外文翻译--航空材料超声辅助车削的仿真与实验研究中文版-精品
- 格式:doc
- 大小:512.51 KB
- 文档页数:7
【机械类文献翻译】基于三维设计的浮动式制动卡钳的车床夹具的研制机械专业中英文文献翻译英文原文Development of the 3D-Designed Lathe Fixture of a Float BrakeCaliper122PAN Jin-kun, ZUO Wan-li, LU Dong-sheng1School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing 211167, P. R.China2College of Mechanical& Power Engineering, Nanjing University of Technology, Nanjing 210009,P. R. ChinaAbstract,According to the technique requests of the brake caliper in the process of production, a special fixture of float brake caliper has been developed based on 3D design in this paper. The development process and verified data from 3D modeling and kinematics simulation for this special fixture show that this 3D-designed process can conveniently forecast the assembly interference of the fixture and accurately add the mass of lead brick before the prototype is made. In this way the flutter caused by the unbalanced lathe fixture can be eliminated and the precision of run-out tolerance in cylinder hole compared with machine tool spindle can be improved, thus the processing quality of thecylinder hole in a brake caliper can be greatly guaranteed. Key words: 3D design; brake calipers; lathe fixture1 IntroductionIn the production of the float disc brake caliper of an automobile, due to the complexity of its structure, a special fixture is needed for installing and clamping the brake caliper. According to the technique requests of the brake caliper in the processing, a special fixture of float brake caliper is developed based on 3D design in this paper andits 3D model is assembled virtually. Through the[1]mechanism simulation function of 3D design software, the balance of a lathe fixture is analyzed .The results show that the design process can expediently forecast some factors which affect the[2]quality of technical equipment such as assembly interference and the machining stability of thelathe fixture before the proto type is made. This design process can not only avoid the design errors in the traditional design, but also improve the design quality of products. 2 3D design of the special lathe fixtureThe manufacture object of the special fixture is the brake caliperof a float disc brake, shown as Figure 1; its machining surface is the cylinder hole of the brake. The figure shows: when the cylinder hole is being processed, its axis and the machine spindle rotation axis must be in coincidence. Due to irregular shape structure of the brake caliper,the flutter which is caused by the unbalance mass posed by the fixture and the work piece would affect the machining accuracy and roundness of the cylinder hole size in the actual processing, and some precision requirement of geometric tolerance such as parallelism between the two cylinder holes. To avoid the problems in the design process of the lathe fixture of the brake caliper, a special fixture is developed based on 3D design in this paper.According to the shape structural characteristics of the brakecaliper and the clamping机械专业中英文文献翻译requirements of the lathe fixture, the cylinder hole should be completed after a clamping of the lathe fixture in the whole processing. The flange needs the mounting hole of machine tool spindle and location hole of the fixture on both sides of the center as a middle ware connecting the machine tool spindle and the fixture. It is ensured that the axis of the processing cylinder hole of the caliper body which is located and clamped on the fixture and the machine spindle axis of[3]rotation need coincidence , as shown in Figure 2.The modeling process of other parts of the special fixture is not depicted in detail in this paper,please refer to Reference[4] . Then these parts are assembled into two components, up and down, as shown in Figure 3 and Figure 4. The whole fixture is divided into two components when it is being assembled. This can avoid the parts being missed or installed wrongly in the assembly process. In the component down, as thebenchmark of flange, the counter balance is fixed with bolts. The counter balance would be regulated in balance when the fixture is produced. In the component up, as the benchmark of the fixture, the locating plate is fixed with seven bolts. Then as the benchmark of the locating plate, the upper half part of two threaded studs are rotated into the locating plate, and the pressure plate is clamped on the threaded studs by bolts. In the fixture, the pressure plate is in direct contact with the work piece, so it is under great stress. Therefore, the material of 45Mn2 is selected, which needs treatment of quenching and tempering. Matching block need not to be fixed into the fixture during the initial assembly and the mass of matching block is determined by the result of motion simulation.Figure 1 Brake calipers Figure 2 FlangeFigure 3 Component down Figure 4 Component upAfter the assemblies of component up and component down are completed, they are combined in a new component unit, with the bolts and nuts, as shown in Figure 5 shows. Due to机械专业中英文文献翻译[5]adopting hierarchical assembly , it is rational in the practical production process and the parts management is easy, which can effectively shorten the design cycle.Figure 5 Component unit13 Balance analysis of the kinematics of the special lathe fixtureThe mass of each part needs to be determined before the process of kinematics simulation of the special lathe fixture. As is shown in Figure 6, the material and density of each part is defined by menu command [mechanism] / [quality attributes], as Table 1 shows, the volume and mass of part are calculated out by 3D design software. We select carbon steel as the material of other3standard parts such as the bolts and nuts, its density is 7.85g / cm. In the process of defining themass on Pro /E, unit conversion also needs attention.Figure 6 Dissection figure of the fixtureTable 1 Material and density of the main parts of fixture3Number Part name Material Density (g/cm)1 counter balance A3 7.852 flange HT200 7.23 fixture HT200 7.2机械专业中英文文献翻译4 matching block lead 11.375 locating 45 7.856 pressure plate 45Mn2 7.85Establishing component unite, and then, component unit1 would be assembled on the main shaft as the benchmark of machine spindle axis by the way of “connection-pin connection”, as isshown in Figure7. After entering a mechanic model, the gravity is set in a default value. In the column of “direction”, we set X: -1, other: 0. Added in a motor, its rotation rate is 360 r/min. Then a“run” is established with its settings, “dynamic type” and “opening gravity” in the column of“external load”. Till then, the kinematics simulation process can run. In order to reduce flutter of[6,7]the cylinder hole, the balance of a special fixture is taken as the key analysis in this paper .Theobjective of balance analysis is to make the holistic centroid ofthe fixture and the work piece in the machine spindle axis of rotation. Thus, we should determine the holistic centroid of the fixture and the work piece first. Then the distance between holistic and spindle axis can be obtained. The distance between the holistic and spindle axis should incline to zero as far as possible by adjustment of the mass of the matching block.The detailed locations of centroids in three directions of X, Y, Z can be obtained through the measuring function of Pro /E. Because of setting the machine spindle axis of rotation as the Z axis, the distance of the centroid relative to the centre rotation can be determined onlyin need of the maximum of the centroid at the direction of X or Y. The measurement results of fixture simulated motion without a matching block is shown in Figure 8. When the fixture turned about 90?, the maximum deviation distance of the centroid is – 22.08 mm in the direction of X. Only by doingthat can we know that the centroid is not on the axis; as a resultit does not meet the balance requirement.Figure 7 Component unite Figure 8 Position curve of centroid without matching blockIn order to meet the balance requirement a matching block need to be added to adjust the centroid, as shown in Figure 4. After adding the matching block, return to analyze and then re-measure. The result is that the centroid is still not on the axis, but the distance of the centroid机械专业中英文文献翻译relative to the axis is shortened. In the case of increasing the thickness of the matching block, the modification and measurement is executed again and again in the simulation process. Through a number of tests, an ideal distance of the centroid relative to the axis is obtained. The value is 1.5-710mm, as Figure 9 shows, so it can be considered that the centroid is on the axis, and the result ,satisfies the balance requirements.According to the simulation result with a matching block, a lead brick whose thickness is 305310mm, mass is 4.23 kg is casted in the specified groove of fixture to meet mm, volume is 3.72 ,the balance requirements.The comparison of measured data of run-out tolerance between the new design and the old design is shown in Table 2.Figure 9 Position curve of centroid with matching blockTable 2 Measured data of run-out toleranceMeasurement time New design Old design1 0.016mm 0.048mm2 0.017mm 0.050mm3 0..015mm 0.046mm4 0.018mm 0.047mm5 0.020mm 0.046mm4 ConclusionsAccording to the technological requirements of the cylinder of brake caliper in the processing, Pro /E is adopted in the development of 3D design, and the kinematics simulation research is done on the fixture combined with its mechanical simulation functions. The development process and verified data from 3D modeling and kinematics simulation for this special fixture show that 3D-designed process can conveniently forecast the assembly interference of the fixture and accurately add the mass of lead brick before the prototype is made. In this way we can eliminate the flutter caused by the unbalanced lathe fixture and improve the precision of run-out tolerance in the cylinder hole compared with the machine tool spindle, thus ensuring the processing quality of 机械专业中英文文献翻译the cylinder hole in the brake caliper.References[1] Zhu L Y, Li B, Pro /ENGINEER motion simulation and finite element analysis. Beijing: Posts& Telecom Press, 2004( In Chinese)[2] Ding JH, Wu G Q, Application of Pro /E software in product development. Machine Building& Automation, (7) : 17 ~ 18, 22, 2006 ( In Chinese)[3] Anon, Adhesives and automobiles. Assembly Headquarters, ( 1) :52~ 59, 2008 [4] Wan Z J, Luo X G, Automobile Oil-Pipe-Check-Tool Design Based on Pro /E Model. Automobile Technology & Material, ( 7) : 17 ~18, 22, 2006( In Chinese)[5] Qin G H, Zhang W H. Advanced design methods for machine tool fixture. Beijing: Aviation Industry Press, 2006( In Chinese) Brief BiographiesPAN Jin-kun is a lecturer in the School of Mechanical Engineering, Nanjing Institute of Technology. His research interest is in mechanical design and theory.ZUO Wan-li is a postgraduate student in College of Mechanical and Power Engineering of Nanjing University of Technology. His research interest is in mechanical design and theory. LU Dong-sheng is a postgraduate student in College of Mechanical and Power Engineering of Nanjing University of Technology. His research interest is in mechanical design and theory.机械专业中英文文献翻译中文译文[1]基于三维设计的浮动式制动卡钳的车床夹具的研制122潘金坤,左万里,路东升1南京工程学院机械工程学院,南京 211167,中华人民共和国2南京工业大学机械与动力工程学院,南京210009,中华人民共和国摘要:根据制动卡钳在生产过程中的技术要求,本文研究的是一个基于三维设计的浮动式制动卡钳的专用夹具。
刊名简称ACTA MECH SINICA-PRC ADV APPL MECHADV VIB ENGAPPL THERM ENG ARCH CIV MECH ENG ASHRAE J ATOMIZATION SPRAY BWK-ENERGIE-FACHMAG CHINA OCEAN ENG CHIN J MECH ENG-EN DRY TECHNOLENG FAIL ANALENG COMPUT-GERMANY EXP HEAT TRANSFER EXP TECHNIQUESEXP THERM FLUID SCI EXP FLUIDSFATIGUE FRACT ENG M FLOW MEAS INSTRUM FORSCH INGENIEURWES HEAT TRANSFER ENG HVAC&R RESIEEE-ASME T MECH IND LUBR TRIBOLINT J AUTO TECH-KOR INT J CRASHWORTHINES INT J ENGINE RESINT J FATIGUEINT J HEAT FLUID FL INT J HEAT MASS TRAN INT J HEAVY VEH SYST INT J IMPACT ENGINT J MACH TOOL MANU INT J MECH SCIP LINN SOC N S WINT J OPTOMECHATRONI INT J PLASTICITYINT J PRECIS ENG MAN INT J PRES VES PIP INT J REFRIGINT J STRUCT STAB DY INT J SURF SCI ENG INT J THERM SCIINT J VEHICLE DESISI BILIM TEK DERGJ ADV MECH DES SYST J COMPUT NONLIN DYN J ELECTRON PACKAGINGJ ENG GAS TURB POWER J ENG MATER-T ASME J ENG MECH-ASCEJ ENG THERMOPHYS-RUS J ENHANC HEAT TRANSF J FLUID STRUCTJ FLUID ENG-T ASME J FRICT WEAR+J HEAT TRANS-T ASME J HYDRAUL ENG-ASCE J JPN SOC TRIBOLOGIS J MANUF SCI E-T ASME J MECH DESIGNJ MECH SCI TECHNOL J MICROELECTROMECH S J OFFSHORE MECH ARCT J POROUS MEDIAJ PRESS VESS-T ASME J SANDW STRUCT MATER J SOL ENERG-T ASME J SOUND VIBJ STRAIN ANAL ENGJ BALK TRIBOL ASSOC J BRAZ SOC MECH SCI J THERM SCIJ THERMOPHYS HEAT TR J TRIBOL-T ASMEJ TURBOMACHJ VIB ACOUSTJ VIB CONTROLJ VIBROENGLAT AM J SOLIDS STRU LUBR SCIMACH SCI TECHNOL MEC INDMECH ENGMECH SYST SIGNAL PR MECH MACH THEORY MECHATRONICS NANOSC MICROSC THERM NONLINEAR DYNAM PROBABILIST ENG MECH P COMBUST INSTP I MECH ENG A-J POW P I MECH ENG B-J ENG P I MECH ENG C-J MEC P I MECH ENG D-J AUT P I MECH ENG E-J PRO P I MECH ENG F-J RAIP I MECH ENG G-J AER P I MECH ENG J-J ENG P I MECH ENG K-J MUL PROF ENGPROG ENERG COMBUST RAPID PROTOTYPING J SCI IRANSHOCK VIBSMART STRUCT SYST SOUND VIB STROJARSTVOSTROJ VESTN-J MECH E STRUCT ENG MECH STRUCT INFRASTRUCT E THEOR APPL FRACT MEC T FAMENAT CAN SOC MECH ENG TRIBOL LUBR TECHNOL TRIBOL INTTRIBOL LETTTRIBOL TVEHICLE SYST DYN WEARWIND ENERGY刊名全称ACTA MECHANICA SINICAADVANCES IN APPLIED MECHANICSAdvances in Vibration EngineeringAPPLIED THERMAL ENGINEERINGArchives of Civil and Mechanical EngineeringASHRAE JOURNALATOMIZATION AND SPRAYSBWKCHINA OCEAN ENGINEERINGChinese Journal of Mechanical EngineeringDRYING TECHNOLOGYENGINEERING FAILURE ANALYSISENGINEERING WITH COMPUTERSEXPERIMENTAL HEAT TRANSFEREXPERIMENTAL TECHNIQUESEXPERIMENTAL THERMAL AND FLUID SCIENCEEXPERIMENTS IN FLUIDSFATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURESFLOW MEASUREMENT AND INSTRUMENTATIONFORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCHHEAT TRANSFER ENGINEERINGHVAC&R RESEARCHIEEE-ASME TRANSACTIONS ON MECHATRONICSINDUSTRIAL LUBRICATION AND TRIBOLOGYINTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGYINTERNATIONAL JOURNAL OF CRASHWORTHINESSInternational Journal of Engine ResearchINTERNATIONAL JOURNAL OF FATIGUEINTERNATIONAL JOURNAL OF HEAT AND FLUID FLOWINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFERInternational Journal of Heavy Vehicle SystemsINTERNATIONAL JOURNAL OF IMPACT ENGINEERINGINTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTUREINTERNATIONAL JOURNAL OF MECHANICAL SCIENCESINTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERINGInternational Journal of OptomechatronicsINTERNATIONAL JOURNAL OF PLASTICITYInternational Journal of Precision Engineering and Manufacturing INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPINGINTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID International Journal of Structural Stability and DynamicsInternational Journal of Surface Science and Engineering INTERNATIONAL JOURNAL OF THERMAL SCIENCESINTERNATIONAL JOURNAL OF VEHICLE DESIGNISI Bilimi ve Teknigi Dergisi-Journal of Thermal Science and Technology Journal of Advanced Mechanical Design Systems and ManufacturingJournal of Computational and Nonlinear DynamicsJOURNAL OF ELECTRONIC PACKAGINGJOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE A JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASM JOURNAL OF ENGINEERING MECHANICS-ASCEJournal of Engineering ThermophysicsJOURNAL OF ENHANCED HEAT TRANSFERJOURNAL OF FLUIDS AND STRUCTURESJOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASMEJournal of Friction and WearJOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASMEJOURNAL OF HYDRAULIC ENGINEERING-ASCEJOURNAL OF JAPANESE SOCIETY OF TRIBOLOGISTSJOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE AS JOURNAL OF MECHANICAL DESIGNJournal of Mechanical Science and TechnologyJOURNAL OF MICROELECTROMECHANICAL SYSTEMSJOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF TH JOURNAL OF POROUS MEDIAJOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME JOURNAL OF SANDWICH STRUCTURES & MATERIALSJOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASMEJOURNAL OF SOUND AND VIBRATIONJOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGNJournal of the Balkan Tribological AssociationJournal of the Brazilian Society of Mechanical Sciences and Engineering JOURNAL OF THE CHINESE SOCIETY OF MECHANICAL ENGINEERSJournal of Thermal ScienceJOURNAL OF THERMOPHYSICS AND HEAT TRANSFERJOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASMEJOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASMEJOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASMEJOURNAL OF VIBRATION AND CONTROLJournal of VibroengineeringLatin American Journal of Solids and StructuresLubrication ScienceMACHINING SCIENCE AND TECHNOLOGYMecanique & IndustriesMECHANICAL ENGINEERINGMECHANICAL SYSTEMS AND SIGNAL PROCESSINGMECHANISM AND MACHINE THEORYMECHATRONICSNanoscale and Microscale Thermophysical EngineeringNONLINEAR DYNAMICSPROBABILISTIC ENGINEERING MECHANICSPROCEEDINGS OF THE COMBUSTION INSTITUTEPROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL O PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL O PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL O PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL O PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL O PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART F-JOURNAL OPROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL O PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL O PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART K-JOURNAL O PROFESSIONAL ENGINEERINGPROGRESS IN ENERGY AND COMBUSTION SCIENCERAPID PROTOTYPING JOURNALScientia IranicaSHOCK AND VIBRATIONSmart Structures and SystemsSOUND AND VIBRATIONSTROJARSTVOSTROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERINGSTRUCTURAL ENGINEERING AND MECHANICSStructure and Infrastructure EngineeringTHEORETICAL AND APPLIED FRACTURE MECHANICSTransactions of FAMENATRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING TRIBOLOGY & LUBRICATION TECHNOLOGYTRIBOLOGY INTERNATIONALTRIBOLOGY LETTERSTRIBOLOGY TRANSACTIONSVEHICLE SYSTEM DYNAMICSWEARWIND ENERGY刊名中文翻译ISSN大类名称力学学报0567-7718物理应用力学进展0065-2156工程技术先进震动工程0972-5768工程技术实用热力工程1359-4311工程技术1644-9665工程——土木、机械、美国供暖、制冷与空调工程师学会志0001-2491工程技术-化学、机械、雾化与喷射1044-5110工程技术燃料、热能与动力1618-193X工程技术中国海洋工程0890-5487工程技术机械工程学报英文版1000-9345工程干燥技术0737-3937工程技术工程事故分析1350-6307工程技术计算机在工程中的应用0177-0667工程技术实验传热0891-6152工程技术实验技术0732-8818工程技术实验热力和流体科学0894-1777工程技术流体力学实验0723-4864工程技术工程材料及结构的疲劳与断裂8756-758X工程技术流动测量和仪表设备0955-5986工程技术工程研究0015-7899工程技术传热工程0145-7632工程技术国际供暖、通风、空调、制冷研究杂志1078-9669工程技术IEEE-ASME机械电子学汇刊1083-4435工程技术工业润滑与摩擦学0036-8792工程技术国际汽车技术杂志1229-9138工程技术国际防撞性能杂志1358-8265工程技术国际发动机研究杂志1468-0874工程技术国际疲劳杂志0142-1123工程技术国际热与流体流杂志0142-727X工程技术国际传热与传质杂志0017-9310工程技术国际重型机动车系统杂志1744-232X工程技术国际冲击工程杂志0734-743X工程技术国际机床与制造杂志0890-6955工程技术国际机械科学杂志0020-7403工程技术国际近海和极地工程师杂志0370-047X环境科学国际机电光杂志1559-9612工程技术国际塑性力学杂志0749-6419工程技术国际精密工程与制造杂志1229-8557工程技术国际压力容器与管道杂志0308-0161工程技术国际制冷杂志0140-7007工程技术国际结构稳定性与动力学杂志0219-4554工程技术国际表面科学与工程杂志1749-785X工程技术国际热科学杂志1290-0729工程技术国际机动车设计杂志0143-3369工程技术d Technology 1300-3615工程技术先进机械设计系统和制造1881-3054工程技术计算和非线性动力学1555-1423工程技术电子封装杂志1043-7398工程技术燃气轮机与动力工程杂志0742-4795工程技术工程材料与工艺杂志0094-4289工程技术工程材料与工艺杂志0733-9399工程技术工程热物理学报1810-2328物理强化传热杂志1065-5131工程技术流体与结构杂志0889-9746工程技术流体工程学杂志0098-2202工程技术摩擦磨损1068-3666工程技术传热杂志;美国机械工程师学会汇刊0022-1481工程技术水力工程杂志0733-9429工程技术摩擦学0915-1168工程技术制造科学与工程杂志;美国机械工程师学会汇1087-1357工程技术机械设计杂志;美国机械工程师学会汇刊1050-0472工程技术韩国机械工程师学会国际杂志1738-494X工程技术微机电系统杂志1057-7157工程技术0892-7219工程技术海上机械与极地工程杂志;美国机械工程师学会多孔介质杂志1091-028X工程技术压力容器技术杂志;美国机械工程师学会汇刊0094-9930工程技术夹层结构与材料杂志1099-6362工程技术太阳能工程杂志;美国机械工程师学会汇刊0199-6231工程技术声音和振动杂志0022-460X工程技术工程设计应变分析杂志0309-3247工程技术巴尔干摩擦学协会1310-4772工程技术机械科学与工程1678-5878工程技术中国机械工程学会会刊0257-9731工程技术热科学杂志1003-2169工程技术热物理学与热传导杂志0887-8722工程技术摩擦学杂志;美国机械工程师学会汇刊0742-4787工程技术涡轮机械杂志;美国机械工程师学会汇刊0889-504X工程技术振动与声学杂志;美国机械工程师学会汇刊1048-9002工程技术振动与控制杂志1077-5463工程技术1392-8716工程技术固体和结构1679-7817工程技术润滑科学0954-0075工程技术机械加工科学与技术1091-0344工程技术机械公司与工业1296-2139工程技术机械工程0025-6501工程技术机械系统与信号处理0888-3270工程技术机构学与机械原理0094-114X工程技术机械电子学0957-4158工程技术纳米尺度和微尺度热物理学工程1556-7265工程技术非线性动力学0924-090X工程技术概率工程力学0266-8920工程技术电力系统1540-7489工程技术机械工程师学会会报;A辑:动力与能源杂志0957-6509工程技术机械工程师学会会报;B辑:工程制造杂志0954-4054工程技术机械工程师学会会报;C辑:机械工程学杂志0954-4062工程技术机械工程师学会会报;D辑:机动车辆工程杂志0954-4070工程技术机械工程师学会会报;E辑:加工机械工程杂志0954-4089工程技术0954-4097工程技术机械工程师学会会报;F辑:铁路与快速运输杂志机械工程师学会会报;G辑:航空航天工程杂志0954-4100工程技术机械工程师学会会报;H辑:工程医学杂志1350-6501工程技术机械工程师学会会报;J辑:工程摩擦学杂志1464-4193工程技术专业工程0953-6639工程技术能源与燃烧科学进展0360-1285工程技术快速样机成型杂志1355-2546工程技术1026-3098工程技术撞击与振动1070-9622物理撞击与振动1738-1584工程技术声音和振动1541-0161物理机械制造0562-1887工程技术机械工程杂志0039-2480工程技术结构工程与力学1225-4568工程技术结构和基础设施工程1573-2479工程技术理论与应用断裂力学0167-8442工程技术1333-1124工程技术加拿大机械工程学会汇刊0315-8977工程技术摩擦学及润滑技术1545-858X工程技术国际摩擦学0301-679X工程技术摩擦学通讯1023-8883工程技术摩擦学汇刊1040-2004工程技术车辆系统动力学0042-3114工程技术磨损0043-1648工程技术风能1095-4244工程技术主办机构及国家期/年大类分区中国科学院主管、中国力学学会和中国科学院力学研究所Bimonthly4 ELSEVIER ACADEMIC PRESS INC 美国 Annual1 KRISHTEL EMAGING SOLUTIONS PVT LTD 印度Quarterly4 PERGAMON-ELSEVIER SCIENCE LTD 英国Monthly 3 WROCLAW UNIV TECHNOLOGY 波兰Quarterly4(72/112)Monthly 4(51/116) AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, I美国Bimonthly 4 SPRINGER-V D I VERLAG GMBH;德国Monthly 4 CHINA OCEAN PRESS;中国Quarterly 4中国Bimonthly 4 TAYLOR & FRANCIS INC 美国Monthly 3 PERGAMON-ELSEVIER SCIENCE LTD 英国Bimonthly 4 SPRINGER;USA Quarterly 4 TAYLOR & FRANCIS INC;USA Quarterly 4 WILEY-BLACKWELL PUBLISHING, INC;USA Bimonthly 4 ELSEVIER SCIENCE INC;USA Bimonthly 3 SPRINGER, 233 SPRING ST;USA Monthly 3 WILEY-BLACKWELL PUBLISHING;USA Monthly 4 ELSEVIER SCI LTD;英国Quarterly 4 SPRINGER HEIDELBERG;德国Bimonthly 4 TAYLOR & FRANCIS INC;美国Monthly 4Bimonthly4 AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, IIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC;USA Quarterly 2 EMERALD GROUP PUBLISHING LIMITED;英国Bimonthly4 KOREAN SOC AUTOMOTIVE ENGINEERS;SOUTH KOREA Bimonthly4 TAYLOR & FRANCIS LTD;英国Bimonthly4 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Bimonthly4 ELSEVIER SCI LTD;英国Monthly 3 ELSEVIER SCIENCE INC;美国Bimonthly3 PERGAMON-ELSEVIER SCIENCE LTD;英国Biweekly 2 INDERSCIENCE ENTERPRISES LTD;瑞士Quarterly 4 PERGAMON-ELSEVIER SCIENCE LTD;英国Monthly 3 ELSEVIER SCI LTD;英国Monthly 3 PERGAMON-ELSEVIER SCIENCE LTD;英国Monthly 3INT SOC OFFSHORE POLAR ENGINEERS;美国Quarterly4 TAYLOR & FRANCIS INC;美国Quarterly4 PERGAMON-ELSEVIER SCIENCE LTD;英国Monthly1 KOREAN SOC PRECISION ENG;韩国Quarterly3 ELSEVIER SCI LTD, THE BOULEVARD;英国Monthly 3 ELSEVIER SCI LTD;英国Bimonthly3 WORLD SCIENTIFIC PUBL CO PTE LTD;新加坡Quarterly4 INDERSCIENCE ENTERPRISES LTD;瑞士Bimonthly4Monthly 3 ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVINDERSCIENCE ENTERPRISES LTD;瑞士Bimonthly4 TURKISH SOC THERMAL SCIENCES TECHNOLOGY;土耳其Semiannual 4 JAPAN SOC MECHANICAL ENGINEERS;日本Bimonthly4 ASME-AMER SOC MECHANICAL ENG;美国Quarterly4 ASME-AMER SOC MECHANICAL ENG;美国Quarterly4ASME-AMER SOC MECHANICAL ENG;美国Quarterly4 ASME-AMER SOC MECHANICAL ENG;美国Quarterly4 ASCE-AMER SOC CIVIL ENGINEERS;美国Monthly4 MAIK NAUKA/INTERPERIODICA/SPRINGER;美国Quarterly4 BEGELL HOUSE INC;美国Quarterly4 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD;英国Bimonthly3 ASME-AMER SOC MECHANICAL ENG;美国Bimonthly4 ALLERTON PRESS INC;美国Bimonthly4 ASME-AMER SOC MECHANICAL ENG;美国Monthly3 ASCE-AMER SOC CIVIL ENGINEERS;美国Monthly3 JAPAN SOC TRIBOLOGISTS;日本Monthly4 ASME-AMER SOC MECHANICAL ENG;美国Quarterly4 ASME-AMER SOC MECHANICAL ENG;美国Monthly4 KOREAN SOC MECHANICAL ENGINEERS;韩国Monthly4 IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC Bimonthly2 ASME-AMER SOC MECHANICAL ENG;美国Quarterly4 BEGELL HOUSE INC;美国Bimonthly4 ASME-AMER SOC MECHANICAL ENG;美国Quarterly4 SAGE PUBLICATIONS LTD;英国Quarterly4 ASME-AMER SOC MECHANICAL ENG;美国Quarterly4 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD;英国Weekly 3 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Bimonthly4 SCIBULCOM LTD;保加利亚Quarterly4 ABCM BRAZILIAN SOC MECHANICAL SCIENCES & ENGINEERING;Q uarterly4Bimonthly CHINESE SOC MECHANICAL ENGINEERS;中国机械工程学会SCIENCE PRESS;中国Quarterly4 AMER INST AERONAUT ASTRONAUT;美国Quarterly4 ASME-AMER SOC MECHANICAL ENG;美国Quarterly4 ASME-AMER SOC MECHANICAL ENG;美国Quarterly4 ASME-AMER SOC MECHANICAL ENG;美国Quarterly4 SAGE PUBLICATIONS LTD;英国Monthly4 JOURNAL VIBROENGINEERING;立陶宛Quarterly4 LATIN AMER J SOLIDS STRUCTURES;巴西Quarterly4 JOHN WILEY & SONS LTD;英国Monthly4 TAYLOR & FRANCIS INC;美国Quarterly4 EDP SCIENCES S A;法国Bimonthly4 ASME-AMER SOC MECHANICAL ENG;美国Monthly4 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD;英国Bimonthly2 PERGAMON-ELSEVIER SCIENCE LTD;英国Bimonthly3 PERGAMON-ELSEVIER SCIENCE LTD;英国Bimonthly3 TAYLOR & FRANCIS INC;美国Quarterly3 SPRINGER;荷兰Monthly3 ELSEVIER SCI LTD;英国Quarterly3 ELSEVIER SCIENCE INC;美国Annual 2 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Bimonthly4 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Monthly4 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Monthly4 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Monthly4 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Quarterly4 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Quarterly4PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Bimonthly4 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Bimonthly4 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Quarterly4 PROFESSIONAL ENGINEERING PUBLISHING LTD;英国Semimonthly4 PERGAMON-ELSEVIER SCIENCE LTD;英国Bimonthly1 EMERALD GROUP PUBLISHING LIMITED;英国Bimonthly4 SHARIF UNIV TECH;伊朗Bimonthly4 IOS PRESS;荷兰Bimonthly4 TECHNO-PRESS;韩国Quarterly3 ACOUSTICAL PUBL INC;美国Monthly4 UREDNISTVO CASOPISA STROJARTVO;克罗地亚Tri-annual 4Monthly4 ASSOC MECHANICAL ENGINEERS TECHNICIANS SLOVENIA;南斯拉TECHNO-PRESS;韩国Semimonthly 4 TAYLOR & FRANCIS LTD;英国Quarterly 4 ELSEVIER SCIENCE BV Bimonthly 4Semiannual 4 UNIV ZAGREB FAC MECHANICAL ENGINEERING & NAVAL ARCHITECSME TRANS., C/O P J ZSOMBOR-MURRAY,;加拿大Quarterly 4 SOC TRIBOLOGISTS & LUBRICATION ENGINEERS;美国Monthly4 ELSEVIER SCI LTD;英国Monthly3 SPRINGER/PLENUM PUBLISHERS;美国Monthly3 TAYLOR & FRANCIS INC;美国Quarterly 4 TAYLOR & FRANCIS LTD;英国Monthly4 ELSEVIER SCIENCE SA;瑞士Monthly3 JOHN WILEY & SONS LTD;英国Quarterly 3是否为TOP期刊SCI/SCIE/EI目前内容2011年影响因子N Engineering, Computing & Technology0.86Y5N0.328N 2.064N0.855N0.392N0.526N SCI/SCIE Engineering, Computing & Technology0.056N SCIE Engineering, Computing & Technology0.468N SCIE0.208N SCI/SCIE Engineering, Computing & Technology 2.084N SCIE Engineering, Computing & Technology 1.086N SCIE0.739N SCIE0.537N SCIE0.257N SCIE 1.414N SCI/SCIE 1.735N SCI/SCIE0.847N SCIE0.8N SCIE0.268N SCIE0.892N SCIE0.683N SCI/SCIE 2.865N SCIE0.35N SCIE0.606N SCIE0.789N SCIE0.969N SCI/SCIE 1.546N SCI/SCIE 1.927Y SCI/SCIE 2.407N SCIE0.2N SCI/SCIE 1.701N SCI/SCIE 2.169N SCI/SCIE 1.231 SCIEN SCIE0.556Y SCI/SCIE 4.603N SCI/SCIEN SCIE0.989N SCI/SCIE 1.817N SCIE0.45N SCIE0.414N SCIE 2.142N SCIE0.457N SCIE0.229N SCIE0.205N SCIE0.827N SCIE0.694N SCI/SCIE0.679 N SCI/SCIE0.954 N SCI/SCIE0.99 N SCIE0.259 N SCIE0.275 N SCI/SCIE 1.567 N SCI/SCIE0.747 N SCIE0.409 N SCI/SCIE 1.83 N SCI/SCIE 1.429 N SCIE0.009 N SCIE0.727 N SCIE 1.017 N SCIE0.448 N SCI/SCIE 2.098 N SCIE0.427 N SCI/SCIE0.516 N SCI/SCIE0.516 N SCIE0.561 N SCI/SCIE0.846 N SCI/SCIE 1.588 N SCI/SCIE 1.085 N SCIE0.158 N SCIE0.2 SCIEN SCIE0.31 N SCI/SCIE0.739 N SCI/SCIE 1.196 N SCIE0.542 N SCIE 1.022 N SCIE1N SCIE0.346 N SCIE0.4 N SCIE0.53 N SCIE0.804 N SCIE0.221 N SCIE0.209 N SCIE 1.824 N SCI/SCIE 1.366 N SCI/SCIE 1.255 N SCI/SCIE 1.032 N SCI/SCIE 1.247 N SCI/SCIE 1.245 N SCIE 3.633 N SCIE0.7 N SCI/SCIE0.725 N SCI/SCIE0.473 N SCI/SCIE0.636 N SCI/SCIE0.393 N SCIE0.436N SCIE0.488 N SCIE0.733 N SCIE0.566 N SCIE0.000 0 Y SCI/SCIE14.22 N SCIE 1.023 N SCIE0.348 N SCIE0.26N SCIE 1.231 N SCIEN SCIEN SCIE0.398 N SCIE0.863 N SCIE0.966 N SCIE0.99N SCIE0.103 N SCIE0.188 N SCIE0.114 N SCI/SCIE 1.553 N SCI/SCIE 1.582 N SCI/SCIE0.854 N SCIE0.722 N SCI/SCIE 1.872 N SCIE2010年影响因子2009年影响因子2008年影响因子5年平均影响因子0.7490.8650.9390.8653.000 5.500 5.000 6.3570.1250.0000.0001.826 1.922 1.3492.3890.3830.5150.0000.4040.1880.2520.3630.9280.7540.4940.5780.0310.0990.0690.0310.3020.2600.4300.4030.1940.0000.0001.662 1.048 1.3932.1510.7700.9450.441 1.0540.6250.704 1.155 1.0000.4500.4880.5350.7980.5050.5000.2680.4341.267 1.234 1.037 1.6011.599 1.817 1.8542.0100.8940.8350.9340.9180.8080.7210.819 1.1770.3480.3910.1700.3080.9370.8410.792 1.1120.658 1.2240.637 1.0342.577 2.331 1.614 2.8520.3970.1780.2310.3620.5110.5170.5150.6150.6070.5530.4120.8520.9470.9030.0001.806 1.602 1.556 1.8221.802 1.498 1.3352.2471.899 1.947 1.8942.9130.2130.2220.2090.4001.522 1.301 1.398 1.7451.919 1.956 1.5762.5641.266 1.288 1.077 1.4950.6820.3540.0000.6245.082 4.791 3.875 4.7381.060 1.2070.0001.518 1.2560.862 1.2931.439 1.537 1.4582.0890.6440.7210.5370.6220.4140.5000.0000.3511.667 1.770 1.6832.3900.3580.4800.3890.5170.1790.2080.0000.2620.2100.0000.2590.5710.5570.000 1.1710.5820.7810.8270.8390.4820.6350.7350.8420.6950.8150.938 1.1070.9560.9800.792 1.1440.2090.0000.0000.4000.3140.4380.5481.482 1.256 1.380 1.7450.4400.4520.6280.9070.2040.0000.0000.9420.959 1.421 2.2861.227 1.478 1.272 1.8620.0330.0480.0610.0210.5670.5990.740 1.1170.6170.869 1.532 1.4830.4120.3740.2580.4012.157 1.922 2.226 2.5120.2770.2890.4470.5070.7070.6840.6120.6470.2930.3510.4490.4760.7730.5910.6460.7900.6440.8260.662 1.1641.334 1.414 1.364 1.7320.8970.7480.6260.9920.1610.1030.0000.2560.1210.0000.2120.1650.0000.2390.8230.6870.6470.7500.4490.7020.722 1.2640.3450.391 1.2970.9400.3900.7080.7280.9780.8630.8960.656 1.205 0.3230.3570.0000.5790.1880.0000.5880.0000.0000.4590.4330.6840.9090.1030.0650.0000.2500.2860.2770.2801.7622.075 1.984 2.4711.210 1.407 1.437 1.5400.944 1.198 1.434 1.4961.903 1.900 1.000 1.0101.741 1.658 1.295 1.4381.252 1.221 1.105 1.2451.797 3.256 1.906 3.5330.7990.6550.6090.7930.6990.4120.2810.7900.4510.4160.3170.5600.4410.4020.3420.7020.5200.4320.4630.4880.3890.4340.4070.6540.4800.7730.3660.5790.7210.6300.4900.8220.3460.3700.2790.7430.0300.0450.0710.00310.36211.0248.00017.1330.7200.662 1.086 1.285 0.2540.1230.0000.2600.0950.4650.4161.316 1.064 1.137 1.2480.1590.1890.3210.2220.0480.0000.4660.5330.2350.3740.4290.4380.5000.8120.5920.847 1.1910.9761.0730.771 1.011 1.0870.1430.2080.0000.2810.1950.1330.2280.1100.0690.1450.0981.560 1.690 1.423 1.8691.574 1.664 1.385 1.732 0.6690.3440.5780.7580.7520.6590.724 1.0191.635 1.771 1.5092.2601.716 1.342 1.271备注。
超声波加工中英文对照外文翻译文献超声波加工中英文对照外文翻译文献(文档含英文原文和中文翻译)超声波加工综述摘要超声波加工适合切削不导电、脆性材料,例如工程陶瓷。
与其他非传统加工,如激光束、电火花加工等不同,超声波加工不会导致工件表面热损伤或显著的残余应力,这对脆性材料尤其重要。
超声波加工的基本原理,包括材料去除原理,各类操作参数对材料切除率、刀具磨损、工件精确度要求都有叙述,并着重表述了在加工工程陶瓷上的应用,制造复杂的三维立体陶瓷的问题也在叙述当中。
1 概述超声波加工及其应用超声波加工是一种非传统机械切削技术,通常与低材料去除率有关,它并不被加工材料的导电率和化学特性所限制,它用于加工金属和非金属材料,非常适合于脆性大,硬度高于40HRC[6–12]的材料,比如无机玻璃、硅片、镍、钛合金等等 [13–24],有了它,76um 的小孔也能加工,但是被加工的孔深度与直径之比限制在 3 比 1 之内 [8, 12]。
超声波加工的历史可以追溯到 1927 年,R. W. Wood 和 A. L. Loomis 发表的论文,1945年。
有关于超声波的第一项专利给了 L. Balamuth,现在超声波加工已经分化很多领域,超声波钻削、超声波切削、超声波尺寸加工、超声波研磨技术和悬浮液钻孔法,然而,在 20世纪 50 年代初只普遍知道超声波冲磨或 USM[8,25, 28, 30, 31]。
在超声波加工中,高频率的电能通过换能器/增幅器被转变为机械振动,之后通过一个能量集中装置被传送出去, 例如变幅杆/刀具组件[1, 17, 18, 30, 32]。
这导致刀具沿着其纵向轴线以振幅 0-50μm 高频率振动(通常≥20KHz)[16, 33, 34],典型额定功率范围从50~3000W[35]不等,在某些机器上可以达到 4kw。
一个受控静负载被施加于刀具和磨料悬浮液(由研磨材料的混合物组成、例如碳化硅,碳化硼等等,悬浮在水或油中)被泵传送到切削区域,刀具的振动导致磨料颗粒悬浮在刀具和工件表面间,通过微型片冲击工件表面从而去除材料[19]。
《基于Chebyshev-Ritz法的超声珩齿振动系统三维振动特性分析与实验研究》篇一一、引言随着科技的发展,超声珩齿技术已经成为现代机械加工领域的重要手段。
其工作原理主要是利用高频振动进行磨削和修整,而振动系统的三维振动特性直接决定了珩齿的加工效果和精度。
因此,对超声珩齿振动系统的三维振动特性进行分析与研究显得尤为重要。
本文将采用Chebyshev-Ritz法对超声珩齿振动系统进行深入研究,并通过实验验证其分析结果的准确性。
二、Chebyshev-Ritz法理论介绍Chebyshev-Ritz法是一种基于数值逼近理论的算法,主要用于求解偏微分方程的近似解。
在超声珩齿振动系统的研究中,该方法可以有效地对系统的三维振动特性进行数值分析和模拟。
其基本原理是通过将偏微分方程的解空间离散化,然后利用Chebyshev多项式对离散后的解进行逼近,从而得到近似解。
三、超声珩齿振动系统三维振动特性分析1. 模型建立:首先,根据超声珩齿振动系统的实际结构和工作原理,建立三维模型。
模型中应包括各个部件的几何尺寸、材料属性、约束条件等参数。
2. 理论分析:利用Chebyshev-Ritz法对模型进行数值分析和模拟。
通过求解偏微分方程,得到系统在不同频率和振幅下的三维振动特性。
3. 结果分析:对分析结果进行后处理,提取出系统三维振动的关键参数,如振幅、频率、相位等。
通过对比不同参数下的振动特性,可以了解系统在不同工况下的工作状态和性能。
四、实验研究1. 实验准备:根据理论分析的结果,设计实验方案。
准备实验所需的设备、材料和工具,如超声珩齿机、传感器、数据采集器等。
2. 实验过程:在实验过程中,应严格控制实验条件,如温度、湿度、压力等。
同时,要确保传感器和数据采集器的正常工作,以获取准确的实验数据。
3. 数据分析:对实验数据进行处理和分析,与理论分析的结果进行对比。
通过对比分析,可以验证Chebyshev-Ritz法在超声珩齿振动系统三维振动特性分析中的准确性和可靠性。
毕业设计(论文)外文资料翻译系(院):机械工程学院专业:机械设计制造及其自动化姓名:学号:1091101630外文出处:Computer-Aided Design & Applications,V ol. 2, Nos. 1-4, 2005, pp95-104附件: 1.外文资料翻译译文;2.外文原文。
附件1:外文资料翻译译文多轴数控加工仿真的自适应固体香港T. Yau1, Lee S. Tsou2 and Y u C. Tong31中正大学,imehty@.tw2中正大学,lstsou@.tw3 中正大学,pu@.tw摘要:如果在一个复杂的表面的加工中,通常会产生大量的线性NC段来近似精确的表面。
如果没有发现,直到切割不准确的NC代码,则会浪费时间和昂贵的材料。
然而,准确和视图独立验证的多坐标数控加工仍然是一个挑战。
本文着重介绍了利用自适应八叉树建立一个可靠的多轴模拟程序验证模拟切割期间和之后的路线和工件的外观。
体素模型的自适应八叉树数据结构是用来加工工件与指定的分辨率。
隐函数的使用刀具接触点的速度和准确性的检验,以代表各种刀具的几何形状。
它允许用户做切割模型和原始的CAD模型的误差分析和比较。
在加工前运行数控机床,以避免浪费材料,提高加工精度,它也可以验证NC代码的正确性。
关键词:数控仿真加工,固体素模型,自适应1.介绍NC加工是一个基本的和重要的用于生产的机械零件的制造过程。
在理想的情况下,数控机床将运行在无人值守模式。
使用NC仿真和验证是必不可少的,如果要运行的程序有信心在无人操作。
因此,它是非常重要的,在执行之前,以保证NC路径的正确性。
从文学来说,数控仿真主要分为三种主要方法,如下所述。
第一种方法使用直接布尔十字路口实体模型来计算材料去除量在加工过程。
这种方法在理论上能够提供精确的数控加工仿真,但使用实体建模方法的问题是,它是计算昂贵。
使用构造实体几何仿真的成本刀具运动的O(N 4)的数量的四次幂成正比。
Nondestructive MaterialT esting withUltraso ni c s 使用超声波对材料进行的非破坏性检测Int roduction to the Basic Principles基本原理介绍UNION ELECTRIC STEEL CORPORATION 美国联合电钢(戴维)轧辊公司安多利国际有限公司翻译2007年3月06日Contents 内容安多利国际有限公司Introduction介绍 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41.Why use ultrasonics for nondestructive material testing?为什么使用超声波进行非破坏性材料检测? . . . . . . . . . . .52.Ultrasonic testing tasks 超声波检测任务 . . . . . . . . . . . . . . . . . . . . . . .53.Detection of discontinuities 不连续的发现 . . . . . . . . . . . . . . . . . . . . . .64.Method of testing and instrument technology 检测方法和仪器技术. . .10 4.1The ultrasonic flaw detector 超声波裂纹检测仪 . . . . . . . . . . . . . . . . . . . .10 4.2Near r esolution . 近场的处理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 4.3The pr obe 探头. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .16 4.4Refraction and mode conversion 折射和模式的转变. . . . . . . .17 4.5Characteristics of angle-beam probes角度探头的特性. . . . . . . . . . . . . . . . . .194.6The TR pr obe TR探头 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205.Locating discontinuities 断裂的定位. . . . . . . . . . . . . . . . . . . . . . . . . .225.1Calibration of the instrument 仪器校准 . . . . . . . . . . . . . . . . . . . . . . .22 5.1.1Calibration with a straight-beam probe平行光束探头的校准 . . . . . . . . . . . . . . . . . . .22 5.1.2Calibration with a TR pr obe TR探头的校准 . . . . . . . . . . . . . . . .. . . . . . . .24 5.1.3Calibration with an angel-beam probe 角度探头的校准 . . . .. . . . . . . .. . .265.1.4Locating reflectors with an angle-beam probe 使用角度探头对反射器进行定位 . .286.Evaluation of discontinuities 断裂的评估 .. . . . . . . . . . . . . . . . . . . . . .296.1Scanning method 扫描方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 6.2Evaluation of small discontinuities: The DGS method对小断裂的评估:DGS方法. . . . .30 6.3Sound attenuation 消音. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 6.4The refer ence block method 叁考程序块方法. . . . . . . . . . . . . . . . . . . . . .34 6.4.1Comparison of echo amplitudes 回声振幅的比较 . . . . . . . . . . . . . . . . . . . .346.4.2Distance amplitude curve 振幅曲线的距离. . . . . . . . . . . . . . . . . . . . . . . . ..357.Documentation 文件. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .378.Diagnosis of indications (outlook)指示的分析诊断. . . . . . . . . . . . . . . . . . . . . .40 Refer ence list 参考清单. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41前言因时间仓促,加之专业技术欠缺,本译文一定会有很多不准确的地方。
Modeling and Simulation 建模与仿真, 2023, 12(2), 1512-1522 Published Online March 2023 in Hans. https:///journal/mos https:///10.12677/mos.2023.122141基于超声振动辅助车削的建模与仿真研究钱兆峰,王 艳上海理工大学机械工程学院,上海收稿日期:2023年2月13日;录用日期:2023年3月21日;发布日期:2023年3月28日摘要超声振动辅助车削相对于传统车削加工有提高车削效率、提高刀具使用寿命、提高材料加工表面完整性等优点。
本文分析了车削加工中的振动机理,阐述了超声振动对传统车削加工的影响,同时以钛合金(TC4)为研究对象,基于振动学理论,建立了一种表征传统车削振动系统的解析模型,并使用ABAQUS 软件建立了二维车削有限元切削仿真模型,开展了传统车削与超声振动辅助车削两种工艺的TC4切削仿真模拟。
仿真结果表明,当超声振幅在4 μm~12 μm 内时,超声振动辅助车削加工相较于传统车削加工,刀具受到的径向力下降了11.4%~20%,TC4加工表面最大压应力下降了7.8%~19.4%,且加工表面压应力和径向力均随着超声振幅的提高而下降。
关键词车削,钛合金(TC4),超声振动,ABAQUSModeling and Simulation Research Based on Ultrasonic Vibration Assisted TurningZhaofeng Qian, Yan WangSchool of Mechanical Engineering, University of Shanghai for Science and Technology, ShanghaiReceived: Feb. 13th , 2023; accepted: Mar. 21st , 2023; published: Mar. 28th , 2023AbstractCompared with traditional turning, ultrasonic vibration assisted turning has the advantages of improving turning efficiency, improving tool life and improving surface integrity of material processing. In this paper, the vibration mechanism in turning is analyzed, and the influence of ul-trasonic vibration on traditional turning is expounded. At the same time, taking titanium alloy (TC4) as the research object, an analytical model characterizing the vibration system of traditional turning is established based on the theory of vibration. The two-dimensional turning finite ele-ment cutting simulation model is established by using ABAQUS software, and the TC4 cutting si-钱兆峰,王艳mulation of traditional turning and ultrasonic vibration assisted turning is carried out. The simu-lation results show that when the ultrasonic amplitude is within 4 μm~12 μm, compared with the traditional turning, the radial force of the tool is reduced by 11.4%~20%, and the maximum com-pressive stress of the TC4 machined surface is reduced by 7.8%~19.4%. The surface compressive stress and radial force decrease with the increase of ultrasonic amplitude.KeywordsTurning, Titanium Alloy (TC4), Ultrasonic Vibration, ABAQUSThis work is licensed under the Creative Commons Attribution International License (CC BY 4.0)./licenses/by/4.0/1. 引言钛合金(TC4)是一种难加工材料,具有材质较轻、强度硬度高、耐热性强、抗腐蚀性好等优点[1]。
钛合金超声椭圆振动辅助车削实验研究路冬;蔡力钢;程强;吴勇波【摘要】Tests for ultrasonic elliptical vibration-assisted turning (UEVT)of titanium alloy were carried out.The elliptical trajectories of the cutting tool under different power supplying levels were obtained.The variations of the cutting forces in UEVT were analyzed.It was shown that compared with cutting forces in conventional turning (CT),the cutting forces in UEVT decreases obviously.The surface roughness in UEVT was also studied.The results showed that compared with surface roughness in CT,the surface roughness Ra value in UEVT is a little bit larger,while the surface roughness Rz value decreases obviously in UEVT.The effect of feed rate on cutting forces was analyzed.It was shown that the cutting forces increase with increase in the feed rate both in CT and UEVT;for the same feed rate,the cutting forces in UEVT are less than those in CT;the reduction level decreases with increase in the feed rate.The morphologies of a workpiece,surface were observed both in CT and UEVT.It was shown that regular vibration marks along the cutting rate direction on the workpiece surface are found in UEVT.%设计钛合金超声椭圆振动辅助车削实验,获得不同超声波电源电压下刀具近似椭圆运动轨迹。
外文翻译工学部工学二部专业机械设计制造及其自动化班级B642132学号B64213202姓名李芳欣指导教师陈伟负责教师沈阳航空工业学院北方科技学院2010年6 月原文:Introduction die casting mold1. Casting process in real terms andPressure die casting is short, and its essence is under pressure to liquid or semi-liquid metal to a high speed filling chamber die casting model, and solidified under pressure forming and casting methods obtained.High pressure and high speed is when the molten alloy die-casting forming process of filling two major characteristics, is also a die-casting and other casting methods, the fundamental difference lies. In addition, the casting mold has high dimensional accuracy and surface roughness is to . Because of the above characteristics, making the structure or quality of casting and die casting process and the performance of ﹑production process has its own characteristics.Alloy die-casting machine and die casting mold die-casting production process are the three basic elements.2. The advantages of casting1)The size of high precision die-castingLow-dimensional precision surface roughness up to IT11 ~ IP13-class, sometimes up to IT9 level. Product interchangeability good.2)High utilization ratioAs the die-casting with precision ﹑size and low surface roughness, generally no longer be directly assembled using mechanical processing, or processing of very small, only a small amount of machining can be assembled through the use of metal so that increased utilization also reduces the amount of processing equipment and working hours.3)Can create a clear outline of complex shape ﹑﹑thin wall deep cavity in the metal parts because the molten metal under high pressure to maintain high liquidity, and thus have access to other processes are difficult to process the metal parts.4)In die-cast parts can be directly embedded in other materials, parts, to save your material and processing timeThis will not only meet the requirement, to expand product applications, but also reduce the workload of assembly to simplify the manufacturing process5)Die casting organizations, intensive, high strength and hardnessBecause the liquid metal is solidified under pressure, because of filling time is very short, fast cooling, so close to the surface of casting a layer of metal grains smaller, organization-intensive, not only to improve the surface hardness and good wear resistance and corrosion resistance.6)Productivity highAs easy to suppress the production mechanization and automation of operation, short production cycle, high efficiency, may be suitable for mass production. In all casting method, die-casting is the most productive way.3. The application of die-castingModern metal casting is to develop faster processing of a high efficiency, low non-cutting metal forming precision casting method. Because of the above advantages of die casting, this technology approach has been widely applied in all walks of life in thenational economy . die-casting except for automobiles and motorcycles, instruments, industrial electronics, but also widely used in household appliances, farm machinery, radio, telecommunications, machine tools, transportation, shipbuilding, cameras, watches, computers, textile equipment and other industries. including automobiles and Motorcycle manufacturing is the most important areas of application, about 70% of cars, motorcycles accounted for about 10%.Some die-casting parts currently produced only a few grams of the smallest, the largest aluminum alloy casting, see the quality up to 50kg, the largest diameter of up to 2m.Current methods used to produce aluminum die casting, zinc, magnesium and copper alloys. Based on the characteristics of die-casting process, because there are not any good high temperature die materials, ferrous metal die-casting is still in the research trials. Non-ferrous alloy die casting in the aluminum alloy had the highest rate; zinc alloy followed. But with the development of automotive electronic communications industry and product requirements of lightweight, magnesium alloy die-casting technology coupled with the recent maturing, so that magnesium alloy die-casting market attention. now in the world have formed a certain scale of the automobile industry, IT industry, infrastructure, parts of the magnesium alloy production groups,The application of magnesium alloy die castings gradually increased its production significantly increased, and there will be greater development is expected in the future.4. Die Casting Design1)Die casting process on the structure of the requirementsThe quality of die casting process not only by various factors, the structural design process of its parts is a very important factor of its structure and process rationality determines the order for the work can proceed smoothly. If the choice of parting, runner design, layout introduction agencies, Shrinkage control ﹑guarantee the accuracy, the type and extent of defects are casting and casting their own advantages and disadvantages of the related technology.Casting a direct impact on the structural design of the structural design of the die casting mold and ease of manufacturing productivity and die life ﹑fields, so in the design of die casting of many adverse factors are considered and be excluded in advance. If designers are familiar with the casting process, then the design of the structure of die castings is usually quite satisfied. Design die-casting to consider the following questions when.2)Castings basic design of the basic structureCompact thin wall castings, and can increase the relative strength and abrasion resistance. Die-casting wall thickness increases and the internal defects such as porosity ﹑shrinkage also increased, thus guaranteeing the casting of sufficient strength and stiffness of the premise should be to minimize the thickness of thin and add ribs to resolve. Design of reinforcement to increase strength and rigidity of parts, but also to improve the casting process, to reveal smooth metal, to eliminate relying solely on increasing the pore wall thickness and contraction caused by defects. Rib thickness should not exceed the thickness of the wall connected with desirable thickness of unreinforced Office 2 / 3 3 / 4. When the casting wall thickness less than 2mm, the easy to feel suffocated in the baroffice,It is not appropriate based reinforcement; such as bars to be set, will enable the tendons connected to office with wall thickening.Although the wall thick casting casting quality of the negative impact, but not too thin, otherwise the liquid filling bad metal, casting forming difficult. Casting appropriate thickness; aluminum alloy for the 1 ~ 6mm, zinc alloy for the 1 ~ 4mm, magnesium alloy is 1.5 ~ 5mm, copper alloy for the 2 ~ 5mm.Wall and the wall, die-casting parts in the junction, whether acute or obtuse angle ﹑should be designed to be rounded, and only when the estimated selected as the site of the parting was not connected with rounded corners. Casting corner help the flow of molten metal to reduce the eddy current, gas easily discharged, help shape; while avoiding the sharp corners of office stress concentration and cracking. On the need for plating and coating of the die-casting is more important is to obtain uniform coating and rounded corners to prevent sharp corners Office indispensable condition for the deposition. The terms mold, casting mold corner to extend the use of time. No stress concentration will occur casting corner, die easily collapse angleThis phenomenon of high melting point alloy (such as copper alloy) is particularly noteworthy.For the parts required by the principle of the use of selected out of the corner is too large, then the preferred slightly smaller, but the connection should be not less than half of the thinnest wall thickness. For smaller radius, though it can die out, but only in the special purpose use only small parts of the fillet, then r = 0.3 ~ 0.5mm.3)Stripping gradientFor ease of casting extrusion mold cavity and core, die-casting should be as large as possible with adequate and stripping slope. Preferably in the part design, to take into account the slope. Stripping gradient of size and geometry, such as casting ﹑wall thickness and height or depth of the cavity, or cores, such as surface roughness of the surface state. Within the allowable range, the larger the ejection should slope to reduce the required impetus4)Cast hole designOne of the features die-casting process is more directly cast a deep hole. Parts Die hole diameter and depth of a certain relationship between the small aperture can only die shallower depth. Molten metal filling process will be the impact of cores, and make it in the state of the thermal stress, deterioration of working conditions. After the metal casting mold filling solidification contraction of the die on the cores (for die-casting parts Kong) have a great hold of power, while the slender cores are often unable to withstand such force and contractility Hold role of the bent and broken. So when the part design, die casting out hole diameter should not be too small,And should also be considered an appropriate pore size and depth consistent with the ratio between the same time, the hole should be slightly larger slope.As the pitch size of the space where the wall thickness ﹑and cores forming the root of the fillet (or angle) is the force of the cores have a great impact, so pitch the greater the hole where the wall thickness of more thick, rounded cores forming the root of the smallerhole depth should be shallower. This is, for the thick-walled castings and large castings should pay attention.5)Die insertsCasting can be cast into metal or non-metallic die-casting parts on the workpiece, so that a part of die casting can have a special nature or purpose. The inserts cast into the shape of a lot, usually screw (screw gauge) axis ﹑﹑﹑nut holder, such as tubular ﹑sheet workpieces. The materials are mostly copper, iron and non-metallic materials, steel ﹑also useful for performance than metal casting itself, or with a special character (such as wear-resistant conductive ﹑﹑﹑magnetic insulation, etc.)5. The basic structure and die-casting mold parting surface designCasting mold is important to ensure the quality of die casting process and equipment, which directly affects the shape, size casting accuracy ﹑﹑surface quality. Casting production process can proceed smoothly, whether casting quality assurance, to a large extent depend on the structure of die casting mold rationality and technological advance. In the die casting mold design process, the structure must be a comprehensive analysis of die casting, die-casting machine and die-casting process to understand and master the different casting conditions, the metal filling characteristics and mobility to, and taking into account economic factors, to design a realistic and meet the production requirements of the casting mold.Die Die Die by the fixed mold and the dynamic of two major components. Fixed in the fixed mold die-casting machine scheduled to die mounting plate, pouring system connected with the pressure chamber. Fixed in the die casting machine dynamic model of dynamic module mounting plate, with the dynamic model will be fitted with plate movement ﹑mold mold mold. Clamping time, the dynamic model and fixed model to separate open the body cavity of the die-casting from the launch.Die Die Die dynamic mode and set the combination of the surface is called sub-surface. Sub-surface design is die-casting mold design an important part. Sub-surface and casting of the shape and size ﹑die casting in the casting mold is closely related to the location and direction. Determination of sub-surface structure of the die-casting and die casting mold will have a great impact on quality.In accordance with the shape of sub-surface, sub surface generally can be divided into straight parting parting ﹑ladder inclined surface and surface sub-sub-surface.Casting mold is usually only a sub-surface, known as the single sub-surface; but sometimes because the special structure of die casting, die casting or production process to meet the requirements, often need to add one or two secondary sub-surface, said for the multisection surface. Multisection single surface can be a variety of sub-surface combinatorial synthesis. The choice of sub-surface structure of the die casting mold and die casting dimensional accuracy has a decisive influence. The choice of sub-surface structure of the die casting mold and casting quality is multifaceted and must be a reasonable choice under the circumstances.译文:压铸模介绍一.压铸的实质及工艺过程压铸是压力铸造的简称,其实质是在高压作用下,使液态或半液态金属以较高的速度充填压铸模型腔,并在压力下成形和凝固而获得铸件的方法.高压力和高速度是压铸时熔融合金充填成形过程的两大特点,也是压铸与其他铸造方法最根本的区别所在.此外,压铸模具有很高的尺寸精度和很地的表面粗糙度值.由于具有以上所述特点,使得压铸件的结构﹑质量和有关性能﹑压铸工艺以及生产过程都具有自己的特征.合金材料﹑压铸机及压铸模是压铸生产工艺过程的三个基本要素.二.压铸的优点1、压铸件的尺寸精度高表面粗糙度值低尺寸精度可达IT11~IP13级,有时可达IT9级。
军事英文军:Army;师:division;旅:brigade;团:regiment/corps;营:battalion;连:company;排:platoon;班:squad。
陆军Army一级上将General First上将General中将Lieutenant General少将Major General大校Senior Colonel上校Colonel中校Lieutenant Colonel少校Major上尉Captain中尉First Lieutenant少尉Second Lieutenant军事长Master Sergeant专业军士Specialist Sergeant上士Sergeant, First Class中士Sergeant下士Corporal上等兵Private, First Class列兵Private海军Navy一级上将Admiral, First Class上将Admiral中将Vice Admiral少将Rear Admiral大校Senior Captain上校Captain中校Commander少校Lieutenant Commander上尉Lieutenant中尉Lieutenant, Junior Grade少尉Ensign军事长Chief Petty Officer专业军士Specialist Petty Officer 上士Petty Officer, First Class中士Petty Officer, Second Class 下士Petty Officer, Third Class上等兵Seaman, First Class列兵Seaman, Second Class空军Air Force一级上将General, First Class上将General中将Lieutenant General少将Major General大校Senior Colonel上校Colonel中校Lieutenant Colonel少校Major上尉Captain中尉First Lieutenant少尉Second Lieutenant军事长Master Sergeant专业军士Specialist Sergeant上士Technical Sergeant中士Staff Sergeant下士Corporal上等兵Airman, First Class列兵Airman, Second Class军棋military chess工兵sapper排长platoon commander(中尉lieutenant)连长company commander ( 上尉captain )营长battalion commander (少校major)团长colonel(上校)旅长brigadier (准将)师长division commander军长army commander司令chief commander军旗army flag/ensign地雷landmine炸弹bomb行营field headquarter大本营supreme headquarter和平使命-2009: Peace Mission 2009联合军事演习: joint military drill, joint military exercise, joint military manoeuvre海军海上封锁: naval blockade,maritime blockade隔离作战演练: isolation drill两栖登陆: amphibious landing装备: hardware战舰: military vessel驱逐舰: destroyer护卫舰: frigate登陆艇: landing ship, landing craft潜艇: submarine猎潜艇: submarine hunter反潜舰: anti-submarine vessel海军舰队: naval fleet"沙波什尼科夫海军元帅"号大型反潜舰: submarine-hunting ship Marshall Shaposhnikov武装直升机: armed helicopter战斗机: battle plane轰炸机: bomber, cargo jets运输机: freighter远程预警机: long-range early warning aircraft反潜鱼雷: anti-sub torpedo深水炸弹: depth charge海陆空军: amphibious force水陆坦克: amphibious tank海军陆战队: marine corp炮兵: artillery空降部队: paratroop, airborne troop地面进攻: ground attack特种部队: special taskforce实弹: live ammunition滩头阵地: beachhead潜望镜periscope鱼雷torpedoes电动机鱼雷electric torpedo航空鱼雷aerial torpedo火箭助飞鱼雷rocket-assisted torpedo线导鱼雷wire-guided torpedo发射机transmitter自导控制组件self-directing unit装药和电子组件charge and electron unit待发装置actuator指令控制组件command control unit陀螺控制组件gyro-control unit电源控制组件power-supply control unit燃烧室combustor舵rudder推进器propeller潜艇submarine鱼雷舱torpedo room鱼雷发射管firing tube声纳sonar操纵线control wire 水雷submarine mine自航式水雷mobile mine锚雷mooring mine触发锚雷moored contact mine触角antenna雷索mine-mooring cable沉底水雷ground mine漂雷floating mine深水炸弹depth charge; depth bomb航空母舰aircraft carrier核动力航空母舰nuclear-powered aircraft 阻拦装置arrester飞行甲板flight deck雷达天线radar antenna导航室island舰桥bridge机库hangar升降机口aircraft lifts; elevators舰载机起飞弹射装置catapults油料舱fuel bunker弹药舱ammunition store贮存舱storage hold通信中心室communication center核反应堆nuclear reactor生活舱accommodation巡洋舰cruiser护卫舰escort vessel; frigate导弹护卫舰missile frigate战列舰battleship护卫艇corvette供应舰tender ship; depot ship舰队补给舰fleet depot ship海上补给船sea depot ship运输舰transport ship汽油运输船gasoline transport ship扫雷舰mine sweeping vessel扫雷艇minesweeper鱼雷艇torpedo boat导弹快艇missile speedboat导弹潜艇guided-missile submarine核动力潜艇nuclear-powered submarine 潜艇救护舰submarine lifeguard ship猎潜艇submarine chaser登陆舰landing ship坞式登陆舰dock landing ship电子侦察船electronic reconnaissance ship 情报收集船information-collecting ship测量船survey vessel调查船research ship打捞回收船salvage vessel核动力破冰船nuclear-powered icebreaker 气垫巡逻船patrol hovercraft导弹军导弹missiles洲际导弹intercontinental missile中程导弹mediurn-range missile巡航导弹cruise missile核弹头nuclearwerhead地对地导弹surface to-surface missile地对空导弹surface-to-air missile战略导弹: strategic missile舰对空导弹ship-to-air missile空对空导弹air-to-air missile空对地导弹air-to-surface missile反幅射导弹anti-radiation missile反舰导弹anti-ship missile反潜导弹anti-submarine missile自导鱼雷homing torpado弹翼missile wing减速伞drag parachute制导装置guidance device弹体guided missile doby固体火箭发动机solid propellant rocket尾翼tail fin飞行弹道trajectory发射制导装置launching guidance device 发射管launching tube反弹道导弹anti-ballistic missile集束炸弹bomb-cluster地下井missile silo移动式井盖sliding silo door火箭发射场rocket launching site发射塔launching tower勤务塔service tower陆军核武器nuclear weapons燃料库fuel depot; fuel reservoir指挥室command post通气道air vent; ventilation shaft多级火箭multistage rocket再入大气层飞行器re-entry vehicle原子弹atomic bomb氢弹hydrogen bomb引爆装置igniter 热核燃料fusionable material蘑菇状烟云mushroom cloud冲击波shock wave; blast wave放射性落下灰尘radioactive fallout核爆炸观测仪nuclear explosion observation device 辐射仪radiation gauge辐射级仪radiation level indicator钢珠弹bomb with steel balls; container bomb unit 化学炸弹chemical bomb主战坦克capital tank重型坦克heavy tank中型坦克medium tank轻型坦克light tank水陆两用坦克amphibious tank喷火坦克flame-throwing tank架桥坦克bridge tank扫雷坦克mine-sweeping tank坦克推土机tankdozer侦察坦克reconnaissance tank无炮塔坦克turretless tank坦克牵引车recovery tank坦克修理后送车repair-service tank反坦克障碍物anti-tank obstacle桩寨pile stockade鹿寨abatis反坦克断崖anti-tank ditch反坦克崖壁anti-tank precipice反坦克三角锥anti-tank pyramids炮手gunner坦克兵tank soldier炮口muzzle炮管barrel清烟器fume extractor炮塔turret瞄准镜gun sight发动机散热窗radiator grille备用油箱reserve fuel tank主动轮driving wheel遮护板shield负重轮loading wheel烟幕弹发射筒smoke bomb discharger诱导轮inducer空军low Earth orbit 近地轨道lunar module 登月舱lunar rover 月球车main landing field/ primary landing site 主着陆场manned space 载人航天计划manned space flight 载人航天manned spaceship/ spacecraft 载人飞船Milky Way 银河系multi-manned and multi-day spaceflight 多人多天太空飞行multistage rocket 多级火箭NASA(The National Aeronautics and Space Administration) 美国航空航天管理局nozzle of the main engine 主发动机喷嘴orbit 轨道orbit the earth 绕地球飞行orbital module 轨道舱emergency oxygen apparatus 应急供氧装置Experimental Spacecraft 试验太空船fine-tune orbit 调整轨道geosynchronous satellite 地球同步人造卫星hatch 舱口Hubble Space Telescope 哈勃太空望远镜International Space Station 国际空间站ladder 扶梯landing area 着陆区landing pad 着陆架launch a satellite 发射卫星launch pad 发射台life support system 生命维持系统LM-maneuvering rockets 登月舱机动火箭Long March II F carrier rocket 长征二号F运载火箭access flap 接口盖antenna 天线Apollo 阿波罗号宇宙飞船ascent stage 上升段astronaut 航天员capsule 太空舱carrier rocket 运载火箭rocket launcher 火箭发射装置;火箭发射器CAST(the Chinese Academy of Space Technology) 中国空间技术研究院CNSA(China National Space Administration)中国航天局command module 指令舱,指挥舱communication satellite 通信卫星descent stage 下降段directional antenna 定向天线outer space; deep space 外太空payload capability 有效载荷能力propelling module 推进舱recoverable satellite 返回式卫星re-entry module 返回舱remote sensing satellite 遥感卫星satellite in Sun-synchronous orbit 太阳同步轨道卫星second stage 第二级service module 服务舱Shenzhou VI spacecraft 神舟六号solar cell 太阳电池solar panel 太阳能电池板space elevator 太空升降舱space food 太空食物space outfits(space suits, gloves, boots, helmet etc.)太空服space physics exploration 空间物理探测space shuttle 航天飞机spacecraft 航天器Telstar 通讯卫星third stage 第三级unmanned spaceship / spacecraft 无人飞船weather satellite 气象卫星launch a satellite 发射卫星artificial satellite 人造卫星airliner 班机monoplane 单翼飞机glider 滑翔机trainer aircraft 教练机passenger plane 客机propeller-driven aircraft 螺旋桨飞机jet (aircraft) 喷射飞机amphibian 水陆两用飞机seaplane, hydroplane 水上飞机turbofan jet 涡轮风扇飞机turboprop 涡轮螺旋桨飞机turbojet 涡轮喷射飞机transport plane 运输机helicopter 直升机supersonic 超音速hypersonic 高超音速transonic 跨音速subsonic 亚音速Airbus 空中客车Boeing 波音Concord 协和Ilyusin 依柳辛McDonald-Douglas 麦道Trident 三叉戟Tupolev 图波列夫军事卫星military satellite侦察卫星reconnaissance satellite预警卫星early warning satellite电子侦察卫星electronic reconnaissance satellite导航卫星navigation satellite测地卫星geodesic satellite军用通讯卫星military communications satellite军用气象卫星military meteorological satellite卫星通信车satellite communications vehicle宇宙空间站space station警戒雷达warning radar引导雷达director radar制导雷达guidance radar目标指示雷达target radar测高雷达height finding radar三坐标雷达three-dimensional radar弹道导弹预警相控阵雷达ballistic missile early-warning phased-array radar导航雷达navigation radar机载截击雷达airborne intercept radar炮瞄雷达gun-pointing radar对空警戒雷达aircraft-warning radar航海雷达marine radar对海管戒雷达naval warning radar侦察雷达reconnaissance radar卫星通信天线satellite communication antena驱逐舰destroyer歼击机fighter plane; fighter空速管airspeed head; pilot tube陀螺gyroscope无线电罗盘radio compass平视显示机head-up display火箭弹射座椅ejector seat副翼aileron襟翼flap燃油箱fuel tank垂直尾翼tail fin; vertical stabilizer阻力伞舱drag parachute housing水平尾翼horizontal stabilizer液压油箱hydraulic oil container副油箱auxiliary fuel tank主起落架main landing gear机翼整体油箱integral wing tank机炮machine gun; cnnon进气道系统air-inlet system前起落架front landing gear空气数据计算机air-data computer迎角传感器angle of attack sensor进气口头锥air-inlet nose cone 战斗机combat aircraft截击机interceptor强击机attacker歼击轰炸机fighter-bomber轻型轰炸机light bomber战略轰炸机strategic bomber电子战机electronic fighter高速侦察机high-speed reconnaissance plane空中加油机tanker aircraft运输机transport plane; air-freighter水上飞机seaplane; hydroplane反潜巡逻机anti-submarine patrol aircraft教练机trainer aircraft; trainer垂直起落飞机vertical take-off and landing无尾飞机tailless aircraft隐形轰炸机stealth bomber可变翼机adjustable wing plane动力滑翔机power glider扫雷直升机mine-sweeping helicopter旋翼rotor机身fuselage抗扭螺旋桨anti-torque tail rotor航空炸弹aerobomblight water 轻水light water reactor (LWR) 轻水反应堆limited nuclear option 有限的核被选方案Long March 2E rocket with strap-on boosters [PRC] 长征二E捆绑火箭[中国]long-range ballistic missile (LRBM) 远程弹道导弹low earth orbit (LEO) 卫星低轨道;近地卫星low frequency (LF) 低频low level missile target drone 低空导弹目标声low-enriched uranium 低浓缩铀maneuverable reentry vehicle (MARV) 可操纵返航运载工具marine corps 登陆队;陆战队maritime rights 海洋权materials test reactor 物质试验反应堆material unaccounted-for (MUF) 材料损失Maverick air-to-surface missile [US] 小牛空对地导弹[美国] maximum range 最大射程measurement and control 测控mechanized 机械化mediate 调停medium-range ballistic missile (MRBM) 中程弹道导弹mid-course guidance 飞行中段制导military bloc 军事集团military hardware 武器装备military spending 军事开支; 军费military use 军用military-industrial complex (MIC) 军事工业复合体mine detector 探雷器minelaying machine; minelayer 布雷器mini-nuke 小型核武器missile fast attack craft 导弹快艇missile silo 导弹地下发射井mixed-oxide fuel 混氧燃料mobile formation 机动编队mobile missile 机动导弹moderator 减速器moon craft 月球探测机multilateral disarmament 多边裁军multinational technical means 多国技术手段multiple independently targeted re-entry vehicle (MIRV) 多弹头分导再入飞行器multiple protective shelter (MPS) 多重保护壳multiple reentry vehicle (MRV) 多弹头返航运载工具multiple rocket launcher (MRL) 多管火箭炮multiple-launcher rocket system 多管火箭系统multiple-tube rocket gun 多管火箭炮multiple-warhead missile 多弹头导弹multipolarity 多级化mutual non-aggression 互不侵犯mutual non-interference 互不干涉national defense 国防national security 国家安全national sovereignty 国家主权national technical means 国家技术手段natural uranium 天然铀naval aviation corps 海军航空兵部队naval space surveillance (NA VSPASUR) 海军空间监测NBC protective clothing 三防服near-site verification 近场核查negative security assurance 消极安全保证neutron 中子neutron bomb 中子弹no first use 不首先使用nominal weapon 低威力核武器(2万吨级以下)non-interference in each other's internal affairs 互不干涉内政non-nuclear weapon states (NNWS) 非核武器国家non-proliferation 不扩散non-proliferation policy 不扩散政策non-use assurance 不使用核武器保证nuclear air-burst 空中核爆炸nuclear attack submarine 核动力攻击潜艇nuclear deterrent 核威慑力量nuclear device 核装置nuclear doctrine 核条令nuclear fuel 核燃料nuclear fuel cycle capacities 核燃料循环容量nuclear proliferation 核扩散nuclear radiation 核辐射nuclear reactor 核反应堆nuclear stockpile 核武器储备nuclear testing 核试验nuclear weapon states (NWS) 核武器国nuclear weapon-free zone 无核区nuclear yield 核当量nuclear, biological, and chemical weapons/warfare (NBC) 核,生物和化学武器/战争off-line refueling 线外式加燃料off-site monitoring 远距离监视once-through fuel cycle (核)燃料单一循环on-line refueling 线内式加燃料on-site inspection (OSI) 实地核查;现场核查optimum height 最佳高度optimum security threshold 最适当安全门槛orbit 轨道outguessing regress (核打击决策)猜测循环over pressure 超压力over-the-horizon missile attack 超视距导弹攻击pace of proliferation 扩散步幅parameter 参数parity 均势pathfinder 航向指示器Patriot missile 爱国者导弹payload 有效荷载peaceful coexistence 和平共处peaceful nuclear explosion (PNE) 和平用途核爆炸peaceful use 和平利用penetration aids 突防用具perigee 近地点perimeter acquisition radar (PAR) 环形搜索雷达perimeter portal monitoring 进出口周边监视permissive action link 允许行动联系Perry-class guided missile frigate [US] 派里级导弹巡航舰[美国]phased-array radar 相位阵列雷达physical protection (of nuclear materials) 核物质保护pilotless target aircraft 无引行目标飞行器pin-point bombing; precision bombing 定点轰炸planned aggregate yield 计划总当量plutonium fuel cycle 钚燃料循环plutonium production reactor 钚生产反应堆plutonium-239 钚239plutonium-240 钚240point of impact 弹着点polar orbiting geophysical observatory (POGO) 极地轨道地球物理观测卫星polar space launch vehicle (PSLV) 极地空间发射器Polaris missile 北极星导弹Polaris submarine 北极星潜艇positive security assurance 积极安全保证; 肯定句安全保障power politics 强权政治power reactor 动力反应堆precision guided munitions (PGM) 精确导向武器Prithvi guided missile [India] 蟮氐嫉?[印度]production reactor 生产反应堆projectile 射弹propellant 火箭推进剂propelled rocket ascent mine (PRAM) 动力式火箭助生水雷proton 质子pursuit 追击radar cross-section 雷达有效区radar intelligence (RADINT) 雷达情报radar ocean reconnaissance satellite 雷达海洋侦察卫星radioisotope 放射性同位素radius of action 活动半径Rafale fighter[France] 飚风战斗机[法国]ramjet 冲压式喷气发动机range 距离; 射程range finder 测距仪rapprochement 解冻ratification 批准; 认可reactor core 反应堆芯reactor-grade plutonium 反应堆级钚reconnaissance 侦察recycled nuclear fuel 再生核燃料; 回收核燃料red fuming nitric acid (RFNA) 浓硝酸(发红烟硝酸)reduced blast (enhanced radiation) 弱冲击波(强辐射)reentry vehicle (RV) 重返大气层飞行器reflective particle tag (R&D by Sandia Lab) 发射粒子标签(Sandia 实验室研制)refueling (再) 加燃料regime 政体regional disarmament 区域裁军reliability (e.g., of nuclear weapons) 可靠性remotely-piloted vehicle 遥控飞行器remote sensing technology 遥感技术render-safe experiments 原始核装置拆卸的安全reprocessing (of plutonium) (钚)再处理research and development (R&D) 研究与发展research reactor 研究反应堆residual radiation 剩余(原子核) 辐射retaliation 报复ricin (WA) 蓖麻毒素rocket 火箭rocket engine 火箭发动机roll and yaw departure 侧滚脱离外加偏航脱离routine inspection 例行视察safeguarded facility 受保障监督的设施safeguards 保障监督satellite (space) launch vehicle 卫星发射器(空间运载火箭) satellite data system 卫星数据系统satellite defense 卫星防御satellite inspector system 卫星监视器系统sea cobra helicopter 海眼镜蛇直升飞机sea knight helicopter 海武士直升飞机sea stallion helicopter 海种马直升飞机second strike 核反击security dilemma 安全困境;安全两难security guarantees 安全保证self-defense 自卫semi-synchronous orbit 卫星半同步轨道sense and destroy armor (SADARM) 反装甲弹sensitive materials 敏感物质short-range attack missile 近程攻击导弹short-range ballistic missile (SRBM) 短程弹道导弹Shrike antiradar air-to-surface missile [USA] 百舌鸟空对地反雷达导弹[美国]Sidewinder air-to-air missile [US] 响尾蛇空对空导弹[美国] sighting device 瞄准器signals intelligence (SIGINT) 信号情报Silkworm missile series (short/medium-range coastal defense missile) 蚕式飞弹系列(近/中程海防飞弹)silo 发射井simulation (e.g., nuclear test) 模拟single integrated operational plan (SIOP) 统一攻击目标计划single-role mine hunter (SRMH) 单一任务猎雷舰smooth-bore gun 滑堂炮sortie 飞机架次sound surveillance system (SOSUS) 声响监测系统space-based 天基space-based interceptor 太空截击体space detection and tracking system (SPADATS) 空间探测与跟踪系统space mine 天雷special inspections 特别视察;专门视察spent fuel 乏燃料spent fuel rods 乏燃料棒spent fuel storage 乏燃料储存splash down ?q辅staphylococcal entotoxin 葡萄球菌毒素Sting missile [USA] 刺针飞弹[美国]stockpile 储存; 储备strategic forces 战略部队strategic nuclear weapon 战略核武器strategic offense 战略进攻strategy 战略Styx missile 冥河式导弹sub-kiloton weapon 亚千吨兵器submarine reactor 海底反应堆submarine-launched ballistic missile (SLBM) 潜艇发射的弹道导弹submarine-launched cruise missile (SLCM) 潜艇发射的巡航导弹super high frequency (SHF) 超高频superpowers 超级大国supersonic anti-ship missile 超音速反舰导弹supplier countries 供应国surface-to-air missile (SAM) 地对空导弹surface-to-surface missile (SSM) 地对地导弹synthetic aperture radar (SAR) 合成口径雷达tactical nuclear weapons (TNW) 战术核武器tactical operations center (TOC) 战术作战中心telemetry intelligence (TELINT) 遥测信息temper (原子弹)惰层terminal guidance 末端制导terrain contour matching (TERCOM) 地形轮廓匹配theater 战区theater nuclear forces 战区核武器部队thermal reactor 热核反应堆thermonuclear weapon 热核武器thorium 钍three principles of nuclear export 核出口三项原则throw-weight 发射重量Tbilisi aircraft carrier [USSR] 第比利斯号航空母舰[苏联] time-over-target (TOT) 抵达目标时间trajectory ?u?Dtransatmospheric vehicle 空中交通工具transceiver 透明度transparency 透明度transporter-erector-launcher (TEL) 运输-竖起-发射装置triad 三合一战略报复力量Trinitrotoluene (TNT) 三硝基甲苯tritium 氚turbojet engine 涡轮式喷气发动机ultra high frequency (UHF) 超高频ultralong wave 超长波ultrashort wave 超短波underground nuclear test 地下核试验unilateral disarmament 单边裁军universal multiple launcher (A V-LMU) 通用多重发射器unsymmetrical dimethyl-hydrazine (rocket fuel) 不对称二甲基肼(火箭燃料)upper-tier 高层uranium dioxide 二氧化铀uranium enrichment 铀浓缩uranium hexafluoride (UF6) 六氟化铀uranium mining and milling 铀矿开采与选矿uranium tetrafluoride (UF4) 四氟化铀uranium-233 铀233uranium-235 铀235uranium-238 四氟化铀user operational uation system (UOES) 铀233verification 铀235verification regime 铀238军事英语之枪械篇.38 Special revolver 三八左轮枪9 mm pistol 九0手枪AA T (Arme Automatique Transformable) 通用机枪Accelerator 枪机加速器Accuracy 准确度Accuralize 准确化Accurize: 精准化. 使枪械更精确.ACOG (Advanced Combat Optical Gunsight) 先进光学战斗瞄准具ACP (Automatic Colt Pistol) 柯尔特自动手枪弹ACP: Automatic Colt Pistol, 柯尔特自动手枪子弹.Action shooting 战斗射击Action 枪机Action: 枪机。
基于超声椭圆振动辅助车削的铝合金表面微织构仿真曹腾;路冬;舒嵘;彭国文;吴勇波【摘要】针对需要切削成形的零件,提出了在完成零件车削的同时获取微织构表面的加工方法,即超声椭圆振动辅助车削表面微织构方法.对铝合金材料构建了反映微织构表面的理论模型,以此为依据对表面微织构进行了仿真,将仿真获得的微织构单元尺寸与实验获得的微织构单元尺寸进行比较,验证了仿真模型的正确性.分析了加工参数对微织构几何尺寸的影响,给出了微织构单元几何尺寸的具体算法以及微织构单元在工件表面的排列算法,为表面微织构几何参数的优化提供了依据.【期刊名称】《陕西师范大学学报(自然科学版)》【年(卷),期】2018(046)004【总页数】8页(P50-57)【关键词】表面微织构;超声椭圆振动;车削;仿真;铝合金【作者】曹腾;路冬;舒嵘;彭国文;吴勇波【作者单位】南昌航空大学航空制造工程学院,江西南昌330063;南昌航空大学航空制造工程学院,江西南昌330063;南方科技大学机械与能源工程系,广东深圳518055;南昌航空大学航空制造工程学院,江西南昌330063;南昌航空大学航空制造工程学院,江西南昌330063;南方科技大学机械与能源工程系,广东深圳518055;南昌航空大学航空制造工程学院,江西南昌330063【正文语种】中文【中图分类】TG501微织构表面是一种具有微几何的功能型工作表面,相对于平滑的表面,微织构表面具有改善润滑状态减摩耐磨[1-4]、增强润湿性[5-6]等诸多优点,被广泛应用于汽车、机械、航空航天等领域。
为提高微织构表面的性能,微织构的几何设计及加工至关重要。
目前,国内外采用的微织构加工技术有激光加工 [7-8]、聚焦离子束加工[9]、电火花加工[10]等,这些微织构加工技术都是在零件加工成形后再对零件表面加工,属于二次加工,增加了额外生产成本,延长了生产周期。
对于需要切削成形的零件可采用超声椭圆振动辅助切削,此方法中表面微织构加工与车削可以同时进行。
表面技术第53卷第6期超声振动辅助车削SiCp/Al切屑形成机理及表面粗糙度研究林洁琼1,于行1,周岩1,谷岩1*,周晓勤2(1.长春工业大学 机电工程学院,长春 130000;2.吉林大学 机械与航空航天工程学院,长春 130000)摘要:目的研究切屑形成机理对加工过程的影响。
方法超声振动辅助车削技术通过刀具振动的拟间歇切削特征控制切屑尺寸和切屑形态,从而提高了加工表面质量。
针对SiCp/Al复合材料的切屑形成机理,探究常规车削和超声振动辅助车削的切屑形成过程。
研究了颗粒分布对第一变形区变形阶段的影响,以及不同加工方式下切削参数对切屑形态的影响。
最后,描述了切屑自由表面和刀-屑接触界面的颗粒损伤形式,以直观地描述常规车削与超声振动辅助车削SiCp/Al复合材料加工中切屑的形成过程。
结果通过测试加工后工件表面形貌发现超声振动辅助车削的切屑更加连续、切屑尺寸较小的加工表面粗糙度更小,常规车削的表面粗糙度为0.805 μm,超声振动辅助车削的表面粗糙度为0.404 μm,超声振动辅助车削比常规车削的表面粗糙度降低了49.8%。
结论与常规车削相比,超声振动辅助车削有利于减小切屑厚度。
超声振动辅助车削得到的切屑更加连续,避免了切屑碎裂,促进了切屑的顺利排出。
通过对切屑形态进行研究,选择最优切削参数可以有效提高工件表面质量。
关键词:超声振动辅助车削;SiCp/Al;切屑形成机理;颗粒损伤;表面完整性;粗糙度中图分类号:TG663 文献标志码:A 文章编号:1001-3660(2024)06-0144-13DOI:10.16490/ki.issn.1001-3660.2024.06.013Chip Formation Mechanism and Surface Roughness of SiCp/AlComposites by Ultrasonic Vibration-assisted TurningLIN Jieqiong1, YU Hang1, ZHOU Yan1, GU Yan1*, ZHOU Xiaoqin2(1. College of Electrical Mechanical Engineering, Changchun University of Technology, Changchun 130000, China;2. School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130000, China)ABSTRACT: SiCp/Al is a metal matrix composite. It has excellent properties such as wear resistance, high temperature resistance, and fatigue resistance, and is widely used in fields such as aerospace, automobiles, electronics. The excellent physical and chemical properties of SiCp/Al composite materials have attracted widespread attention from the industry.With the application of SiCp/Al composite materials in these fields, there is an urgent demand for their precision收稿日期:2023-04-06;修订日期:2023-07-03Received:2023-04-06;Revised:2023-07-03基金项目:国家自然科学基金(U19A20104);吉林省高性能制造及检测国际科技合作重点实验室(20220502003GH)Fund:National Natural Science Foundation of China (U19A20104); Jilin Province Key Laboratory of International Science and Technology Cooperation for High Performance Manufacturing and Testing (20220502003GH)引文格式:林洁琼, 于行, 周岩, 等. 超声振动辅助车削SiCp/Al切屑形成机理及表面粗糙度研究[J]. 表面技术, 2024, 53(6): 144-156.LIN Jieqiong, YU Hang, ZHOU Yan, et al. Chip Formation Mechanism and Surface Roughness of SiCp/Al Composites by Ultrasonic Vibration- assisted Turning[J]. Surface Technology, 2024, 53(6): 144-156.*通信作者(Corresponding author)第53卷第6期林洁琼,等:超声振动辅助车削SiCp/Al切屑形成机理及表面粗糙度研究·145·machining technology, as well as research on machining methods and cutting mechanisms to improve surface quality.In the processing of SiCp/Al composite materials, the smooth discharge of chips and the prevention of chip fragmentation and adhesion on the processed surface can effectively improve the surface quality of the work piece. The effect of chip formation mechanism on the machining process was explored. Ultrasonic vibration assisted cutting technology improved the chip size and shape through the quasi-intermittent cutting characteristics of tool vibration, thereby improving the surface quality of machining. The chip morphology of SiCp/Al composite materials was analyzed through comparative experiments of conventional cutting and ultrasonic vibration assisted cutting. The particle distribution in the shear deformation zone stage and the effect of cutting parameters on chip morphology were studied.The chip morphology of conventional and ultrasonic vibration assisted cutting was compared from three aspects: feed rate, cutting depth and rotational speed. Due to the presence of SiC particles in SiCp/Al composite materials, the material began to deform along the boundaries of the particles, and the effective stress reached the material yield strength for the first time. During the deformation process, the increase of stress might cause particle movement and fracture. Therefore, during the cutting process, due to the continuous changes in the position of the particles cut by the tool, the angle of the boundary line at the beginning of deformation changed, leading to fluctuations in the shear angle within a certain range.And the chip segmentation degree Gs was introduced for quantitative comparison between conventional cutting and ultrasonic vibration assisted cutting experiments. It was found by comparison that the sawtooth degree of conventional cutting was 0.264-0.685, and the sawtooth degree of ultrasonic vibration assisted cutting was 0.085-0.364. The sawtooth shaped chips formed by ultrasonic vibration assisted cutting were not obvious, which avoided the fracture of the free surface of the chip at the crack. Finally, the particle damage forms of the chip free surface and the tool chip contact interface were described to visually describe the chip formation process in conventional cutting and ultrasonic vibration assisted cutting of SiCp/Al composites. Ultrasonic vibration assisted turning with more obvious elastic recovery was beneficial for reducing chip thickness.The chips obtained by ultrasonic vibration assisted cutting are more continuous, avoiding chip fragmentation and promoting the smooth discharge of chips. By observing the surface morphology of the work piece after processing, it is concluded that the smaller and more continuous the chip size, the smaller the surface roughness of the machined surface, while the surface roughness for conventional cutting is 0.805 μm. The surface roughness of ultrasonic vibration assisted turning is0.404 μm. Compared with traditional turning, ultrasonic vibration assisted turning can reduce surface roughness by 49.8%. Byobserving the morphology of chips and selecting the optimal cutting parameters, the surface quality of work piece processing can be effectively improved.KEY WORDS: ultrasonic vibration assisted turning; SiCp/Al; chip formation mechanism; particle damage; surface integrity;roughness近年来,以SiC、TiB等硬质颗粒为主增强的新型金属基复合材料因性能优异而在汽车等领域表现出良好的市场应用价值,然而SiC等增强颗粒的加入,导致加工过程变得困难,例如切削力急剧增大、刀具使用寿命减少以及表面质量下降等,切屑形成过程反映了SiCp/Al复合材料的加工过程,研究SiCp/Al 复合材料的切屑形成,有助于掌握SiCp/Al复合材料的加工状态,对优化SiCp/Al复合材料加工参数有重要意义[1-2]。
基于Deform-3D轴向超声辅助磨削仿真试验
王艳;张省;王帅;杨林;谢建华
【期刊名称】《系统仿真学报》
【年(卷),期】2015(0)1
【摘要】磨削过程可视为大量随机分布磨粒切削形成的累积效应,因此可以把复杂的磨削过程简化为单颗磨粒的切削过程。
提出了一种新的超声辅助单颗磨粒磨削的仿真方法:利用Deform-3D软件,对轴向超声振动辅助磨削时单颗磨粒的速度进行加载,完成磨削力和磨削温度的仿真。
仿真结果表明:在相同磨削条件,超声振动辅助磨削弧区最高温度值低于普通磨削最高温度值;超声振动辅助磨削磨粒的法向磨削力及切向磨削力均小于普通磨削条件下所得到的磨削力;随着磨粒速度增加,磨削弧区温度升高,法向磨削力与切向磨削力下降,而其磨削力比增大;随着磨粒切削深度的增加,磨削弧区温度升高,法向磨削力与切向磨削力上升,而其磨削力比下降。
【总页数】8页(P104-111)
【作者】王艳;张省;王帅;杨林;谢建华
【作者单位】上海理工大学
【正文语种】中文
【中图分类】TG580.6;TG663
【相关文献】
1.轴向超声振动辅助磨削的磨削力研究
2.轴向超声辅助磨削陶瓷的磨削力模型
3.基于光滑粒子流体动力学法单颗磨粒超声辅助磨削陶瓷材料的磨削力仿真研究
4.颗
粒增强钛基复材轴向超声振动辅助磨削试验研究5.轴向超声振动辅助磨削的磨削力建模
因版权原因,仅展示原文概要,查看原文内容请购买。
Ultrasonically assisted turning of aviation materials :simulations andexperimental studyV.I.Babitsky,A.V.Mitrofanov V.V.Silberschmidt,AbstractUltrasonically assisted turning of modern aviation materials is conducted with ultrasonic vibration(frequency f=20KHz amplitude a =15μm ) superimposed on the cutting tool movement.An autoresonant control system is used to maintain the stable nonlinear resonant mode of vibration through out the cutting process. Experimental comparison of roughness and roundness for workpieces machined conventionally and with the superimposed ultrasonic vibration, results of high-speed filming of the turning process and nanoindentation analyses of the microstructure of the machined material are presented.The suggested finite-element model provides numerical comparison between conventional and ultrasonic turning of Inconel 718 in terms of stress/strain state,cutting forces and contact conditions at the workpiece/ tool interface.KEYWORDS:Ultrasonic,machining,Turning,Finite element modelling,Microstructure航空材料超声辅助车削的仿真与实验研究莱斯特,拉夫堡大学机械工程专业摘要超声辅助切削现代航空材料,即把f=20KHz,a=15μm的振动加载在切削刀具的运动上。
超声车削气凝胶材料声学系统设计及实验研究张云电;翟宇嘉【摘要】In accordance with the characteristic of silica aerogel, a new acoustics system of the ultrasonic cutting on the aerogel materials was developed.The amplitude amplifier pole and tool have been designed by four-terminal network,and acoustic system was optimized through the finite element analysis.Research on the cutting force of aerogel materials turning without ultrasound assisted and under ultrasonic condition, and the contrastive experimental results show that the ultrasonic turning the aerogel materials have an advantage of lower force and surface quality.%根据二氧化硅气凝胶材料特点,设计并研制了一种新型二氧化硅气凝胶材料超声车削声学系统。
采用四端网络法对声学系统的变幅杆及加工工具进行理论尺寸计算,并通过有限元法对整个声学系统进行模态分析。
研究了二氧化硅气凝胶材料车削时在无超声辅助及施加超声条件下的切削力大小,对比实验结果证明,经过超声车削的二氧化硅气凝胶材料具有切削力小、加工表面质量好等优势。
【期刊名称】《杭州电子科技大学学报》【年(卷),期】2015(000)006【总页数】6页(P8-13)【关键词】二氧化硅气凝胶材料加工;超声车削;声学系统;有限元法;模态分析【作者】张云电;翟宇嘉【作者单位】杭州电子科技大学机械工程学院,浙江杭州310018;杭州电子科技大学机械工程学院,浙江杭州310018【正文语种】中文【中图分类】TH122二氧化硅气凝胶是一种具有微纳米网络结构的固态轻质材料,其孔隙率可以达80%99.8%,密度可低至2mg/cm3[1-2]。
Ultrasonically assisted turning of aviation materials :simulations andexperimental studyV.I.Babitsky,A.V.Mitrofanov V.V.Silberschmidt,AbstractUltrasonically assisted turning of modern aviation materials is conducted with ultrasonic vibration(frequency f=20KHz amplitude a =15μm ) superimposed on the cutting tool movement.An autoresonant control system is used to maintain the stable nonlinear resonant mode of vibration through out the cutting process. Experimental comparison of roughness and roundness for workpieces machined conventionally and with the superimposed ultrasonic vibration, results of high-speed filming of the turning process and nanoindentation analyses of the microstructure of the machined material are presented.The suggested finite-element model provides numerical comparison between conventional and ultrasonic turning of Inconel 718 in terms of stress/strain state,cutting forces and contact conditions at the workpiece/ tool interface.KEYWORDS:Ultrasonic,machining,Turning,Finite element modelling,Microstructure航空材料超声辅助车削的仿真与实验研究莱斯特,拉夫堡大学机械工程专业摘要超声辅助切削现代航空材料,即把f=20KHz,a=15μm的振动加载在切削刀具的运动上。
设臵一个自响应控制系统来维持切削过程中的稳定运行。
利用高速光学成像方法来试验比较超声切削和常规切削得到的工件的表面粗糙度和圆度。
利用奈米压痕方法分析工件便面微结构。
利用有限元分析进行数学仿真分析铬镍铁合金利用常规切削和超声振动切削加工之后的拉应力/压应力,加工过程中的切削力以及工件与刀具的相互作用。
关键词:超声波加工;车削;有限元模拟;微观结构1 绪论车削就是利用锋利的楔形切削刀具把工件表层材料从圆柱形工件上去除的加工过程。
这项技术被用于各种金属材料的加工已有几百年的历史了。
然而,在最近几十年里,各种合金和复合材料的广泛应用于各个工程领域。
有许多新材料已经很难用已有的普通的(CT)车削工艺去加工了,常规加工方法在应用于航天领域的镍钛合金不锈钢的加工中,即使是相对较低的切削速度,也能引起较高的的切削温度,随之而来的就是更严重的刀具磨损。
这些棘手的材料出现,使得先进加工方法更加的刻不容缓。
图 1高频超声波振动叠加在常规切削刀具上(图1),早在19世纪60年代就已经被关注和研究,事实证明,不但对于超硬合金材料的加工,而且对像陶瓷、玻璃这样的脆性材料的加工上,这种方法都是行之有效的。
超声振动辅助车削(UAT)比起常规加工工艺来,切削力相当于以前的【1-4】倍,表面光洁度提高将近50%,并且噪音降低。
至于加工脆性材料例如玻璃和陶瓷材料,当前技术需要长时间的昂贵的后期精加工才能保证光学材料所要求的表面质量。
而UAT则可以在刀具低损耗和低切削力的同时,获得镜面加工面。
不过到目前为止,UAT还没有被广泛应用于工业领域,其中很重要的原因是超声切削过程中的灵敏度很高,导致了切削效率的降低,当更换刀片或者切削载荷改变时.然而,这种不足最近已经随着自响应控制系统的发明改变了。
这个系统使得超声切削过程稳定而且可以方便的控制。
这个新型控制系统的详细说明在【9.10】.本论文的试验部分则比较研究了自响应控制系统的UAT与常规切削另外一个重要的UAT的问就是力学机械学问题,我们只有很少的研究资料关于工件与刀具相互作用区域以及他们对所加工材料结构的影响【3.6.11】。
这些著作大部分研究超声波加工机装臵的力学问题而不是加工材料对超声切削的响应问题。
当有一个清晰地认识到这一过程,UAT加工肯定会得到进一步发展。
本文的主要目的是研究与数值模拟的UAT过程中的材料力学。
2 实验研究研究UAT的实验装臵如图1所示。
工件被固定在万能车床上匀速旋转高频电脉冲输入到超声换能器,激发耐压陶瓷套的振动。
振幅在集中器中加强并且传送到集中器末端的刀具夹具上。
切割刀具的振动频率20KHZ,振幅可达30um.振动可加载在横向和纵向方向上的工件表面上(如图1b所示)这种自动调节控制的切割系统在【9.10】中有详细说明。
我们做了一系列的试验来比较UAT与CT在加工航空材料上的区别。
详细说明在【5】中。
实验材料是广泛应用于航空领域的鉻镍铁合金和高耐热镍基合金。
这些材料耐磨性高,常规切削时,切削温度高,导致刀具钝化。
车削获得的表面质量是金属切削中的关键因素,加工过程中的任何变动都会影响到它实验标本的表面光洁度主要由表面平均粗糙度和圆度来衡量,使用Tay-Hobson-Talysurf 4测量仪,以下是主要技术参数:切削深度d=0.8mm,进给速度S=0.05mm/rev,切削速度V=17m/min。
UAT与CT参数设臵相同。
图 2图 2.a中展示了典型的INCONEL718加工过程的轴向剖面图。
显然,UAT加工的工件表面粗糙度降低了将近50%,而且表面轮廓更加圆整,从轴向轮廓看外表面更加圆滑。
而且还获得了另外一个工件圆度重大改进(图2.b):CT的圆度峰谷差为4.2um,然而UAT能达到1.89um,因此,当超生振动波加载在刀具运动上的时候,表面圆度能提高将近40%。
值得注意的是其他研究者也得到了类似的结论【7.12】在切线方向上加载振动显然,这些进步变化的原因就是切削过程的不同,由超声波振动引起的刀具与切屑的高频碰撞,这导致了材料变形过程的改变和摩擦力的改变,以及车床刀具工件组成的系统的动态变化【6,11】主要原因在于高频超声波超乎自然频率。
除了表面质量之外,机械加工面的微结构也是一个试验指标。
INCONEL718工件切削用量相同(V=3.6m/min,d=0.1mm,s=0.03mm/rev )的情况下,在切线方向加载超生振动和没有加载的情况相对比。
然后,利用MicroMaterials Ltd生产的纳米测试平台来测验表层结构。
根据测试结果,由切削过程中的高温变形引起的硬化层厚度,UAT是CT的一半(40和80)再者,UAT硬化层的平均硬度(大约15GPa)是CT的一半,非常接近未处理材料(7GPa)材料硬度也增加了,残余塑性变形也增加了。
因此,纳米压痕试验显示,UAT加工残余应力低,我们可以从中得出结论,UAT加工工艺精度更高。
3 UAT数值分析有限元仿真是一个仿真加工过程的主要工具它被用于仿真切削过程已经有30多年了。
现有仿真金属车削的概况在【13,14】中有详细介绍。
然而,据作者所知,迄今为止还没有没有专门的UAT模型。
本文所涉及的二维有限元仿真模型基于MSC Marc[15]代码。
正交切削过程如下。
在切割和进给方向上这个切削过程的刀具都是正常的图1b显示了工件和刀具的相对运动,圆柱形零件的转动轴跟平面是垂直的。
工件恒速度转动,而这个工具与高频振动统一起来频率f=20Khz,振幅为15um,与试验中设臵相同。
另外一个参数是切削余量为t1=0.1mm(符合切削深度),刀具前角为r=10度,切削速度V=9m/min.在每个振动周期内,都是这样的参数。
材料常数从【16】中得出.利用运动学分析刀具左右两侧和底部Vx|AH=V, Vx|FG=V, Vx|HG=V, VY|HG=0.温度边界条件分析主要是包括热从工件表面和刀具以及周围环境的对流其中K表示传导率,H表示热传导系数,T1表示环境温度,在接触面内,切屑传给刀具的热通量可由下式表示:q=H(Tchip-Ttool).H为热传导系数,Tchip和Ttool分别为切屑和刀具表面温度。
该模型的建立考虑到了以下影响应力与应变的因素:(1)刀具与切屑接触面的相互摩擦(2)非线性的材料特性,包括材料应变率对材料屈服应力的影响。
(3)热-机械耦合效应也就是机械的以及热传导的内在联系。
图 3UAT的有限元模拟在一个周期振动主要可分为四个阶段。
在第一阶段(图3a)、刀具靠近切屑;第二阶段,刀具开始接触切屑和切除的工作达到最大特征是生成过程中应力达到最大标志着的第二阶段(图3b)的结束。
接下来是卸载:刀具速度的方向改变,并且向后移动,这个工具的速度超过了切削速度(由于切屑回弹效应)。
在这一阶段里,在这个过程中弹性应变下降。
最后一个阶段,刀具与切屑完全分离(图3c)刀具和切屑的间歇接触是CT和UAT 的最大区别。
如图3c所示,CT过程中应力状态几乎是不变的。
最高的应力集中剪切区域分布在如图1所示BE 线两侧。
紧挨着前刀面EK。
与之相反的是,UAT的应力状态变化周期非常短暂。
最大值时与CT是一样的,在超声震动切削的其他阶段(图3a和c),当刀具不与切屑接触的时候,材料的平均应力和相互作用力都比CT小很多。
通常是几倍的减少。
对这一现象的详细研究可在资料【1,3,4】中找到。
4 切屑形成过程的研究切屑的形成过程是金属切削加工过程中最重要的,因此研究切屑在加载超声震动周期内的形成很有意义。
在UAT与CT加工Inconel718的比较实验中:柯达Ektapro HS运动分析仪4540用于实时观测刀具与切屑的相互作用。
UAT的变形主要集中在沿着刀尖附近在工件表面上,刀具下边也是同样情形。
这个观察结果与奈米压痕实验得出的结论相同。
最后表明,加载超声波的切削使得切屑形成更加有规律,因而带状切屑的形成增多。
相比之下,CT产生的多为节状切屑,主要由于不规则震动引起。
扫描电子显微镜研究UAT与CT产生的切屑的微结构验证了这一结论,UAT有微小锯齿状,而CT多为节状。