向低温热源放出多少热量?对外做了多少功?解:由1121Q W T T =-=η得:J 3001200400300400)1(121=⨯-=-=T T Q WJ 90012=-=W Q Q8-13一卡诺热机在1000K 和270C 的两热源之间工作。
第八章 电磁感应一 选择题1、 (130101104)一圆形线圈的一半放在分布于方形区域内的匀强磁场B中,另一半位于磁场之外,如图13-2所示。
欲使圆线圈中产生逆时针方向的感应电流,应使[ ](A )线圈向右平移 (B )线圈向上平移 (C )线圈向左平移 (D )磁场强度减弱2、(130201202) 如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc回路中的感应电动势ε和a 、c 两点间的电势差U a – U c 为 (A)ε=0,U a – U c =221l B ω.(B) ε=0,U a – U c =221l B ω-.(C) ε=2l B ω,U a – U c =221l B ω.(D) ε=2l B ω,U a – U c =221l B ω-. [ ]3、(130201204)如图13-4所示,在圆柱形空间内有一磁感应强度为B的均匀磁场,其变化率为dt dB 。
若在图中a 、b 两点间放置一直导线ab 和弯曲导线ab ,下列说法中正确的是[ ] (A )电动势只在ab 中产生 (B )电动势只在ab 中产生(C )ab 和ab 中都产生电动势,且大小相等(D )ab 中的电动势小于ab 中的电动势.4、(130201205)均匀磁场被局限在圆柱形空间内,且随时间变化。
图13-22所示为圆柱形截面,M 、N 分别为圆柱形空间内、外两点,M E 、N E 分别表示这两点的有旋电场强度大小,则 [ ](A )0=M E , 0=N E (B )0=M E ,0≠N E (C )0≠M E ,0≠N E (D ) 0≠M E ,0=N E5、 (130301203)已知圆环式螺线管的自感系数为L ,若将该螺线管锯成两个半环式的螺线管,则两个半环螺线管的自感系数[ ](A )都等于2/L (B )一个大于2/L ,另一个小于2/L (C )都大于2/L (D )都小于2/LB⨯⨯⨯⨯⨯⨯⨯⨯⨯图13-2⨯⨯⨯Bb ⨯⨯⨯⨯a 图13-4 N⨯⨯B⨯⨯M 图13-22Ba bclω6、 (130401101)用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m =(A) 只适用于无限长密绕螺线管. (B) 只适用于单匝圆线圈. (C) 只适用于一个匝数很多,且密绕的螺绕环.(D) 适用于自感系数L一定的任意线圈. [ ]7、(130401102)真空中一根无限长直导线上通有电流强度为I 的电流,则距导线垂直距离为a 的空间某点处的磁能密度为[ ] (A )200)2(21a I πμμ (B )200)2(21a I πμμ (C )20)2(21a I πμ (D )200)2(21aI μμ 8、(130401201) 有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为μ1和μ2.设r 1∶r 2=1∶2,μ1∶μ2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为: (A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1. (B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1. (C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2.(D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. [ ] 9、(130401301)两根无限长的平行导线,其间距离为d ,与电源组成回路如图13-21所示,已知导线上的电流为I ,两根导线横截面半径均为0r ,设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间总磁能0W 为[ ](A )221LI (B )rdr r d I r I LI ππμπμ2])(22[2120002+-+⎰∞(C )∞ (D )rdI LI ln 22102πμ+10、(130501101)对位移电流,有下述四种说法,请指出哪一种说法正确.(A) 位移电流是指变化电场. (B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理. [ ]11、 如图,平板电容器(忽略边缘效应)充电时,沿环路L 1的磁场强度H 的环流与沿环路L 2的磁场强度H的环流两者,必有:(A) >'⎰⋅1d L l H ⎰⋅'2d L l H . (B) ='⎰⋅1d L l H ⎰⋅'2d L l H.(C) <'⎰⋅1d L l H⎰⋅'2d L l H. (D)0d 1='⎰⋅L l H. [ ]二 填空题1、如图所示,在一长直导线L 中通有电流I ,ABCD 为一矩形线圈,它与L 皆在纸面内,且AB 边与L 平行. (1) 矩形线圈在纸面内向右移动时,线圈中感应电动势方 向为________________________________.2r d图13-21I LADC BHL 1L 2(2) 矩形线圈绕AD 边旋转,当BC 边已离开纸面正向外运 动时,线圈中感应动势的方向为_________________________.2、(130102201)半径为r 的小绝缘圆环,置于半径为R 的大导线圆环中心,二者在同一平面内,且r <<R .在大导线环中通有正弦电流(取逆时针方向为正)I =I 0sin ωt ,其中ω、I 0为常数,t 为时间,则任一时刻小线环中感应电动势(取逆时针方向为正)为_________________________________.3、(130202201)长为l 的金属直导线在垂直于均匀磁场的平面内以角速度ω转动.如果转轴在导线上的位置是在____________,整个导线上的电动势为最大,其值为____________;如果转轴位置是在____________,整个导线上的电动势为最小,其值为____________.4、(130202203)如图13-23所示,半径为R 的圆弧abc 在磁感应强度为B的均匀磁场中沿x轴向右移动,已知︒=∠=∠150cox aox ,若移动速度为v,则在圆弧abc 中的感应电动势为 。
大学物理第八章答案8-1 解:取固定坐标xOy ,坐标原点O 在水面上(图题所示)设货轮静止不动时,货轮上的A 点恰在水面上,则浮力为S ρga .这时 ga s Mg ρ= 往下沉一点时,合力 )(y a g s Mg F +-=ρ gy s ρ-=. 又 22d d tyMMa F == 故0d d 22=+gy s ty M ρ022=+y M gs dtdy ρ 故作简谐振动M g s ρω=2)(35.68.910102101022223334s g s M T =⨯⨯⨯⨯⨯===πρπωπ8-2 解:取物体A 为研究对象,建立坐标Ox 轴沿斜面向下,原点取在平衡位置处,即在初始位置斜下方距离l 0处,此时:)(1.0sin 0m kmg l ==θ(1) (1) A 物体共受三力;重mg, 支持力N, 张力T.不计滑轮质量时,有 T =kx列出A 在任一位置x 处的牛顿方程式220d d )(sin sin txm x l k mg T mg =+-=-θθ将(1)式代入上式,整理后得0d d 22=+x m ktx 习题8-1图故物体A 的运动是简谐振动,且)rad/s (7==mkω 由初始条件,000⎩⎨⎧=-=v l x 求得,1.00⎩⎨⎧===πϕml A 故物体A 的运动方程为x =0.1cos(7t+π)m(2) 当考虑滑轮质量时,两段绳子中张力数值不等,如图所示,分别为T 1、T 2,则对A 列出任一位置x 处的牛顿方程式为:221d d sin txm T mg =-θ (2)对滑轮列出转动方程为:22221d d 2121t x Mr r a Mr J r T r T =⎪⎭⎫ ⎝⎛==-β (3)式中,T 2=k (l 0+x ) (4)由式(3)、(4)知2201d d 21)(txM x l k T ++=代入(2)式知 22021)(sin dtxd m M x l k mg ⎪⎭⎫ ⎝⎛+=+-θ又由(1)式知0sin kl mg =θ故0d d )21(22=++kx t xm M即0)2(d d 22=++x m M ktxm M k +=22ω可见,物体A 仍作简谐振动,此时圆频率为:rad/s)(7.52=+=m M k ω由于初始条件:0,000=-=v l x可知,A 、ϕ不变,故物体A 的运动方程为:m t x )7.5cos(1.0π+=习题8-2图由以上可知:弹簧在斜面上的运动,仍为简谐振动,但平衡位置发生了变化,滑轮的质量改变了系统的振动频率.8-3 解:简谐振动的振动表达式:)cos(ϕω+=t A x由题图可知,m 1042-⨯=A ,当t=0时,将m 1022-⨯=x 代入简谐振动表达式,得:21cos =ϕ 由)sin(ϕωωυ+-=t A ,当t=0时,ϕωυsin A -= 由图可知,υ>0,即0sin <ϕ,故由21cos =ϕ,取3πϕ-= 又因:t=1s 时,,1022m x -⨯=将其入代简谐振动表达式,得213cos ,3cos 42=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=πωπω由t=1s 时,⎪⎭⎫⎝⎛--=3sin πωωυA <0知,03sin >⎪⎭⎫ ⎝⎛-πω,取33ππω=-,即 s 32πω= 质点作简谐振动的振动表达式为m t x ⎪⎭⎫ ⎝⎛-⨯=-332cos 1042ππ8-4 解:以该球的球心为原点,假设微粒在某一任意时刻位于遂道中的位矢为r,由高斯定理可知304R rQ E πε=,则微粒在此处受电场力为:r R Qq F 304πε-=式中,负号表明电场F的方向与r的正方向相反,指向球心.由上式及牛顿定律,得:04d d 04d d 043022302230=+⇒=+=+r mRQqt r r R Qq t r mr RQqF πεπεπε令 mR Qq3024πεω=则 0d d 222=+r trω 习题8-3图故微粒作简谐振动,平衡点在球心处.由ωπ2=T知: QqmR T 3042πεπ=8-5 解:(1)取弹簧原长所在位置为O '点.当弹簧挂上物体A 时,处于静止位置P 点,有:P O k Mg '=将A 与B 粘合后,挂在弹簧下端,静止平衡所在位置O 点,取O 点为原坐标原点如图题8-5所示,则有:g m M O O k )(+='设当B 与A 粘在一起后,在其运动过程的任一位置,弹簧形变量x O O +',则A 、B 系统所受合力为:kx x O O k g m M F -=+'-+=)()(即 0d d )(22=++kx txm M可见A 与B 作简谐和振动. (2) 由上式知,rad/s)(10=+=mM kω以B 与A 相碰点为计时起点,此时A 与B 在P 点,由图题8-5可知kmgk Mg g k m M P O O O OP =-+='-'= 则t=0时,m 02.00-=-=-=kmgOP x (负号表P 点在O 点上方) 又B 与A 为非弹性碰撞,碰撞前B 的速度为:m/s 2220101=-='gh υυ 碰撞后,A 、B 的共同速度为:m/s 4.0010=+'=mM m υυ (方向向上)则t=0时,⎩⎨⎧=-=s m mx /4.002.000υ可求得:)m (0447.02220=+=ωυx Aπωυϕ65.0arctan 00=⎪⎪⎭⎫⎝⎛-=x 可知A 与B 振动系统的振动表达式为:m t x )65.010cos(0447.0π+=习题8.5图(3) 弹簧所受的最大拉力,应是弹簧最大形变时的弹力,最大形变为:m A g kmM A O O x 1447.0=++=+'=∆则最大拉力 N 4.72max ==x k F ∆ 5-6 解:(1) 已知A=0.24m, 22ππω==T ,如选x 轴向下为正方向. 已知初始条件0m,12.000<=υx 即 3,21cos ,cos 24.012.0πϕϕϕ±=== 而 ,0sin ,0sin 0><-=ϕϕωυA 取3πϕ=,故:m t x ⎪⎭⎫ ⎝⎛+=32cos 24.0ππ(2) 如图题所示坐标中,在平衡位置上方0.12m, 即x=-0.12m 处,有32322132cos πππππ±=+-=⎪⎭⎫ ⎝⎛+t t因为所求时间为最短时间,故物体从初始位置向上运动,0<υ.故0)32sin(>+ππt则取3232πππ=+t 可得:s t 32min =(3) 物体在平衡位置上方0.12m 处所受合外力0.3N x m =-=ωF ,指向平衡位置.8-7 解:子弹射入木块为完全非弹性碰撞,设u 为子弹射入木块后二者共同速度,由动量定理可知:m/s)(0.2=+=υmM mu不计摩擦,弹簧压缩过程中系统机械能守恒,即:20221)(21kx u m M =+ (x 0为弹簧最大形变量) m u kmM x 20100.5-⨯=+=由此简谐振动的振幅 20100.5-⨯==x A 系统圆频率rad/s)(40=+=mM kω习题8-6图若取物体静止时的位置O (平衡位置)为坐标原点,Ox 轴水平向右为正,则初始条件为: t =0时,x =0,0m/s 0.20>==u υ由,sin ,cos 00ϕωυϕA A x -==得:2πϕ-=则木块与子弹二者作简谐振动,其振动表达式为:m t x )240cos(100.52π-⨯=-8-8 解:当物体m 1向右移动x 时,左方弹簧伸长x ,右方弹簧缩短x ,但它们物体的作用方向是相同的,均与物体的位移方向相反,即)(21x k x k F +-=令F =-kx ,有:N/m 421=+=k k k 由 kmT π2= 得)kg (1.0442212211≈==ππkT k T m则粘上油泥块后,新的振动系统质量为:kg 20.021=+m m新的周期 )s (4.12212=+=km m T π在平衡位置时,m 2与m 1发生完全非弹性碰撞. 碰撞前,m 1的速度m/s 10.0111πωυ==A 设碰撞后,m 1和m 2共同速度为υ. 根据动量守恒定律,υυ)(2111m m m +=则m/s 05.0)(2111πυυ=+=m m m新的振幅 m)(035.0222===πυωυTA 8-9 解:(1)由振动方程)25sin(60.0π-=t x 知,5(rad/s)m,6.0==ωA故振动周期: )s (26.1)s (256.1522≈===πωπT (2) t=0时,由振动方程得:)25cos(0.3|m60.0000=-==-==πυt dt dx x t (3) 由旋转矢量法知,此时的位相:3πϕ-=速度 m/s)(6.2m/s )23(560.0sin =-⨯⨯-=-=ϕωυA 加速度 )m/s (5.7m/s 21560.0cos 2222-=⨯⨯-=-=ϕωA a 所受力 N)(5.1N )5.7(2.0-=-⨯==ma F(4)设质点在x 处的动能与势能相等,由于简谐振动能量守恒,即:221kA E E E p k ==+ 故有: )21(21212kA E E E p k ===即 22212121kA kx ⨯=可得: m)(42.022±=±=A x 8-10 解:(1)砝码运动到最高点时,加速度最大,方向向下,由牛顿第二定律,有:N mg ma -=maxN 是平板对砝码的支持力.故N)(74.1)4()()(22max =-=-=-=vA g m A g m a g m N πω砝码对板的正压力与N 大小相等,方向相反.砝码运动到最低点时,加速度也是最大,但方向向上,由牛顿第二定律,有:mg N ma -'=max故 N)(1.8)4()(22max =+=+='A v g m a g m N π 砝码对板的正压力与板对砝码的支持力N '大小相等,方向相反. (2)当N=0时,砝码开始脱离平板,故此时的振幅应满足条件:m)(062.040)4(22max max 2===-=v g A vA g m N ππ(3) 由22max 4vg A π=,可知,2max v A 与成反比,当v v 2='时,m 0155.041max max=='A A 8-11 解:(1)设振子过平衡位置时的速度为υ,由机械能守恒,有:222121υm kA = A mk=υ 由水平方向动量定理: ⇒='+υm u m m )(υm m mu '+=此后,系统振幅为A ',由机械能守恒,有:22)(2121u m m A k '+=' 得: A m m mA '+='有: km m T '+='π2 (2)碰撞前后系统总能量变化为:)21()1(2121212222kA m m m m m m kA kA A k E '+'-=-'+=-'=∆ 式中,负号表示能量损耗,这是泥团与物体的非弹性碰撞所致.(3)当m 达到振幅A 时,m '竖直落在m 上,碰撞前后系统在水平方向的动量均为零,因而系统的振幅仍为A ,周期为km m '+π2,系统的振动总能量不变,为221kA (非弹性碰撞损耗的能量为源于碰撞前m '的动能). 物体系统过平衡位置时的速度υ'由:22)(2121υ''+=m m kA 得:A m m k'+±='υ8-12 解:(1)由放置矢量法可知,振子从2A 运动到2A -的位置处,角相位的最小变化为:3πϕ∆=则圆频率 rad/s 3π∆ϕ∆ω==t 周期 s T 62==ωπ由初始状态,在图示坐标中,初始条件为:m)(1.00m1.000=⇒⎩⎨⎧=-=A x υ则振幅 m 1.022020=+=ωυx A习题8-12图(2)因为E E p 41=又 2221,21kA E kx E p == 故 )21(412122kA kx =得: m)(05.0±=x 根据题意,振子在平衡位置的下方,取x =-0.05m.根据振动系统的能量守恒定律:222212121kA m kx =+υ 故 )s m (091.0122-⋅±=-±=x A ωυ根据题意,取m/s 091.0-=υ 再由 )sin()cos(ϕωωυϕω+-=+=t A t t A x)cos(d d 2ϕωω+-==t A tva x 2ω-=得: )m/s (055.02=a(3)t=0时,(J)108.681)21(41413222-⨯====mA kA E E p ω (J)102183)21(43433222-⨯====mA kA E E k ω(J)108.273-⨯=+=p k E E E (4)由简谐振动的振动表达式)cos(ϕω+=t A x 当t=0时,0m/s 091.0m,05.000<-=-=υx ,可得:πϕ32= 又 3,10.0πω==m A故 m t x )323cos(1.0ππ+= 8-13 解:(1)据题意,两质点振动方程分别为:mt x mt x Q P )3cos(1000.2)3cos(1000.522ππππ-⨯=+⨯=--(2)P 、Q 两质点的速度及加速度表达分别为:)m/s )(3sin(1000.52ππωυ+⨯⨯-==-t dt dx P P )m/s )(3sin(1000.22ππωυ-⨯⨯-==-t dt dx QQ )m/s )(3cos(1000.5222ππωυ+⨯⨯-==-t dt d a P P )m/s )(3cos(1000.2222ππωυ-⨯⨯-==-t dtd a Q Q当t=1s 时,有:)(m/s 1087.9/32cos 1000.2)(m/s 1068.24/34cos 1000.5(m/s)1044.5/32sin 1000.2(m/s)1060.13/34sin 1000.5(m)1000.132cos 1000.2)(m 105.234cos1000.5222222222222222222------------⨯=⨯⨯-=⨯=⨯⨯-=⨯-=⨯⨯-=⨯=⨯⨯-=⨯-=⨯=⨯=⨯=s m a s m a s m s m m x m x Q P Q P Q P ππππππυππυππ(3)由相位差32)3(3)()(πππϕϕϕωϕωϕ∆=--=-=+-+=Q P Q P t t 可见,P 点的相比Q 点的相位超前32π. 8-14 解:(1)由题意得初始条件:⎪⎩⎪⎨⎧<=02100υA x 可得:3πϕ=(由旋转矢量法可证出)在平衡位置的动能就是质点的总能量)J (1008.3212152222-⨯====⇒=A m kA E m k m kωωω可求得:s rad m E A /221πω==则振动表达式为:m t x )32cos(1000.52ππ+⨯=-(2) 初始位置势能)32(cos 21212222ππω+==t A m kx E P 当t=0时,3cos 21222πωA m E P =J J 6222221071.73cos )1000.5()2(1000.121---⨯=⨯⨯⨯⨯⨯=ππ 8-15 解:(1)由初始条件:⎩⎨⎧<⨯=-0102.1010υm x 可知,3πϕ=且 22ππω==v则振动表达式为:m t x )32cos(24.0ππ+=当t=0.5s 时,m m x 21000.6)3212cos(24.0-⨯-=+⨯=ππ(2) t=0.5s 时,小球所受力:(N)1048.1)(32-⨯=-==x m ma f ω因t=0.5s 时,小球的位置在m x 21000.6-⨯-=处,即小球在x 轴负方向,而f 的方向是沿x 轴正方向,总是指向平衡位置.(3) 从初始位置m x 10102.1-⨯=到m x 1102.1-⨯-=所需最短时间设为t ,由旋转矢量法知,πϕπϕ32,3,0±=±=处处x x )s (3223=⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧==t t πωπω 习题8-15图(4) 因为 )32sin(24.02)sin(πππϕωωυ+⨯-=+-=t t A )32cos(24.04)cos(22πππϕωω+⨯-=+-=t t A a 在s t m x 32102.11=⨯-=-处 )32cos(24.04)3322cos(24.04/1026.3/)3322sin(24.022212ππππππαπππυ+⨯-=+⨯⨯-=⨯-=+⨯⨯-=-t s m s m(5) t=4s 时, 22)]32sin([2121ππωυ+-==t A m m E k (J)1033.5J)342(sin 24.0)2(01.0214222-⨯=+⨯⨯⨯⨯=πππ)32(cos 21212222ππω+==t A m kx E P (J)1077.1J)342(cos 24.0)2(01.0214222-⨯=+⨯⨯⨯⨯⨯=πππ(J)107.10J 101.77J 1033.5-4-44⨯=⨯+⨯=+=-P k E E E 总 8-16 解:设两质点的振动表达式分别为:)cos()cos(2211ϕωϕω+=+=t A x t A x由图题可知,一质点在21Ax =处时对应的相位为: 32/arccos 1πϕω==+A A t同理:另一质点在相遇处时,对应的相位为:352/arccos2πϕω==+A A t 故相位差)()(12ϕωϕωϕ∆+-+=t t习题8-16图πππϕϕ3433512=-=-= 若21υυ与的方向与上述情况相反,故用同样的方法,可得:πππϕϕϕ∆32)3(312=--=-= 8-17 解:由图题8-17(图在课本上P 200)所示曲线可以看出,两个简谐振动的振幅相同,即m 05.021==A A ,周期均匀s 1.0=T ,因而圆频率为:ππω202==T由x -t 曲线可知,简谐振动1在t=0时,,010=x 且010>υ,故可求得振动1的初位相πϕ2310=.同样,简谐振动2在t=0时,πϕυ==-=202020,0,05.0可知m x 故简谐振动1、2的振动表达式分别为:mt x t x )20cos(05.0)2320cos(05.021ππππ+=+=因此,合振动的振幅和初相位分别为: m A A A A A 210202122211025)cos(2-⨯=-++=ϕϕ2021012021010cos cos sin sin arctanϕϕϕϕϕA A A A ++=ππ4541arctan 或== 但由x-t 曲线知,t=0时,πϕ45,05.021应取因此-=+=x x x . 故合振动的振动表达式:m t x )4520cos(10252ππ+⨯=- 8-18 解:(1)它们的合振动幅度初相位分别为:)cos(212212221ϕϕ-++=A A A A Am )535cos(06.005.0206.005.022ππ-⨯⨯⨯++=m 0892.0=22112211cos cos sin sin arctanϕϕϕϕϕA A A A ++=316819.15.2arctan 5cos06.053cos 05.05sin06.053sin 05.0'︒===++=rad ππππ。
10题图第八章 磁场 填空题 (简单)1、将通有电流为I 的无限长直导线折成1/4圆环形状,已知半圆环的半径为R ,则圆心O 点的磁感应强度大小为08IRμ 。
2、磁场的高斯定理表明磁场是 无源场 。
3、只要有运动电荷,其周围就有 磁场 产生;4、(如图)无限长直导线载有电流I 1,矩形回路载有电流I 2,I 2回路的AB 边与长直导线平行。
电 流I 1产生的磁场作用在I 2回路上的合力F 的大小为01201222()I I L I I La ab μμππ-+,F 的方向 水平向左 。
(综合)5、有一圆形线圈,通有电流I ,放在均匀磁场B 中,线圈平面与B 垂直,则线圈上P 点将受到 安培 力的作用,其方向为 指向圆心 ,线圈所受合力大小为 0 。
(综合)6、∑⎰==⋅n i i lI l d B 00μϖϖ 是 磁场中的安培环路定理 ,它所反映的物理意义是 在真空的稳恒磁场中,磁感强度B 沿任一闭合路径的积分等于0μ乘以该闭合路径所包围的各电流的代数和。
7、磁场的高斯定理表明通过任意闭合曲面的磁通量必等于 0 。
8、电荷在磁场中 不一定 (填一定或不一定)受磁场力的作用。
9、磁场最基本的性质是对 运动电荷、载流导线 有力的作用。
10、如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面,B 与半球面轴线的夹角为α。
求通过该半球面的磁通量为2cos B R πα-g 。
(综合)12、一电荷以速度v 运动,它既 产生 电场,又 产生 磁场。
(填“产生”或4题图5题图“不产生”)13、一电荷为+q ,质量为m ,初速度为0υ的粒子垂直进入磁感应强度为B 的均匀磁场中,粒子将作 匀速圆周 运动,其回旋半径R=0m Bqυ,回旋周期T=2mBq π 。
14、把长直导线与半径为R 的半圆形铁环与圆形铁环相连接(如图a 、b 所示),若通以电流为I ,则 a 圆心O 的磁感应强度为___0__________; 图b 圆心O 的磁感应强度为04IRμ。
第8章电磁感应作业题答案一、选择题1. 圆铜盘水平放置在均匀磁场中,B 的方向垂直盘面向上,当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时,(A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动。
(B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动。
(C) 铜盘上有感应电流产生,铜盘中心处电势最高。
(D) 铜盘上有感应电流产生,铜盘边缘处电势最高。
答案(D)2.在尺寸相同的铁环和铜环所包围的面积中穿过相同变化率的磁通量,则两环中A.感应电动势相同,感应电流相同;B.感应电动势不同,感应电流不同;C.感应电动势相同,感应电流不同;D.感应电动势不同,感应电流相同。
答案(C)3.两根无限长的平行直导线有相等的电流,2.但电流的流向相反如右图,而电流的变化率均大于零,有一矩形线圈与两导线共面,则A.线圈中无感应电流;B.线圈中感应电流为逆时针方向;C.线圈中感应电流为顺时针方向;D.线圈中感应电流不确定。
答案: B(解:两直导线在矩形线圈处产生的磁场方向均垂直向里,且随时间增强,由楞次定律可知线圈中感应电流为逆时针方向。
)4.如图所示,在长直载流导线下方有导体细棒,棒与直导线垂直且共面。
(a)、(b)、(c)处有三个光滑细金属框。
今使以速度向右滑动。
设(a)、(b)、(c)、(d)四种情况下在细棒中的感应电动势分别为ℇa、ℇb、ℇc、ℇd,则A.ℇa =ℇb =ℇc <ℇd B.ℇa =ℇb =ℇc >ℇdC.ℇa =ℇb =ℇc =ℇd D.ℇa >ℇb <ℇc <ℇd答案:C5.一矩形线圈,它的一半置于稳定均匀磁场中,另一半位于磁场外,如右图所示,磁感应强度的方向与纸面垂直向里。
欲使线圈中感应电流为顺时针方向则A.线圈应沿轴正向平动;B.线圈应沿轴正向平动;C.线圈应沿轴负向平动;D.线圈应沿轴负向平动答案(A).*6.两个圆线圈、相互垂直放置,如图所示。
当通过两线圈中的电流、均发生变化时,那么A.线圈中产生自感电流,线圈 中产生互感电流; B .线圈 中产生自感电流, 线圈中产生互感电流;C .两线圈中同时产生自感电流和互感电流;D .两线圈中只有自感电流,不产生互感电流。
答案: D(解: 此两线圈各自产生的磁场在对方的线圈中的磁通量均为零, 所以两线圈中只有自感电流,不产生互感电流。
) 二、填空题1.如图所示, 、 为两均匀金属棒,长均为0.2m ,放在磁感应强度的均匀磁场中,磁场的方向垂直于屏面向里,和 可以在导轨上自由滑动,当和在导轨上分别以、速率向右作匀速运动时,在 尚未追上的时间段内ABDCA 闭合回路上动生电动势的大小 0.8V方向 顺时针方向2.一匝数的线圈,通过每匝线圈的磁通量,则任意时刻线圈感应电动势的大小 t ππ10cos 1057⨯3.感生电场产生的原因_:变化的磁场产生感生电场4..麦克斯韦两个假设是 有旋电场 和 位移电流*5.动生电动势的产生的原因是:由于运动导体中的电荷在磁场中受洛仑兹力的结果。
6 .将一根导线折成半径为的3/4圆弧 abcd ,置于均匀磁场中,垂直于导线平面,如图所示,当导线沿∠aod 的角平分线方向以速度 向右运动时,导线中产生的感应电动势为:(解:圆弧导线 abcd 中的感应电动势,与导体弦 ad 中的相同,弦长为 ,ℇi。
三、判断题1.由于电磁感应定律i d dtφε=-中的负号,磁通量变化得越快,感应电动势越小。
( × ) 2.由于回路所围面积的变化或面积取向变化而引起的感应电动势称为动生电动势。
( √ ) 3.动生电动势产生的根本原因是由于运动导体中的电荷在磁场中受洛仑兹力的结果。
( √ ) 4.感生电场是保守场。
( × )5.感生电场是由电荷激发的。
( × )四、计算题:1.一无限长载流直导线,通有交流电t I I ωcos 0=,(0I 为振幅,ω为圆频率),旁边放置一矩形线圈,线圈与导线共面,线圈边长如图所示:求线圈产生的电动势。
解:据法拉第电磁感应定律:dtd i φε-= 其中任意时刻的磁通量φ为:⎰⎰⎰⎰=•=Bds ds B φLdx xtI d d d ⎰+=21112cos 00πωμ12100ln 2cos d d d t I +=πωμdtd i φε-=∴ 12100ln 2sin d d d t I +=πωωμ2.均匀磁场B 垂直纸面,导线ab 绕O 点以角速度ω在纸平面上转动,ao L =,求:ab i ε解:据动生电动势:dl B v i •⨯=⎰)(ε,可得 2)(2101BL Bdr r dl B v L iOaωωε==•⨯=⎰⎰方向:O a →3.长为L 的导体杆AB 与无限长直流I 共面。
当杆以速度v 沿水平方向向右运动时,求AB 上的电动势大小和方向。
解:以电流位置为坐标原点,水平方向建立X 坐标轴。
在杆上取一元线段dl ,其坐标为x ,杆AB 上的电动势为()dlxI v l d B v d o i 060cos 2πμεε⎰⎰⎰=⋅⨯==030cos dl dx = 代入上式 dx x Iv d o L a ai 030cos 30cos 260cos 0πμεε⎰⎰+==∴aL a Iv23ln 630+=πμ 方向由A 指向B4.无限长直导线通以电流I ,扇形线圈OAC 以速度V 匀速向下运动,求1、OA 边、OC 边、AC 边的动电势的大小和方向;2、求整个扇形线圈OCA 的电动势。
解:方法一据动生电动势公式:()l d B v⋅⨯=ε⎰ 令B v E k ⨯=则k E 方向为水平向右对OA 边:()l d E l d B v k OA i⋅=⋅⨯=ε⎰⎰dl E k ⊥0l d E k =⋅∴0OA i =ε∴对OC 边:OC i ε=()⎰⎰=⋅⨯vBdl l d B vdx xIvad dπμ20⎰+= dad Iv +=ln20πμ 方向:C O → 对边⋂AC :()⎰⎰⎰==⋅⨯=⋂vBdx dl vB l d B v ACi θεcos)dx cos dl (=θdx x I va d dπμ20⎰+=dad Iv +=ln 20πμ 方向:C A →OC i ε与⋂εAC i 大小相等、方向相反、故整个扇形线圈0=总ε方法二:对整个线圈:0dtd i =φε=总 0OA i =ε OC i AC i εε与⋂∴大小相等,方向相反。
dad ln 2Iv 0OC i AC i +πμεε∴⋂==★5.如图示,圆筒形区域中有均匀变化的磁场,变化率为0k dtdB=,筒半径为R ,060aob R bc ad R 2bo ao =∠====,,,求:1. bc ε; 2.⋂εab;3.⋂εcd解:(1)bc 沿半径方向,感E不作功,故0bc =ε,同理0ad =ε。
(2)00b ao =ε=ε,k 6R dt dB R 6122i abπ=π=ε=ε⋂。
a b k R 612ab→π=ε∴⋂,方向: (3)同(2)理由,d c k R 612cd→π=ε⋂,方向:★6.半径为R 的绝缘圆筒内存在均匀磁场,正以k dtdB-=(0k )变化着,abcd 导线框刚好是圆的外接正四边形,求:(1)ab 上的感应电动势ab ε的大小及方向;(2)若将单位正电荷沿aob 路线从a 点搬移至b 点,则涡旋电场作功为多少?为什么?解:(1)i da cd bc ab 41ε=ε=ε=ε=ε,i ε为abcd 闭合回路感应电动势大小k R dt dBR 22i π=π=ε k R 41412i abπ=ε=ε∴ i ε的方向为顺时针沿闭合回路,ab ε∴方向为a b →(2) b o a →→ 刚好沿半径方向,而涡旋电场力始终垂直半径,沿半径移动电荷涡旋电场力作功为零∴b 0a →→作功0W =浅谈中西方文化的差异与融合中西方文化在其各自长期发展的历史过程中,形成了自己的特色,带有本民族的精神烙印。
把传统民族文化中最优秀的东西与西方文化的积极成果进行融合,创造出具有民族特色和时代精神的新文化,对于调节改造中国文化,建设面向未来、符合全人类发展前进方向的中国新文化具有重要意义。
因此我们有必要对中西方传统文化进行比较研究和探讨,更好地吸收西方文化的优秀合理部分, 促进中西方文化积极因素的有机结合。
探索中西文化的建设性融合方式,其前提在于了解这两种文化的具体特点,并通过比较把握其精义,中国人与西方人在宗教、伦理、政治、经济、历史等诸多方面存在巨大的观念差异,具体表现在以下几个方面:(一) 思维方式的不同中西文化最大的区别在于思维方式的不同,而且这种差异自日趋明显。
而不同的思维方式导致了不同的行为方式。
中国人的思维方式是立体型,讲究瞻前顾后,看到胜利时还会回头看看失败,试图从失败中寻找出一些教训来,所谓“失败是成功之母”就是此种思维方式的表现。
再观西方人却是一向勇往直前,不但不顾后面,连前面有多少障碍都很少顾及,所以说西方人的思维方式是线型的。
而此种思维方式的不同绝非地域差异和人种不同,是在于中国人和西方人的灵魂深处有其不同的宗教信仰,或者说是因为各自的宗教信仰不同,进而导致文化不同,从而决定思维方式不同。
中国传统上比较重直觉的感悟,相对轻理性思维,而西方重理性思维,相对轻直觉感悟———归纳而言,中国文化传统大致是一种伦理型的,西方文化主要是科学性的或者是理智性的。
(二)对待自然的态度不同天人合一与征服自然是中西方文化的基本差异之一。
中国文化相对重视人与自然的和谐统一。
中国文化主要是从人是自然界长期发展的自然产物、人是自然界一部分的立场来认识人与自然的关系,认为人与自然打成一片,融为一体,不可分离,即“天人合一”。
中国文化中包含不少对自然的客观认识,但主要方面不是提倡认识自然的本质和客观规律,而是体验人与自然界万物的息息相通,和谐交融。
从“天人合一”思维模式中发展出中国式的“自然意识”。