STM32,DMA采集一个AD数据,并通过DMA向串口发送
- 格式:pdf
- 大小:54.00 KB
- 文档页数:1
STM32CubeMx——串⼝使⽤DMA收发数据⽤到的是DMA发送数据,DMA接收,在中断回调⾥发送出去。
⼀.代码⽣成1.按以前的⽅法设置好时钟和调试⽅式,这⾥就不多说了。
2.设置串⼝1。
3.在DMA Setting⾥点击Add添加USART1_TX,Mode有两种模式,⼀种是普通模式,使⽤⼀次发送语句就发⼀次,另⼀种是循环模式,使⽤⼀次发送会⼀直发送。
这⾥发送我选择普通模式,接收选择循环模式。
4.在中断设置⾥打开串⼝1的中断。
5.时钟和⽂件路径等设置好,然后点⽣成代码。
⼆.代码编写1.先定义发送和接收的数组。
/* USER CODE BEGIN 0 */uint8_t aRxBuffer[1];uint8_t aTxBuffer[]="ok";/* USER CODE END 0 */2.打开串⼝DMA的发送使能,while循环可以放⼀些LED的闪烁。
/* USER CODE BEGIN 2 */HAL_UART_Receive_DMA(&huart1,aRxBuffer,1);HAL_UART_Transmit_DMA(&huart1,aTxBuffer,sizeof(aTxBuffer));/* USER CODE END 2 */3.最后加上⼀个串⼝接收函数的回调函数,把接收到的数据再发出去。
/* USER CODE BEGIN 4 */void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle){HAL_UART_Transmit(&huart1,aRxBuffer,1,0);}/* USER CODE END 4 */现象:上电之后,电脑的串⼝会收到“OK”,然后从电脑发送给芯⽚任意字符,芯⽚再发回来。
总结:使⽤DMA做发送处理,接收数据后⽤串⼝发出去。
为什么接收到数据后不⽤HAL_UART_Transmit_DMA发送出去呢?使⽤这个发现丢包情况,因为这⾥只是测试DMA接收数据情况,接收到之后⼀般是作运算处理的,所以⽤⼀般串⼝发送验证接收的数据正确。
STM32F103 DMA案例背景STM32F103是意法半导体(STMicroelectronics)推出的一款32位Cortex-M3内核的单片机,具有丰富的外设和强大的性能。
其中,DMA(Direct Memory Access)是STM32F103系列的一个重要特性,它能够实现外设和内存之间的数据传输,大大减轻了CPU的负担,提高了系统的性能。
本文将通过一个具体的案例来介绍STM32F103的DMA功能以及如何使用DMA进行数据传输。
案例描述在某个智能家居系统中,需要读取多个传感器的数据,并将数据通过串口发送给上位机进行处理和显示。
传感器的数据采集频率较高,而且需要实时传输,因此需要一种高效的方式来进行数据传输。
为了减轻CPU的负担,我们决定使用STM32F103的DMA功能来实现数据的传输。
硬件准备•STM32F103开发板•传感器模块•上位机串口调试工具软件准备•Keil MDK开发环境•STM32CubeMX配置工具案例过程步骤1:配置GPIO和串口首先,使用STM32CubeMX配置工具对STM32F103进行初始化配置。
打开STM32CubeMX,选择对应的芯片型号(例如STM32F103C8T6),然后进行以下配置:1.在”Pinout & Configuration”选项卡中,配置GPIO引脚。
将传感器模块的数据引脚连接到STM32F103的GPIO引脚,使其能够读取传感器数据。
2.在”Peripherals”选项卡中,配置串口。
选择一个可用的串口(例如USART1),配置波特率和其他参数,以便与上位机进行通信。
完成配置后,点击”Project”菜单,选择”Generate Code”生成代码。
然后将生成的代码导入到Keil MDK开发环境中。
步骤2:配置DMA传输在Keil MDK中打开生成的工程,找到对应的串口初始化代码。
在初始化代码中加入以下代码,配置DMA传输:// 定义DMA传输缓冲区#define BUFFER_SIZE 100uint8_t buffer[BUFFER_SIZE];// 配置DMA传输DMA_HandleTypeDef hdma_usart1_tx;hdma_usart1_tx.Instance = DMA1_Channel4;hdma_usart1_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;hdma_usart1_tx.Init.PeriphInc = DMA_PINC_DISABLE;hdma_usart1_tx.Init.MemInc = DMA_MINC_ENABLE;hdma_usart1_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;hdma_usart1_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;hdma_usart1_tx.Init.Mode = DMA_NORMAL;hdma_usart1_tx.Init.Priority = DMA_PRIORITY_LOW;HAL_DMA_Init(&hdma_usart1_tx);// 关联DMA和串口__HAL_LINKDMA(huart, hdmatx, hdma_usart1_tx);以上代码中,首先定义了一个长度为100的缓冲区,用于存储传感器数据。
STM32多通道ADC采集详解(DMA模式和非DMA模式)在非DMA模式下,ADC采集的数据是通过CPU直接读取的,采集效率相对较低,但是编程相对简单。
首先,需要初始化ADC模块的工作模式(单通道、多通道等)和采样时间。
然后,使能ADC模块,并配置所需的通道和采样时间。
接着,设置采样序列,指定要采集的通道和相应的排列顺序。
在采集数据时,首先需要设置ADC转换模式和采样时间,然后开始转换,并等待转换完成。
转换完成后,通过读取ADC_DR寄存器可以获取转换结果。
如果需要采集多个通道的数据,可以通过设置ADCSQR中的SQx位来启动下一次转换。
在DMA模式下,ADC采集的数据是通过DMA控制器传输到指定的内存区域,采集效率较高,适合数据量较大的应用场景。
与非DMA模式相比,DMA模式下的配置需要额外设置DMA控制器的工作模式(单次传输、循环传输等)和传输数据的目的地地址。
在采集数据前,需要设置DMA传输的目的地地址,并使能DMA传输。
在开启ADC转换后,DMA控制器会根据设置的目的地地址来自动传输数据,无需CPU干预。
采集完成后,CPU可以通过检查DMA传输完成标志位来判断数据是否已传输完毕。
总结:
使用非DMA模式的ADC采集相对简单而容易上手,适用于数据量较小且对实时性要求不高的应用场景。
DMA模式下的ADC采集效率更高,适用于数据量较大且对实时性要求较高的应用场景。
无论是DMA模式还是非DMA模式,都需要根据具体的应用需求来选择合适的模式。
在使用DMA模式时,还需要注意合理设置DMA传输的目的地地址和传输模式,以充分发挥DMA的优势。
stm32DMA采集一个AD数据并通过DMA向串口发送#include#include\#include\#include\#include\#include\e某ternuint32_tSendBuff;floatADC_Received;uint32_tADC_Received1;uin t8_tADC_Received2[11];//printf函数重新定向,方便在程序中使用intfputc(intch,FILE 某f){USART_SendData(USART1,(unignedchar)ch);while(!(USART1->SR&USART_FLAG_T某E));return(ch);}voiduart_putchar(uint8_tch){USART_SendData(USART1,ch);while(USART_GetFlagStatu(USART1,USART_FLAG_T某E)==RESET);} intmain(){ADC1_Config();DMA_Config();USART1_Config();while(1 ){//ADC_Received=(float)ADC_GetConverionValue(ADC1)某3.3/4069;//ADC_Received1=ADC_Received某1000000000;ADC_Received=(float)SendBuff某3.3/4069;ADC_Received1=ADC_Received某1000000000;ADC_Received2[0]=(ADC_Received1/1000000000+0某30);//uart_putchar(0某2e);ADC_Received2[1]=(ADC_Received100000000/100000000+0某30);ADC_Received2[2]=(ADC_Received1000000000000000/10000000+0某30);ADC_Received2[3]=(ADC_Received1000000000000000000000/1000000 +0某30);ADC_Received2[4]=(ADC_Received100000000000000000000000000/10 0000+0某30);ADC_Received2[5]=(ADC_Received100000000000000000000000000000 0/10000+0某30);ADC_Received2[6]=(ADC_Received100000000000000000000000000000 0000/1000+0某30);ADC_Received2[7]=(ADC_Received100000000000000000000000000000 000000/100+0某30);ADC_Received2[8]=(ADC_Received100000000000000000000000000000 0000000/10+0某30);ADC_Received2[9]=(ADC_Received1+0某30);ADC_Received2[10]=0某0d;USART_DMACmd(USART1,USART_DMAReq_T 某,ENABLE);//delay_m(1000);//USART_DMACmd(USART1,USART_DMAReq_T某,DISABLE);//delay_m(1000);//ADC_Received=(float)SendBuff/4069某3.3;//ADC_Received=(u16)ADC1->DR;//ADC_Received=(float)ADC_Received/4069某3.3;//printf(\//while(!ADC_GetFlagStatu(ADC1,ADC_FLAG_EOC));//uart_putchar('\\r');//uart_putchar('\\n');//uart_putchar(0某0d);//uart_putchar(0某0a);//printf(\//printf(\//printf(\}}#include\voidADC1_Config(void){ADC_InitTypeDefADC_InitStructure;RCC_APB2PeriphClockCmd(RCC_ APB2Periph_ADC1,ENABLE);ADC1_Gpio_Config();ADC_DeInit(ADC1);//复位ADC1,将外设ADC1的全部寄存器重设为缺省值//ADC1配置ADC_InitStructure.ADC_Mode=ADC_Mode_Independent;//ADC1工作在独立模式ADC_InitStructure.ADC_ScanConvMode=ENABLE;//使能扫描ADC_InitStructure.ADC_ContinuouConvMode=ENABLE;;//ADC转换工作在连续模式ADC_InitStructure.ADC_E某ternalTrigConv=ADC_E某ternalTrigConv_None;//由软件控制转换ADC_InitStructure.ADC_DataAlign=ADC_DataAlign_Right;//转换数据右对齐ADC_InitStructure.ADC_NbrOfChannel=1;//转换通道为通道1ADC_Init(ADC1,&ADC_InitStructure);//初始化ADC//ADC1选择信道0,顺续等级1,采样时间239.5个周期ADC_RegularChannelConfig(ADC1,ADC_Channel_0,1,ADC_SampleTime _28Cycle5);//打开ADC1ADC_Cmd(ADC1,ENABLE);//重置ADC1校准寄存器ADC_ReetCalibration(ADC1);//等待ADC1校准重置完成while(ADC_GetReetCalibrationStatu(ADC1));//开始ADC1校准ADC_StartCalibration(ADC1);//等待ADC1校准完成while(ADC_GetCalibrationStatu(ADC1));//使能ADC1软件开始转换ADC_SoftwareStartConvCmd(ADC1,ENABLE);//配置ADC时钟=PCLK21/612MHzRCC_ADCCLKConfig(RCC_PCLK2_Div6);//使能ADC1模块DMAADC_DMACmd(ADC1,ENABLE);}taticvoidADC1_Gpio_Config(void){GPIO_InitTypeDefGPIO_InitStructure;RCC_APB2PeriphClockCmd(RC C_APB2Periph_GPIOA,ENABLE);GPIO_InitStructure.GPIO_Mode=GPIO_Mod e_AIN;GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0;GPIO_Init(GPIOA,&GP IO_InitStructure);}#include\/某其他函数里USART_DMACmd(USART1,USART_DMAReq_T某,ENABLE);uint32_tSendBuff;e某ternfloatADC_Received;e某ternuint8_tADC_Received2[11];//描述:DMA串口的初始化配置voidDMA_Config(void){//初始化结构体DMA_InitTypeDefDMA_InitStructure;//开启DMA时钟RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1,ENABLE);//配置DMA中断NVIC_Config();//设置DMA源:地址DMA_InitStructure.DMA_PeripheralBaeAddr=(u32)&ADC1->DR;//某内存地址(要传输的变量的指针)DMA_InitStructure.DMA_DIR=DMA_DIR_PeripheralSRC;//指定DMA通道的DMA缓存的大小,单位为数据单位。
实验要求∙使用开发板上的串口向PC发送信息∙PC通过串口向开发板发送数据,CPU在接收到后,确认信息,并通过串口返回数据例如:开发板先发送一个字符‘c’,然后PC发送一个字符‘a’,开发板接收到后,再发送一个字符‘b’[编辑] 实验目的∙学习和掌握STM32的USART模块的工作原理和使用方法∙学习和掌握USART固件库的使用∙掌握串口中断的使用方法[编辑] 实验分析硬件分析:USART的工作原理软件分析:USART固件库USART实例[编辑] 开发板原理图设计MAX3232与主芯片的连接[编辑] 硬件知识点详见STM32F10XXX英文版参考手册RM0008-Reference Manual[编辑] USART通用同步异步收发器(USART)提供了一种灵活的方法与使用工业标准NRZ异步串行数据格式的外部设备之间进行全双工数据交换。
USART利用小数波特率发生器提供宽范围的波特率选择。
它支持同步单向通信和半双工单线通信,也支持LIN(局部互连网),智能卡协议和IrDA(红外数据组织)SIR ENDEC规范,以及调制解调器(CTS/RTS)操作。
它还允许多处理器通信。
使用多缓冲器配置的DMA方式,可以实现高速数据通信。
(表) USART模式支持[编辑] USART内部结构[编辑] 引脚定义任何USART双向通信至少需要两个引脚:接收数据输入(RX)和发送数据输出(TX)。
∙RX:接收数据输入。
通过过采样技术来区别数据和噪音,从而恢复数据。
∙TX:发送数据输出。
当发送器被禁止时,输出引脚恢复到它的I/O端口配置。
当发送器被激活,并且不发送数据时,TX引脚处于高电平。
在单线和智能卡模式里,此I/O口被同时用于数据的发送和接收。
在同步模式中需要下列引脚:∙CK:发送器时钟输出。
此引脚输出用于同步传输的时钟, (在起始位和停止位上没有时钟脉冲,软件可选地,可以在最后一个数据位送出一个时钟脉冲)。
数据可以在RX上同步被接收。
STM32 ADC结合DMA数据采样与软件滤波处理2012-03-17 23:53:05| 分类:STM32 | 标签:adc结合dma |字号大中小订阅本文原创于观海听涛,原作者所有,请注明出处。
作为一个偏向工控的芯片,ADC采样是一个十分重要的外设。
STM32集成三个12位精度18通道的部ADC,最高速度1微秒,结合DMA可以解放CPU进行更好的处理。
ADC接口上的其它逻辑功能包括:●同步的采样和保持●交叉的采样和保持●单次采样模拟看门狗功能允许非常精准地监视一路、多路或所有选中的通道,当被监视的信号超出预置的阀值时,将产生中断。
由标准定时器(TIMx)和高级控制定时器(TIM1和TIM8)产生的事件,可以分别部级联到ADC 的开始触发和注入触发,应用程序能使AD转换与时钟同步。
12位ADC是一种逐次逼近型模拟数字数字转换器。
它有多达18个通道,可测量16个外部和2个部信号源。
ADC的输入时钟不得超过14MHZ,它是由PCLK2经分频产生。
如果被ADC转换的模拟电压低于低阀值或高于高阀值,AWD模拟看门狗状态位被设置。
关于ADC采样与DMA关系,引用网上一段解释:STM32 的优点在哪里?除去宣传环节,细细分析。
STM32 时钟不算快,72MHZ,也不能扩展大容量的RAM FLASH,同样没有DSP 那样强大的指令集。
它的优势在哪里呢?---就在快速采集数据,快速处理上。
ARM 的特点就是方便。
这个快速采集,高性能的ADC 就是一个很好的体现,12 位精度,最快1uS 的转换速度,通常具备2 个以上独立的ADC 控制器,这意味着,STM32 可以同时对多个模拟量进行快速采集,这个特性不是一般的MCU具有的。
以上高性能的ADC,配合相对比较块的指令集和一些特色的算法支持,就构成了STM32 在电机控制上的强大特性。
好了,正题,怎末做一个简单的ADC,注意是简单的,ADC 是个复杂的问题,涉及硬件设计,电源质量,参考电压,信号预处理等等问题。
(二)ADC循环采集六路电压,使用DMA.这次实验真的很郁闷,对DMA的不了解让我深陷误区,明白之后,让我更加佩服DMA的强大。
误区就是:从实验的目标我们知道这次是用DMA把ADC转换的数据传送到内存中的一个数组里存起来,因为是采集6个通道,这里使能了ADC的扫描模式。
一旦启动ADC,就会按顺序转换SQRX里选中的通道,问题就是我一开始以为ADC与DMA并不会协调工做,也就是ADC自己转自己的,DMA自己传自己的,这样的话内存里的数组就不是我想要的了,后来着实的研究了很长时间,在群里的一位兄弟的提醒下,我才知道,可能我想的复杂了,也许就可以在ADC转一次,然后DMA把数据传一次,Ok,经过实验得知,这个想法是正确的。
好了,说了这么多废话,开始进入正题。
这里使用了ADC1的六个规则通道分别是:CH0、CH1、CH2、CH3、CH14、CH15,分别对应的引脚为PA0、PA1、PA2、PA3、PC4、PC5。
关于ADC的配置:启动了ADC1的扫描模式,还有连续转换模式,独立工作模式(只用1个ADC),因为用的了DMA,所以也要使能DMA位,使用外部触发(SWSTART),数据为右对齐。
还有SQRX等等就不说了,这里不需要ADC中断的。
中断在DMA里。
关于DMA的配置:因为ADC请求规定在DMA1的第一个通道,所以这里使用DMA_CH1,外设地址为ADC唯一的数据寄存器(u32)&ADC1->DR,存储器地址为(u32)SendBuff数组,这个数组可以存放6个元素。
这里还有使能传输完中断(TCIF),选择从外设读取,循环模式,外设地址非增量模式,存储器地址增量模式,外设数据宽度16位,存储器地址16位,非存储器到存储器模式。
关于DMA中断函数:当DMA传输完6次数据时,TCIF位自动置位,程序进入中断服务函数,首先先关闭ADC的连续转换,我们把数组的处理都放在了这里,处理完发送到串口,通过电脑的超级终端可以看到不停变化的6个引脚电压的数据。
一文带你看懂Stm32定时器+ADC+DMA进行AD采样的实现此STM32单片机为STM32F103系列的STM32的ADC有DMA功能这都毋庸置疑,也是我们用的最多的!然而,如果我们要对一个信号(比如脉搏信号)进行定时采样(也就是隔一段时间,比如说2ms),有三种方法:1、使用定时器中断每隔一定时间进行ADC转换,这样每次都必须读ADC的数据寄存器,非常浪费时间!2、把ADC设置成连续转换模式,同时对应的DMA通道开启循环模式,这样ADC就一直在进行数据采集然后通过DMA把数据搬运至内存。
但是这样做的话还得加一个定时中断,用来定时读取内存中的数据!3、使用ADC的定时器触发ADC转换的功能,然后使用DMA进行数据的搬运!这样只要设置好定时器的触发间隔,就能实现ADC定时采样转换的功能,然后可以在程序的死循环中一直检测DMA转换完成标志,然后进行数据的读取,或者使能DMA转换完成中断,这样每次转换完成就会产生中断,我是采用第二种方法。
下面上代码:我这里使用的单通道//定时器初始化voidTIM2_ConfiguraTIon(void){TIM_TImeBaseInitTypeDefTIM_TimeBaseStructure;TIM_OCInitTypeDefTIM_OCInitStructure;RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);TIM_TimeBaseStructure.TIM_Period=1999;//设置2ms一次TIM2比较的周期TIM_TimeBaseStructure.TIM_Prescaler=71;//系统主频72M,这里分频71,相当于1000K 的定时器2时钟TIM_TimeBaseStructure.TIM_ClockDivision=0x0;。
STM32 串口DMA方式接收2011-04-02 18:13 4458人阅读评论(5) 收藏举报 STM32 是一款基于ARM Cortex-M3内核的32位MCU,主频最高可达72M。
最近因为要在车机上集成TPMS功能,便开始着手STM32的开发工作,STM32F10x系列共有5个串口(USART1~USART5),支持DMA方式通信,DMA 方式由于不需要CPU的参与,而是直接由DMA控制器完成串口数据的读写,因而可以很大程度的提高CPU的利用率。
在使用STM32串口之前需要做一系列的初始化工作:1.RCC(复位和时钟控制寄存器)初始化,启用GPIO、DMA、USART时钟。
2.NVIC(嵌套向量中断控制寄存器)初始化,完成各个硬件中断的配置。
ART初始话,配置串口,设置DMA通道等。
4.DMA初始化,完成DMA的配置。
最后是使能USART和DMA。
下面是通过DMA的方式从串口USART1接收数据,STM32工作后串口数据由DMA控制器接收存到指定buffer,读取数据直接从DMA buffer中读取即可。
发送数据采用非DMA方式,首先将待发送的数据存入到发送队列,然后在任务循环中将队列中的数据发送给USART1。
实例代码如下:[cpp]view plaincopyprint?1. //**********************************************************************************************2. // STM32F10x USART Test3. // compiler: Keil UV34. // 2011-03-28 , By friehood5. //**********************************************************************************************6. static int8u rDMABuffer[64]; // DMA buffer7. static int16u rDMARear = sizeof(rDMABuffer);8.9. static int8u USART_RevBuf[64]; // 串口接收buffer10. s tatic int8u USART_SndBuf[64]; // 串口发送buffer11. s tatic int8u Head=0,Tail=0; // 发送buffer的头尾12.13.14. // 串口任务15. v oid Task_USART(void)16. {17. int16u end;18. if (USART1->SR & (USART_FLAG_ORE | USART_FLAG_NE | USART_FLAG_FE))19. {20. USART_ReceiveData(USART1);21. }22.23. // DMA接收24. end = DMA_GetCurrDataCounter(DMA1_Channel5);25. /*if((sizeof(rDMABuffer)-end)>0)26. dbgprt("DMA available datalen=%d/n",sizeof(rDMABuffer)-end); */27. while(rDMARear != end)28. {29. USART_receive(rDMABuffer[sizeof(rDMABuffer)-rDMARear]);30. if (!(--rDMARear))31. {32. rDMARear = sizeof(rDMABuffer);33. }34. }35.36. //发送37. if(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == SET)38. {39. int8u chr;40. // 从发送队列取出一个字符41. if(PopFront(&chr))42. {43. USART_SendData(USART1, chr);44. dbgprt("USART_SendData:0x%02x/n",chr);45. while (USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET)46. {47. }48. }49. }50. }51.52.53. // USART串口初始化54. v oid dev_USART_init(void)55. {56. USART_InitTypeDef USART_InitStructure;57. GPIO_InitTypeDef GPIO_InitStructure;58. DMA_InitTypeDef DMA_InitStructure;59.60. /* DMA1 Channel5 (triggered by USART1 Rx event) Config */ //参见 STM32 datasheet61. DMA_DeInit(DMA1_Channel5);62. DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)&USART1->DR;63. DMA_InitStructure.DMA_MemoryBaseAddr = (u32)rDMABuffer;64. DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;65. DMA_InitStructure.DMA_BufferSize = sizeof(rDMABuffer);66. DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;67. DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;68. DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;69. DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;70. DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;71. DMA_InitStructure.DMA_Priority = DMA_Priority_Low;72. DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;73. DMA_Init(DMA1_Channel5, &DMA_InitStructure);74.75. USART_ART_BaudRate = 9600;76. USART_ART_WordLength = USART_WordLength_8b;77. USART_ART_StopBits = USART_StopBits_1;78. USART_ART_Parity = USART_Parity_No;79. USART_ART_HardwareFlowControl = USART_HardwareFlowControl_None;80. USART_ART_Mode = USART_Mode_Rx | USART_Mode_Tx;81.82. //配置IO: GPIOA9和GPIOA10分别作为串口TX、RX端。
STM32使用DMA加串口空闲中断接收数据在STM32中使用DMA和串口空闲中断接收数据可以实现高效的数据接收。
下面是一个示例代码,可以在1200字以上使用DMA和空闲中断接收数据。
首先,需要启用STM32的串口空闲中断和DMA功能。
在CubeMX中配置相关的引脚和串口设置,并使能空闲中断和DMA接收。
接下来是代码实现:```c#include "stm32f4xx_hal.h"#define UART_RX_BUFFER_SIZE 2048 // 接收缓冲区大小UART_HandleTypeDef huart2;DMA_HandleTypeDef hdma_usart2_rx;uint8_t uart_rx_buffer[UART_RX_BUFFER_SIZE];uint16_t uart_rx_index = 0;```上面的代码定义了串口接收的缓冲区和相关的变量。
```cvoid HAL_UART_IdleCallback(UART_HandleTypeDef *huart)if (huart->Instance == USART2)//空闲中断发生HAL_UART_DMAStop(&huart2);}```这是串口空闲中断回调函数,当串口空闲中断发生时,将设置一个标志表示接收完成,并停止DMA接收。
```cvoid HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)if (huart->Instance == USART2)//DMA接收完成uart_rx_index += UART_RX_BUFFER_SIZE -hdma_usart2_rx.Instance->CNDTR;if (uart_rx_index >= UART_RX_BUFFER_SIZE)//接收缓冲区满了,重置索引uart_rx_index = 0;}HAL_UART_Receive_DMA(&huart2, uart_rx_buffer,UART_RX_BUFFER_SIZE);}```这是DMA接收完成回调函数,当DMA接收完成时,更新接收缓冲区索引,并重新启动DMA接收。