电路分析路基础一阶电路的三要素法
- 格式:ppt
- 大小:2.38 MB
- 文档页数:38
2-3一阶电路的三要素法1.解的三要素2.三要素法()()()()[]τt ef f f t f -+∞-+∞=0由以上分析不难得出,在求解一阶电路时,可以回避解微分方程,只需设正确求得(不限止方法)三要素即可。
这种解一阶电路的方法,称三要素法。
它适用于一阶电路中所有电压电流的计算,故写成一般形式:u C (∞)=U S ——稳态值,反映曲线的终点;u C (0+)=U 0——初始值,反映曲线的起点;τ=RC 、L/R ——时间常数,反映曲线的变化率。
由前面得分析可知,无论是画曲线还是写表达式,必须强调反映解的特征,即起点(初始值)u C (0+)、终点(新的稳态值)u C (∞)和函数的变化率τ,常把这三者称为解的三要素,他们分别为:3.举例例1 求解图示电路换路后的电流i R 的表达式()()()()[]τte f f f t f -+∞-+∞=0τ=RC=1000×10×10-6=0.01SmA 5.220005200000===++)()(C R u i mA 4200082000==∞=∞)()(C R u i i R t=0++-+-10V 16V2kΩ2kΩ+-)(+0C u 5V()[]01.045.24tR et i --+=mA5.14100te--=2kΩK (t=0)+-16V 2kΩ10V+-10μFi R电路如图(b )所示,激励u 1的变化规律如图(a )所示。
试求u R 及u C 的变化规律,并画出波形图。
例20U u 1t 1t pt+-R i C u C u 1u R(a)(b)解u 1为分段常量信号,可以看成各常量在不同的时间段作用的信号,即⎩⎨⎧≥≤≤=11100t t t t U u 对于分段常量信号作用的电路,可以分成若干常量在不同的时间段作用的电路,而各段间看作换路。
对一阶电路可用三要素法按时间分段求解。
(1)求在0≤t≤t 1时间段的u C u R[]tC C C u u u e τ-=∞∞C +()+u (0)-()(0≤t≤t 1)求三要素)0()0(==-+C C u u Uu C =∞)(RC=τ)1(τtC e U u --=初始值稳态值时间常数τtCR Uedtdu RC iR u -===0Uu 1t 1t pt+-R i C u Cu1u R设t <0时电路为稳态,t=0时刻换路此时,初始值应由前时段的表达式时确定,即把t=t p 代入t=t 1时电路又换路,求在t ≥t 1时间段的u C 和u R(2)[]tC CCu u u e τ-=∞∞C +()+u (0)-()(t≥t 1))(=∞C u RC =τ)1(τtC e U u --=初始值稳态值时间常数dt du RC iR u C R ==)1()()0()0(τptpC C C e U t u u u --+-===ττppt t t C e e U u ----=)1(ττppt t t R e e U u -----=)1(此题告诉我们,在分析某一时刻电路又换路时,相应的t 要换成(t-T ),其中T 为换路的时刻。
Su s1RL i 图6.15 例6.3图R Ru s 2分析一阶电路全响应的三要素法由6-35可见,只要求出电路的初始值、稳态值和时间常数,就可方便的求出电路的零输入、零状态和全响应。
所以仿照上式,可以写出在直流电源激励下,求解一阶线性电路全响应的通式,即te f f f t f )]()0([)()((6-36)式中)(t f 代表一阶电路中任一电压、电流函数。
初始值)0(f ,稳态值)(f 和时间常数称为一阶电路全响应的三要素。
1、求初始值)0(f 的要点:(1)求换路前的)0()0(L C i u 、;(2)根据换路定则得出)0()0()0()0(L L C C i i u u ;(3)根据换路瞬间的等效电路,求出未知的)0(u 或)0(i 。
2、求稳态值)(f 的要点:(1)画出新稳态的等效电路(注意:在直流电源的作用下, C 相当于开路, L 相当于短路);(2)由电路的分析方法,求出换路后的稳态值。
3、求时间常数的要点:(1)求0t 时的;(2) eqeq R LC R ,;(3) 将储能元件以外的电路,视为有源一端口网络,然后应用戴维南定理求等效内阻的方法求eq R 。
[例6.3]图 6.15所示电路原已处于稳态,0t 时开关闭合。
已知82s u V ,L=1.2H, R1= R2= R3=2, 求电压源401s u V 激励时的电感电流L i 。
[解]: 换路前电路为直流稳态电路,所以2)0(322R R u i s L A 换路后电感电压为有限值,所以电感电流的初始值为)0(L i 2)0(L i A 换路后电感两端的等效电阻为321213R R R R R R eq 所以时间常数为。
一阶电路三要素法的公式
一阶电路三要素法是一种对一阶电路进行分析的方法,它可以将一阶电路分解为三个简单元件:电阻、电感和电容。
其中,电阻是一种能够吸收运动电流,产生热量和电势差的元件;电感是一种在电路中存在的磁场,并能够存储能量的元件;而电容则可以在电路中存储电荷,具有调节电路的功能。
一阶电路三要素法的公式主要分为以下几个部分:
第一,电阻R:R=V/I,其中V为电压,I为电流。
第二,电感L:L=U/I,其中U为电势差,I为电流。
第三,电容C:C=Q/V,Q为电荷,V为电压。
第四,电路总模型:V=RI+L(dI/dt)+Q/C,其中V为电压,R为电阻,I为电流,L为电感,Q为电荷,C为电容。
第五,电路增益:A=Vout/Vin,Vout为输出电压,Vin为输入电压。
第六,电路阻抗:Z=V/I,V为电压,I为电流。
第七,电路时间常数:τ=L/R,L为电感,R为电阻。
以上就是一阶电路三要素法的公式,它可以用来分析一阶电路的不同特性,如电阻、电感、电容、增益、阻抗以及时间常数等。
要使用一阶电路三要素法,首先应该确定电路中所有组成元件的电压、电流和电荷。
然后,根据上述公式,依次计算电阻、电感、电容、增益、阻抗和时间常数,最终形成一个完整的一阶电路模型。
通过一阶电路三要素法,我们可以更好地理解电路,并给出有效的解决方案,可以大大提高工作的效率。
一阶电路三要素法的一种证明方法
一阶电路三要素法是一种基于电路理论的证明方法,用于证明电路的完整性和有效性。
该方法有三个基本要素:源电路、桥接电路和终端电路。
源电路是电路的基础,它的作用是提供电路的输入信号,控制电路的运行情况,并提供电路的输出信号。
源电路包括电源、控制器、信号源、电阻、电容、二极管和集成电路等元件。
桥接电路是电路的核心部分,它的作用是将源电路的输入信号转换成终端电路的输出信号,同时还可以控制电路的运行性能。
桥接电路包括电阻、电容、二极管和集成电路等元件,以及电路的控制系统。
终端电路是电路的结束部分,它的作用是将桥接电路的输出信号转换成最终的输出信号,同时还可以控制电路的运行性能。
终端电路包括电阻、电容、二极管和集成电路等元件以及电路的控制系统。
一阶电路三要素法的三个要素可以有效地提高电路的完整性和有效性,从而实现电路的高效运行。
源电路可以提供电路的输入信号,桥接电路可以将源电路的输入信号转换为终端电路的输出信号,而终端电路可以将桥接电路的输出信号转换为最终的输出信号。
此外,这三个要素还可以控制电路的运行性能,从而实现电路的高效运行。
因此,一阶电路三要素法是一种有效的证明方法,可以有效提高电路的完整性和有效性,使电路达到最佳性能。
实验三:一阶电路三要素法
一.实验内容及要求
1.使用Multisim仿真电路的全响应过程。
2.利用Multisim的虚拟仪器分析电路的全响应过程。
二.实验要求
1.掌握一阶电路的三要素法。
2.掌握Multisim仿真电路的全响应过程的方法。
三.实验设备
PC 机、Multisim 软件
四.实验步骤
1.使用Multisim绘制电路原理图:从元器件库中选择所需元件,设置相应元件参数,从仪器仪表库中选择双通道示波器,用导线正确连接,绘制仿真电路原理图lo
图1仿真电路原理图
2.仿真测试电路原理图1:打开示波器设置相关参数,使用菜单栏中的Simulate
f Run命令进行仿真,使用菜单栏中的Simulate-Stop命令停止仿真,观察并记录示波器显示的波形。
波器显示的波形如下图:
3.改变仿真电路原理图1中电阻和电容的参数,使R1=1KQ,C1=1OMF,按照步骤2的方法,重新仿真测试电路,观察并记录示波器显示的波形。
仿真电路原理图2 波器显示的波形如下图:。
一阶电路的三要素法公式
其中:
- f(t)为电路中所求的响应(电压或电流)。
- f(0_+)为响应的初始值,即换路后瞬间t = 0_+时的值。
- f(∞)为响应的稳态值,即t→∞时的值。
- τ为一阶电路的时间常数,对于RC电路τ = RC,对于RL电路τ=(L)/(R)(这里R为从储能元件(电容C或电感L)两端看进去的戴维南等效电阻)。
在使用三要素法求解一阶电路时,一般按照以下步骤:
1. 求初始值f(0_+):
- 首先根据换路前的电路(t = 0_-时的电路)求出储能元件(电容电压
u_C(0_-)或电感电流i_L(0_-))的初始值。
- 然后根据换路定律(u_C(0_+) = u_C(0_-),i_L(0_+)=i_L(0_-))确定换路后瞬间电容电压和电感电流的值。
- 再根据换路后瞬间的电路(t = 0_+时的电路),利用电路的基本定律(如欧姆定律、基尔霍夫定律等)求出所求响应的初始值f(0_+)。
2. 求稳态值f(∞):
- 画出换路后t→∞时的电路,此时电容相当于开路(i_C(∞)=0),电感相当于短路(u_L(∞)=0)。
- 利用电路的基本分析方法(如电阻的串并联化简、欧姆定律、基尔霍夫定律等)求出所求响应的稳态值f(∞)。
3. 求时间常数τ:
- 对于RC电路,τ = RC,其中R为从电容两端看进去的戴维南等效电阻。
- 对于RL电路,τ=(L)/(R),其中R为从电感两端看进去的戴维南等效电阻。
最后将f(0_+)、f(∞)和τ代入三要素法公式f(t)=f(∞)+[f(0_+) - f(∞)]e^-(t)/(τ)中,即可求出一阶电路的响应f(t)。
三要素法求一阶电路零输入响应说到一阶电路的零输入响应,这听起来可能有点像“天书”,是吧?别担心,今天我们就用最简单的方式,把这件事儿搞懂。
一阶电路就是一种简单的电路,里面有电阻、电容或者电感这几样“基础元素”。
它们的行为有点像一个有点慢反应的“懒汉”,特别是在开关变化或外部信号作用下。
这个“懒汉”不可能一下子就改变自己的状态,总是需要一些时间。
零输入响应,就是说我们在分析电路的时候,不考虑外部电源对它的影响,单纯研究电路元件自身的变化。
你可能会问了,既然不考虑外部信号,怎么分析呢?这时候,三要素法就派上用场了。
它可不是啥高大上的数学公式,而是一种非常简单、直观的分析方法。
三要素,顾名思义,就是三个东西:初始条件、特性方程和求解公式。
简单来说,你需要知道电路最开始的状态,电路的“性格”,还有如何从这些信息得出电路的动态变化。
咱们得搞清楚这个电路的“初始条件”。
也就是电路中的电容、电感等元件在时间零点时的状态。
你可以把它想象成一台机器刚开机时的“默认设置”,电容的电压、电感的电流等等。
你得知道这些东西是什么,因为它们决定了电路从哪里开始走。
假设你有个电容,它开始时充满了电,那么它的电压就不可能一开始就是零;反过来,如果是个电感,电流开始时就得是个固定值。
就像是给电路定了个“起跑线”,它以后能怎么走,就看它一开始是怎么“蓄力”的。
得看这个电路的“特性方程”。
特性方程其实是电路的“性格说明书”。
它告诉你电路的变化规律,通常可以通过 Kirchhoff 定律或者其他基本原理来写出来。
你可以把它想象成电路的“行动路线图”。
不同的电路,不同的配置,特性方程就不同。
比如,电容的充电或放电,电感的电流变化,电阻对电流的限制……这些都会在特性方程里有所体现。
你必须弄清楚这些规律,才能知道电路如何从初始条件中走向它的最终状态。
然后就到了最关键的一步——用公式来求解这些变化。
三要素法最厉害的地方就在于它把这些复杂的变化化繁为简。
一阶线性电路暂态分析的三要素法
仅含一个储能元件或可等效为一个储能元件的线性电路, 且由一阶微分方程描述,称为一阶线性电路。
在直流电源激励的情况下,一阶线性电路微分方程解的通用表达式:
式中, f(t) 代表一阶电路中任一电压、电流函数
利用求三要素的方法求解暂态过程,称为三要素法。
一阶电路都可以应用三要素法求解,在求得、和t 的基础上, 可直接写出电路的响应( 电压或电流) 。
电路响应的变化曲线
三要素法求解暂态过程的要点
(1) 求初始值、稳态值、时间常数;
(2) 将求得的三要素结果代入暂态过程通用表达式;
(3) 画出暂态电路电压、电流随时间变化的曲线。
响应中“三要素”的确定
(1) 稳态值f(∞) 的计算
求换路后电路中的电压和电流,其中电容 C 视为开路, 电感L 视为短路,即求解直流电阻性电路中的电压和电流。
(2) 初始值f(0+)的计算
(3) 时间常数t 的计算
注意:
1) 对于简单的一阶电路,R 0 = R ;
2) 对于较复杂的一阶电路,R 0 为换路后的电路除去电源和储能元件后,在储能元件两端所求得的无源二端网络的等效电阻。