四年级数学多边形面积的计算
- 格式:ppt
- 大小:570.50 KB
- 文档页数:23
小学数学单元视角下教学内容整合的策略---以人教版《多边形的面积》为例【摘要】单元整体教学是依据单元内或单元间的内在本质联系,把内容相近、结构相似、思想方法相同的内容进行有机整合,使知识整体化、结构化,实现真正意义上减负、高质。
为此,在单元视角下进行教学内容的整合,应多维度研读教材、把握学情,寻求知识、思想方法、思维的整体关联,再通过科学拓展、课堂实践进一步丰富和优化。
【关键词】单元整合整体关联【正文】“双减”旨在进一步减轻学生的负担,提高教学质量。
单元整体教学就是以单元内容为原点进行整体、系统地调整或重组,打破教材编排、课时安排等限制,将分散的知识点整合在一起,更好地促进学生对知识的整体感知,实现深度学习,从本质上减负、高质。
而实施单元整体教学的关键是对教学内容进行整合,下面结合人教版《多边形的面积》单元来例谈教学内容整合的策略。
一、研读教材,把握学情,初步整合教材是教学内容的载体,是教师“教”和学生“学”的重要依据。
我们只有多维度研读教材,把握学情,抓住知识内在的联系与发展,寻求最佳教学策略,才能实现教学内容的初步整合。
(一)纵向研读教材,串联整合纵向研读教材,即是对教材中所教学的单元内容和相关联的单元内容从前往后进行研读,将知识串联整合,使知识结构化,避开课时内容、单元内容和乃至领域内容的孤立化,实现整体教学。
人教版五年级上册第六单元《多边形的面积》教学内容有:平行四边形的面积、三角形的面积、梯形的面积、组合图形的面积以及解决问题。
整个单元以“转化”思想为活动主线,其中平行四边形的面积是“转化”的开启,主要用单位面积度量法和割补法进行推导探究。
三角形和梯形的面积是“转化”的拓展,教材中呈现的都是用“拼合法”进行转化探究,同样也都可以用“割补法”、“折叠法”,将这两个课时内容整合成一个课时教学,有利于学生感悟两种图形面积转化推导中知识内在联系,也让图形面积计算公式之间的共同性得到对比和归类。
第五讲割补法巧算面积在上一讲中,我们学习了如何计算格点图形的面积,介绍了正方形格点图形和三角形格点图形的面积计算公式.根据公式,我们可以求出正方形格点图形的面积是最小正方形面积的几倍,或者求出三角形格点图形面积是最小正三角形面积的几倍.随着几何学习的步步深入,大家会发现除了用公式法直接求面积之外,还有很多间接求面积的方法.尤其是对于不规则图形,我们并不知道这些图形的面积公式,但是可以把它们通过分割、添补等各种方式变换为规则的图形.例题1图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米)「分析」这是一个不规则图形,我们能不能把它切成很多规则的小块,一块一块地求面积呢?练习1图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米)我们可以看到,在没有格点的情况下,割补的方法仍然可以使用.我们将来做几何面积计算时,就要视情况灵活运用割补法.例题2如图所示,在正方形ABCD 内部有一个长方形EFGH .已知正方形ABCD 的边长是6厘米,图中线段AE 、AH 都等于2厘米.求长方形EFGH 的面积.「分析」所求长方形的长、宽都是未知且不可求的,但是正方形面积以及周围四个直角三角形面积都是可以计算出来的,那么长方形面积怎么计算呢?1 2234 5 3 2 4 3412 4 9 DG如图所示,在正方形ABCD 内部有三角形CEF .已知正方形ABCD 的边长是6厘米,图中线段AE 、AF 都等于2厘米.求三角形CEF 的面积.例题3如图所示,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?「分析」阴影部分零零散散,能不能通过割补的方法把它变成规则的图形嗯?练习3如图所示,大正三角形的面积为10平方厘米.连接大正三角形的各边中点得到四个小正三角形,取各个小正三角形的中心,再将每个小正三角形的中心和顶点相连,得到三个一样的小三角形,那么图中阴影部分的面积总和等于多少平方厘米?例题4如图,把两个相同的正三角形的各边分别三等分和四等分,并连接这些等分点.已知图1中阴影部分的面积是48平方分米.请问:图2中阴影部分的面积是多少平方分米?「分析」图1和图2中最小正三角形的面积是不一样的,但两个大正三角形面积却是一样的,你能求出大正三角形的面积吗?D图2如图,把两个同样大小的正方形分别分成55⨯和33⨯的方格表.图1阴影部分的面积是162,请问图2中阴影部分的面积是多少?例题4中的阴影部分都是同样形状的花图形,我们不能直接看出花图形和大正三角形的面积之间有什么倍数关系,但是借助一块块小正三角形,我们把花图形和大正三角形之间联系起来,看看它们各自占了多少个小正三角形.找到面积之间的联系,是解决类似问题的钥匙.有些图形看起来没有分割成一些相同的小图形,实际上不过是将分割线隐藏起来或者只出现了其中的一部分,需要我们自己进行分割.例题5如图,在两个相同的等腰直角三角形中各作一个正方形,如果正方形A 的面积是36平方厘米,那么正方形B 的面积是多少平方厘米?「分析」乍一看上去和例题2有些相似,我们能不能求出大等腰直角三角形的面积呢?它的面积和正方形A 、B 之间有什么关系呢?例题6如图所示,已知一个四边形的两条边的长度和三个角的度数,这个四边形的面积是多少平方厘米?(单位:厘米)「分析」这个四边形并不规则,直接求面积似乎有些困难.我们已经知道了其中的三个角,其中有直角也有45°角.你能从这两种“特殊角”发现图形的特点吗?图1课堂内外毕式定理据说毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言;但这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形瓷砖,但毕达哥拉斯不仅仅是欣赏瓷砖的美丽,而是想到它们和数之间的关系,于是拿了画笔并且蹲在地板上,选了一块瓷砖以它的对角线AB为边画一个正方形,他发现这个正方形面积恰好等于两块瓷砖的面积和.他很好奇……于是再以两块瓷砖拼成的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块瓷砖的面积,也就是以两股为边作正方形面积之和.至此毕达哥拉斯作了大胆的假设:任何直角三角形,其斜边的平方恰好等于另两边平方之和.那一顿饭,这位古希腊数学大师,视线都一直没有离开地面.这就是著名的毕式定理:在任何一个直角三角形中(等腰直角三角形也算在内),两条直角边的长度的平方和等于斜边长度的平方.实际上,早在毕达哥拉斯之前,许多民族已经发现了这个事实,而且巴比伦、埃及、中国、印度等的发现都有真凭实据,有案可查.相反,毕达哥拉斯的著作却什么也没有留传下来,关于他的这个故事都是后人辗转传播的.可以说真伪难辨.这个现象的确不太公平,之所以这样,是因为现代的数学和科学来源于西方,而西方的数学及科学又来源于古希腊,古希腊流传下来的最古老的著作是欧几里得的《几何原本》,而其中许多定理再往前追溯,自然就落在毕达哥拉斯的头上.他常常被推崇为“数论的始祖”,而在他之前的泰勒斯被称为“几何的始祖”,西方的科学史一般就上溯到此为止了.至于希腊科学的起源只是近一二百年才有更深入的研究.因此,毕达哥拉斯定理这个名称一时半会儿改不了.不过,在中国,因为我们的老祖宗也研究过这个问题,因此称为商高定理,更普遍地则称为勾股定理.中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦.作业1. 下图中的数字分别表示对应线段的长度,图中多边形的面积是多少?2. 如下图所示,在正方形ABCD 内部有梯形EHGF .已知正方形ABCD 的边长是6厘米,图中线段AE 、AH 、BF 、DG 都等于2厘米.则梯形EHGF 的面积是多少平方厘米?3. 如图所示,平行四边形的面积是12,把一条对角线四等分,将四等分点与平行四边形另外两个顶点相连.图中阴影部分的面积总和是多少?4. 下图中空白部分的面积是100,那么阴影正方形的面积是多少?5. 如图所示,正六边形ABCDEF 的面积是36.阴影正六边形的面积是多少? D G 32 434 12 423 3 3 3。
第十一讲格点与面积同学们,一看这个题目,你一定会有许多疑问:什么是格点?格点与面积之间又有什么关系等等.这一节我们就来探讨这些问题。
在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!一、正方形格点问题:正方形格点问题就是它的格点都是由两组互相垂直相交的平行线的交点构成的.每一个小方格都是一个小正方形.例1、判断下列图形哪些是格点多边形?分析:根据格点多边形的定义可知,图形的边必须是直线,顶点要在格点上!所以只有(1)是格点多边形。
例2、如右图,计算各个格点多边形的面积.分析:本题所给的图形都是规则图形,它们的面积运用公式直接可求,只要判断出相应的有关数据就行了.法一:第(1)图是正方形,边长是4,所以面积是4×4=16(面积单位);第(2)图是矩形,长是5,宽是3,所以面积是5×3=15(面积单位);第(3)图是三角形,底是5,高是4,所以面积是5×4÷2=10(面积单位);第(4)图是平行四边形,底是5,高是3,所以面积是5×3=15(面积单位);第(5)图是直角梯形,上底是3,下底是5,高是3,所以面积是(3+5)×3÷2=12(面积单位);第(6)图是梯形,上底是3,下底是6,高是4,所以面积是(3+6)×4÷2=18(面积单位).注:如果两格点之间的距离是2,你能利用刚计算的结果说出相应面积么?分析:面积数值均扩大4倍。
法二:以上部分图形除了利用各自的面积公式直接求出外,我们还可以从推导它们的面积公式过程中得到启发,即用“割补法”或“扩展法”分别转化成平置的长方形来求。
知识要点第四讲格点与面积1、如图a 所示,在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点。
在方格网中,以格点为顶点画出的直线型多边形叫做格点多边形。
用N 表示多边形内部格点数,L 表示多边形周界上的格点数,S 表示多边形面积,我们能发现如下规律:12LS N =+-,这个规律就是毕克定理(Pick's Theorem )。
图a2、如图b 所示,在一张纸上,先画出一些水平直线和一些与水平直线夹角为60o 的直线,并使任意两条相邻的平行线的距离都相等,这样在纸上就形成了一个正三角形网(通常规定每个小正三角形的面积为1),其中的每个交点就叫做一个格点。
在正三角形网中,以格点为顶点画出的直线型多边形叫做格点多边形。
用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,与比克定理类似的有:22S N L =+-。
图b方格网【例 1】 下列5个图中,哪些是格点多边形?图1 图2 图3 图4 图5 【分析】根据格点多边形的定义,格点多边形必须符合2个条件:(1)图形必须是多边形,即图形的边必须是直线;(2)图形的顶点必须在格点上。
图3、图4的顶点不在格点上,图5有条线不是直线;所以图1、图2是格点多边形。
【例 2】 计算下图中各个格点多边形的面积,并填写表格。
(小正方形的面积为1单位面积)图1 图2 图3 图4 图5 图6图 图形内的格点数(N )边界上的格点数(L )12LN +- 面积(S )图1 图2 图3 图4 图5 图6【分析】本题的图形都是规则图形,它们的面积运用公式直接可求,只要判断出相应的有关数据就行了。
图1是正方形,边长是5,所以面积S 正方形2525==面积单位;图2是长方形,长是7、宽是4,所以面积S 长方形7428=⨯=面积单位;图3是三角形,底是5,高是4,所以面积S 三角形54102⨯==面积单位; 图4是平行四边形,底是5,高是5,所以面积S 平行四边形5525=⨯=面积单位; 图5是直角梯形,上底是3,下底是7,高是5,所以面积S 梯形(37)5252+⨯==面积单位; 图6是梯形,上底是2,下底是5,高是5,所以面积S 梯形(25)517.52+⨯==面积单位。
四升五暑期衔接班每日一练(30)(苏教版数学)主要题型:选择题、填空题、解答题、计算题主要内容:四年级竖式计算、数的巧算、解决问题的策略;五年级多边形面积的计算。
适用对象:苏教版地区、已经学习过五年级上册《多边形面积的计算》的四升五学生。
目录4升5暑期每日一练(一)策略 ----------------------------------------------------------------- 1 4升5暑期每日一练(二)策略 ----------------------------------------------------------------- 3 4升5暑期每日一练(三)策略 ----------------------------------------------------------------- 5 4升5暑期每日一练(四)策略 ----------------------------------------------------------------- 6 4升5暑期每日一练(五)计算 ----------------------------------------------------------------- 8 4升5暑期每日一练(六)计算 --------------------------------------------------------------- 10 4升5暑期每日一练(七)策略 --------------------------------------------------------------- 12 4升5暑期每日一练(八)多边形填判 ----------------------------------------------------- 13 4升5暑期每日一练(九)填判 --------------------------------------------------------------- 14 4升5暑期每日一练(十)策略 --------------------------------------------------------------- 15 4升5暑期每日一练(十一)计算------------------------------------------------------------ 17 4升5暑期每日一练(十二)计算------------------------------------------------------------ 18 4升5暑期每日一练(十三)策略------------------------------------------------------------ 19 4升5暑期每日一练(十四)策略------------------------------------------------------------ 21 4升5暑期每日一练(十五)多边形填判 -------------------------------------------------- 23 4升5暑期每日一练(十六)多边形面积 -------------------------------------------------- 24 4升5暑期每日一练(十七)面积单位 ----------------------------------------------------- 25 4升5暑期每日一练(十八)单位换算 ----------------------------------------------------- 27 4升5暑期每日一练(十九)策略------------------------------------------------------------ 28 4升5暑期每日一练(二十)计算------------------------------------------------------------ 29 4升5暑期每日一练(二十一)计算 -------------------------------------------------------- 31 4升5暑期每日一练(二十二)多边形填空----------------------------------------------- 33 4升5暑期每日一练(二十三)策略 -------------------------------------------------------- 35 4升5暑期每日一练(二十四)多边形选填----------------------------------------------- 37 4升5暑期每日一练(二十五)数选填 ----------------------------------------------------- 39 4升5暑期每日一练(二十六)策略 -------------------------------------------------------- 41 4升5暑期每日一练(二十七)图形选填 -------------------------------------------------- 43 4升5暑期每日一练(二十八)计算 -------------------------------------------------------- 45 4升5暑期每日一练(二十九)计算 -------------------------------------------------------- 46 4升5暑期每日一练(三十)多边形面积 -------------------------------------------------- 474升5暑期每日一练(一)策略1.一块长方形菜地面积是810平方米,如果长不变,宽扩大2倍,现在的面积是()平方米。
“多边形的面积”复习教学,应关注空间维度作者:***来源:《教育研究与评论(小学教育教学)》2023年第11期摘要:教學“多边形的面积”后,设计一节复习(拓展)课,引导学生重新推导平行四边形、三角形、梯形的面积公式,梳理多边形面积公式之间的关系,进而归纳发现面积的二维属性,类比发现周长的一维属性,并发散认识空间的维度,从而帮助学生更好地理解面积概念,区分周长与面积,发展空间观念。
关键词:小学数学;面积;周长;空间维度;多边形的面积一、教前思考周长和面积是小学数学中比较容易混淆的两个概念。
学生(使用苏教版小学数学教材)在三年级上学期学习周长概念以及长方形和正方形的周长,在三年下学期学习面积概念以及长方形和正方形的面积,然后在五年级上学期学习平行四边形、三角形、梯形等多边形的面积。
教学面积概念后,可以从定义和度量两个角度,引导学生比较辨析周长和面积的联系和区别。
时隔一年半,教学“多边形的面积”后,学生对“周长和面积的联系和区别”掌握得如何?笔者在课后作业中设计了一道有关周长和面积的练习:把一个用铁丝围成的长方形框架拉成一个平行四边形,该框架的周长和面积发生了什么变化?对此,笔者所教班级以及同年级其他班级学生的答题情况统计如下页表1所示。
可见,学生的错误率不低,这反映出他们对周长和面积的联系和区别掌握得不是很好。
进一步访谈得知:学生知道周长和面积的描述性定义、度量方法以及计算方法(数或算出度量单位的个数),有比较好的量感;但是,对二者度量本质(联系)下的空间维度属性(区别)理解得不透彻。
实际上,“几何学起源于图形大小的度量……根据图形的维数,把度量一维图形大小的数称为长度,将二维图形的大小用面积来表示……”[1]。
但是,小学数学教材对长度、面积等的维度属性介绍得并不多。
张奠宙先生就曾指出:小学教材中对长度、面积和体积的维度属性认识不足,导致学生对线段、平面、立体的区分及关联有些疏漏,甚至出现错误。
[2]因此,教学“多边形的面积”后,笔者设计了一节复习(拓展)课,引导学生重新推导平行四边形、三角形、梯形的面积公式,梳理多边形面积公式之间的关系,进而归纳发现面积的二维属性,类比发现周长的一维属性,并发散认识空间的维度,从而帮助学生更好地理解面积概念,区分周长与面积,发展空间观念。
《多边形的面积》大单元教学设计本案例是青教版五四制四年级下册《多边形的面积》。
本单元内容的学习,一方面让学生学会转化的思想方法,推导出面积计算公式,积累数学活动经验。
另一方面在自主探索组合图形的面积等活动过程中发展空间观念。
平面图形的面积在小学几何模块内容中占据了很大的比重,在教科书中主要运用了拼接的方法,指导学生探究面积公式的形成过程。
对学生来说利用公式求平面图形的面积不是难事,在一定的变式训练量下,学生解题能力普遍得以提高,但是对于学生来说,仅仅会用公式解题,就达到教学目的了吗?为什么要学习面积计算呀?各种平面图形的面积之间的内在联系等更加有价值的问题在课堂上的呈现,将在本次课例研究中进行重点研究。
单元整体教学设计将从单元分析、单元规划、课时规划三个方面设计。
01单元分析(一)课标分析课程标准(2022)关于本单元的要求,从“内容要求”“学业要求”“教学提示”三个方面进行课标摘抄。
(二)教材分析纵向分析:“多边形的面积”是人教版教材五年级上册第六单元的教学内容,根据教材的编排,从一年级下册开始依次编排了以下内容。
可以看出,本单元“多边形的面积”起到一个承上启下的作用,为进一步学习圆的面积和立体图形的表面积打下基础。
横向分析:从单元内容分析,本单元将“多边形的面积"分为平行四边形的面积、三角形的面积、梯形的面积、组合图形的面积和解决问题(不规则图形的面积)五个部分进行教学。
其中例1、例2、例3属于面积公式推导计算课,是本单元教学的重点。
例4、例5属于解决问题应用课,培养学生综合应用数学知识解决实际问题的意识和能力。
通过本单元的学习,不仅将帮助学生深入理解面积概念的本质,还要让学生感受与体悟到“转化”是数学学习和研究的一种重要方法,以促进学生知识的迁移和学习能力的提高。
(三)学情分析学生在学习这个单元之前,对于“多边形的面积”的单元知识,会什么?还疑惑什么?需要提升什么?怎样根据学生的单元学习实际取舍与设计教学?只有这样,教师的“教”才能发生在学生真正需要的地方。
第五讲割补法巧算面积在上一讲中,我们学习了如何计算格点图形的面积,介绍了正方形格点图形和三角形格点图形的面积计算公式.根据公式,我们可以求出正方形格点图形的面积是最小正方形面积的几倍,或者求出三角形格点图形面积是最小正三角形面积的几倍.随着几何学习的步步深入,大家会发现除了用公式法直接求面积之外,还有很多间接求面积的方法.尤其是对于不规则图形,我们并不知道这些图形的面积公式,但是可以把它们通过分割、添补等各种方式变换为规则的图形.例题1图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米)「分析」这是一个不规则图形,我们能不能把它切成很多规则的小块,一块一块地求面积呢? 练习1图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米)我们可以看到,在没有格点的情况下,割补的方法仍然可以使用.我们将来做几何面积计算时,就要视情况灵活运用割补法.例题2如图所示,在正方形ABCD 内部有一个长方形EFGH .已知正方形ABCD 的边长是6厘米,图中线段AE 、AH 都等于2厘米.求长方形EFGH 的面积.「分析」所求长方形的长、宽都是未知且不可求的,但是正方形面积以及周围四个直角三角形面积都是可以计算出来的,那么长方形面积怎么计算呢?1 223 453 2 4341249 DG练习2如图所示,在正方形ABCD 内部有三角形CEF .已知正方形ABCD 的边长是6厘米,图中线段AE 、AF 都等于2厘米.求三角形CEF 的面积.例题3如图所示,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?「分析」阴影部分零零散散,能不能通过割补的方法把它变成规则的图形嗯? 练习3如图所示,大正三角形的面积为10平方厘米.连接大正三角形的各边中点得到四个小正三角形,取各个小正三角形的中心,再将每个小正三角形的中心和顶点相连,得到三个一样的小三角形,那么图中阴影部分的面积总和等于多少平方厘米?例题4如图,把两个相同的正三角形的各边分别三等分和四等分,并连接这些等分点.已知图1中阴影部分的面积是48平方分米.请问:图2中阴影部分的面积是多少平方分米?「分析」图1和图2中最小正三角形的面积是不一样的,但两个大正三角形面积却是一样的,你能求出大正三角形的面积吗?D图2练习4如图,把两个同样大小的正方形分别分成55⨯和33⨯的方格表.图1阴影部分的面积是162,请问图2中阴影部分的面积是多少?例题4中的阴影部分都是同样形状的花图形,我们不能直接看出花图形和大正三角形的面积之间有什么倍数关系,但是借助一块块小正三角形,我们把花图形和大正三角形之间联系起来,看看它们各自占了多少个小正三角形.找到面积之间的联系,是解决类似问题的钥匙.有些图形看起来没有分割成一些相同的小图形,实际上不过是将分割线隐藏起来或者只出现了其中的一部分,需要我们自己进行分割. 例题5如图,在两个相同的等腰直角三角形中各作一个正方形,如果正方形A 的面积是36平方厘米,那么正方形B 的面积是多少平方厘米?「分析」乍一看上去和例题2有些相似,我们能不能求出大等腰直角三角形的面积呢?它的面积和正方形A 、B 之间有什么关系呢?例题6如图所示,已知一个四边形的两条边的长度和三个角的度数,这个四边形的面积是多少平方厘米?(单位:厘米)「分析」这个四边形并不规则,直接求面积似乎有些困难.我们已经知道了其中的三个角,其中有直角也有45°角.你能从这两种“特殊角”发现图形的特点吗?图1课堂内外毕式定理据说毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言;但这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形瓷砖,但毕达哥拉斯不仅仅是欣赏瓷砖的美丽,而是想到它们和数之间的关系,于是拿了画笔并且蹲在地板上,选了一块瓷砖以它的对角线AB为边画一个正方形,他发现这个正方形面积恰好等于两块瓷砖的面积和.他很好奇……于是再以两块瓷砖拼成的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块瓷砖的面积,也就是以两股为边作正方形面积之和.至此毕达哥拉斯作了大胆的假设:任何直角三角形,其斜边的平方恰好等于另两边平方之和.那一顿饭,这位古希腊数学大师,视线都一直没有离开地面.这就是著名的毕式定理:在任何一个直角三角形中(等腰直角三角形也算在内),两条直角边的长度的平方和等于斜边长度的平方.实际上,早在毕达哥拉斯之前,许多民族已经发现了这个事实,而且巴比伦、埃及、中国、印度等的发现都有真凭实据,有案可查.相反,毕达哥拉斯的著作却什么也没有留传下来,关于他的这个故事都是后人辗转传播的.可以说真伪难辨.这个现象的确不太公平,之所以这样,是因为现代的数学和科学来源于西方,而西方的数学及科学又来源于古希腊,古希腊流传下来的最古老的著作是欧几里得的《几何原本》,而其中许多定理再往前追溯,自然就落在毕达哥拉斯的头上.他常常被推崇为“数论的始祖”,而在他之前的泰勒斯被称为“几何的始祖”,西方的科学史一般就上溯到此为止了.至于希腊科学的起源只是近一二百年才有更深入的研究.因此,毕达哥拉斯定理这个名称一时半会儿改不了.不过,在中国,因为我们的老祖宗也研究过这个问题,因此称为商高定理,更普遍地则称为勾股定理.中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦.作业1. 下图中的数字分别表示对应线段的长度,图中多边形的面积是多少?2.3. 如下图所示,在正方形ABCD 内部有梯形EHGF .已知正方形ABCD 的边长是6厘米,图中线段AE 、AH 、BF 、DG 都等于2厘米.则梯形EHGF 的面积是多少平方厘米?4.5. 如图所示,平行四边形的面积是12,把一条对角线四等分,将四等分点与平行四边形另外两个顶点相连.图中阴影部分的面积总和是多少?6.7. 下图中空白部分的面积是100,那么阴影正方形的面积是多少?8. 9. 如图所示,正六边形ABCDEF 的面积是36.阴影正六边形的面积是多少?10.D G324 34 1242 3 33 3第五讲 割补法巧算面积1. 例题1答案:32平方厘米详解:对这个图形进行简单分割后,分别求面积再相加.32243632⨯+⨯+⨯=平方厘米.也可对图形进行添补.(如右图)2. 例题2答案:16平方厘米详解:正方形面积是36平方厘米,三角形AEH 、FCG 的面积是2平方厘米,三角形EBF 、GDH 的面积是8平方厘米.长方形EFGH 的面积是36228216-⨯-⨯=平方厘米.3. 例题3答案:50平方厘米详解:首先可把小正方形中间的阴影部分添补到相对应的空白处,中间小正方形的面积等于四个角上的阴影三角形的面积和.可连接正方形对边的中点,也可以把四个三角形向中间对折都可以说明阴影部分的面积是正方形面积的一半,即为1010250⨯÷=平方厘米. 4. 例题4答案:27平方厘米详解:图1中大三角形被分成9块,阴影部分面积占3块,面积是48平方分米,那么每个小三角面积是16平方分米,大三角形面积是169144⨯=平方分米. 图2中大三角形被分成了16块,那么每个小三角形的面积是144169÷=平方分米,阴影部分面积是9327⨯=平方分米. 5. 例题5答案:32平方厘米详解:对图形进行如左图的分割,通过第一个图,我们知道等腰直角三角形的面积是72平方厘米.那么第二个图中每个小三角形面积是8平方厘米,正方形B 的面积是32平方厘米.1 2 2 3 4 5 1 2 23 45答案:20平方厘米详解:如图所示,把原图添补成一个大的等腰直角三角形.需要将多余的小直角三角形去掉才是原图.大等腰直角三角形的底是7厘米,高是7厘米,所以面积是77224.5⨯÷=平方厘米;小等腰直角三角形的底是3厘米,高是3厘米,所以面积是332 4.5⨯÷=平方厘米.所以四边形的面积是24.5 4.520-=平方厘米.7. 练习1答案:78平方厘米详解:492331278⨯+⨯+⨯=平方厘米.8. 练习2答案:10平方厘米 详解:正方形面积是36平方厘米,三角形AEF 的面积是2平方厘米,三角形BEC 、DFC 的面积都是12平方厘米.三角形EFC 的面积是362121210---=平方厘米.9. 练习3答案:5简答:大正三角形被分成12块,阴影部分占6块,占总个数的一半,面积为5平方厘米.10. 练习4答案:150简答:图1中大正方形被分成25块,阴影部分面积占18块,面积是162,那么每个小正方形面积是9,大正方形面积是259225⨯=.图2中大正方形被分成了9块,那么每个小正方形的面积是225925÷=,阴影部分面积是256150⨯=.11. 作业1答案:84简答:()312433332284⨯+⨯+++⨯⨯=平方厘米.3 24 3 4124 9答案:18简答:首先求出大正方形的面积,再求出各个角上的小三角形的边长和面积.然后把大正方形的面积减去四个小三角形的面积就得梯形的面积.13.作业3答案:6简答:将右上两个阴影三角形切下来添到左侧空白处,使其拼成一个大的三角形.阴影面积是平行四边形面积的一半.所以阴影部分的面积是6.14.作业4答案:80简答:对三角形进行分割,能知道每个小三角形的面积是100520÷=,阴影正方形的面积是80.15.作业5答案:9简答:把大六边形划分为24个小正三角形,其中阴影部分可以分成6个小正三角形,所以大六边形是阴影部分面积的4倍,正六边形面积是36,阴影部分的面积是3649÷=.。
四年级数学下册考试必考题型图形求面积的10个方法,有附例题解析,孩子学好面积必备!
求图形的面积是小学数学常考的一种题型。
在数学考试中,很多图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算。
一般我们称这样的图形为不规则图形。
基本图形我们都有固定的面积和周长公式,直接套用就可以计算。
那么,不规则图形的面积和周长怎么计算呢
实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
先看三道例题感受一下
一、相加法
这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积。
例如:求下图整个图形的面积
一句话:可先求两个扇形面积的和,减去正方形面积,因为阴影部分的面积恰好是两个扇形重叠的部分。