第7章微波遥感与成像
- 格式:ppt
- 大小:4.24 MB
- 文档页数:15
《微波遥感》课程教学大纲课程名称:微波遥感课程编号:812128英文名称:Microwave Remote Sensing课程属性:选修课课学时:40(包含8上机课)学分:2.5先修课程:高等数学(微积分)、遥感原理及应用、计算机绘图适用专业:海洋技术一、课程简介《遥感原理》课是一门专业方向选修课程,本教学大纲适用于海洋技术专业的本科生教学。
通过本课程的学习,使学生掌握必要的微波遥感基本理论知识、常用微波遥感数据的特征和应用、信息提取的方法。
在内容上侧重于微波遥感基本原理和方法介绍,使学生在掌握基本知识的基础上,进一步了解微波遥感技术的应用。
微波遥感是遥感科学与技术专业学生的一门专业基础课。
作为遥感技术的一个重要手段,微波遥感以其全天时全天候的优势在遥感领域占有无法替代的地位。
本课程电磁波传播及其与各种物质相互作用为出发点,主要介绍微波遥感的基本理论以及主被动遥感的各种传感器。
教学目的是使学生熟悉微波遥感的基本原理,了解微波遥感的常用手段,掌握微波遥感数据处理的常用方法。
微波遥感是理论与实践结合较强的专业基础课。
在教学过程中综合运用先修课程中所学到的有关知识和技能,结合教学环节,进行微波遥感技术人员所需的基本训练,为学生日后从事相关工作打下基础,因此是遥感科学与技术教学计划中占有重要地位。
二、课程内容及学时分配第一单元:绪论和微波遥感的物理基础(建议学时数:4学时)【学习目的和要求】1.知识掌握本单元主要介绍微波遥感技术的概念、微波遥感技术的分类以及微波遥感技术的特点。
对微波遥感技术的发展过程以及当前微波遥感技术的主要技术特点和主要发展趋势作了系统的阐述。
要求学生深刻理解微波遥感的概念,掌握微波遥感技术的基本分类和技术特点。
对微波遥感技术的发展过程和微波遥感在地理学中的重要作用有一定的了解。
在此基础上介绍微波遥感物理基础的电磁学部分。
2.能力培养本单元研究微波遥感技术的特点和发展趋势,并使学生理解微波遥感的物理基础。
第一章:1.遥感的基本概念是什么?应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
2.遥感探测系统包括哪几个部分?被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用.3.作为对地观测系统,遥感与常规手段相比有什么特点?①大面积同步观测:传统地面调查实施困难,工作量大,遥感观测可以不受地面阻隔等限制。
②时效性:可以短时间内对同一地区进行重复探测,发现地球上许多事物的动态变化,传统调查,需要大量人力物力,用几年甚至几十年时间才能获得地球上大范围地区动态变化的数据。
因此,遥感大大提高了观测的时效性。
这对天气预报、火灾、水灾等的灾情监测,以及军事行动等都非常重要。
(比较多,大家理解性的删除自己不需要的)③数据的综合性和可比性遥感获得地地物电磁波特性数据综合反映了地球上许多自然、人文信息。
由于遥感的探测波段、成像方式、成像时间、数据记录、等均可按照要求设计,使获得的数据具有同一性或相似性。
同时考虑道新的传感器和信息记录都可以向下兼容,所以数据具有可比性。
与传统地面调查和考察相比较,遥感数据可以较大程度地排除人为干扰。
④经济性遥感的费用投入与所获得的效益,与传统的方法相比,可以大大的节省人力、物力、财力和时间、具有很高的经济效益和社会效益。
⑤局限性遥感技术所利用的电磁波有限,有待进一步开发,需要更高分辨率以及遥感以外的其他手段相配合,特别是地面调查和验证。
第二章:6.大气的散射现象有几种类型?根据不同散射类型的特点分析可见光遥感与微波遥感的区别,说明为什么微波具有穿云浮透雾能力而可见光不能。
①瑞利散射(大气中粒子的直径比波长小得多时发生的散射).②米氏散射(当大气中粒子的直径与辐射的波长相当时发生的散射)③无选择性散射(当大气中粒子的直径比波长大的多时发生的散射).大气散射类型是根据大气中分子或其他微粒的直径小于或相当于辐射波长时才发生。
第一章:1.遥感的基本概念是什么应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
2.遥感探测系统包括哪几个部分被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用.3.作为对地观测系统,遥感与常规手段相比有什么特点①大面积同步观测:传统地面调查实施困难,工作量大,遥感观测可以不受地面阻隔等限制。
②时效性:可以短时间内对同一地区进行重复探测,发现地球上许多事物的动态变化,传统调查,需要大量人力物力,用几年甚至几十年时间才能获得地球上大范围地区动态变化的数据。
因此,遥感大大提高了观测的时效性。
这对天气预报、火灾、水灾等的灾情监测,以及军事行动等都非常重要。
(比较多,大家理解性的删除自己不需要的)③数据的综合性和可比性遥感获得地地物电磁波特性数据综合反映了地球上许多自然、人文信息。
由于遥感的探测波段、成像方式、成像时间、数据记录、等均可按照要求设计,使获得的数据具有同一性或相似性。
同时考虑道新的传感器和信息记录都可以向下兼容,所以数据具有可比性。
与传统地面调查和考察相比较,遥感数据可以较大程度地排除人为干扰。
④经济性遥感的费用投入与所获得的效益,与传统的方法相比,可以大大的节省人力、物力、财力和时间、具有很高的经济效益和社会效益。
⑤局限性遥感技术所利用的电磁波有限,有待进一步开发,需要更高分辨率以及遥感以外的其他手段相配合,特别是地面调查和验证。
第二章:6.大气的散射现象有几种类型根据不同散射类型的特点分析可见光遥感与微波遥感的区别,说明为什么微波具有穿云浮透雾能力而可见光不能。
①瑞利散射(大气中粒子的直径比波长小得多时发生的散射).②米氏散射(当大气中粒子的直径与辐射的波长相当时发生的散射)③无选择性散射(当大气中粒子的直径比波长大的多时发生的散射).大气散射类型是根据大气中分子或其他微粒的直径小于或相当于辐射波长时才发生。
微波遥感和成像侧视雷达工作基本原理概述微波遥感和成像侧视雷达是两种常用的遥感技术,它们通过利用微波的特性来获取地球表面信息。
本文将介绍微波遥感和成像侧视雷达的工作基本原理。
一、微波遥感的工作原理微波遥感是利用微波信号对地球物体和环境进行探测和测量的一种技术。
微波遥感系统由微波源、发射器、接收器和数据处理系统等组成。
1. 微波源微波源是产生微波信号的装置,常见的有微波发射机、毫米波源等。
微波源将电能转化为微波能量,并通过天线辐射出去。
2. 发射器发射器是将微波信号传输到目标物体的装置。
它可以调节微波信号的频率、幅度和极化等参数,并将微波信号辐射出去。
3. 接收器接收器是接收由目标物体反射回来的微波信号的装置。
它可以接收微波信号的幅度、相位和极化等信息。
4. 数据处理系统数据处理系统对接收到的微波信号进行处理和分析,从中提取出地球物体的特征信息。
常见的处理方法有滤波、解调、调幅和解调等。
二、成像侧视雷达的工作原理成像侧视雷达(InSAR)是一种利用雷达波束和合成孔径雷达(SAR)数据生成地表高程和表面形变等信息的技术。
1. SAR数据采集SAR是一种全天候、全时序、全天时的遥感技术。
它通过发射和接收脉冲雷达波束,测量地表物体的反射回波。
2. SAR数据处理SAR数据处理主要包括预处理、图像生成和解译等步骤。
预处理用于去除图像中的噪声和干扰,图像生成则是从原始数据中合成出高质量的成像结果。
3. 多幅SAR图像融合成像侧视雷达通过将多幅SAR图像进行融合,可以获取地表高程和形变等信息。
这是通过计算不同时间和角度下的雷达干涉图生成的。
4. 数据解译融合后的数据可以利用地表参考点进行几何校正和高程校正,进而得到具体的地表高程和形变等信息。
总结微波遥感和成像侧视雷达是两种常用的遥感技术,它们利用微波信号对地球物体和环境进行探测和测量。
微波遥感通过微波源、发射器、接收器和数据处理系统等装置,获得地球物体的特征信息。
第一章:1.遥感的基本概念是什么?应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
2.遥感探测系统包括哪几个部分?被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用.3.作为对地观测系统,遥感与常规手段相比有什么特点?①大面积同步观测:传统地面调查实施困难,工作量大,遥感观测可以不受地面阻隔等限制。
②时效性:可以短时间内对同一地区进行重复探测,发现地球上许多事物的动态变化,传统调查,需要大量人力物力,用几年甚至几十年时间才能获得地球上大范围地区动态变化的数据。
因此,遥感大大提高了观测的时效性。
这对天气预报、火灾、水灾等的灾情监测,以及军事行动等都非常重要。
(比较多,大家理解性的删除自己不需要的)③数据的综合性和可比性遥感获得地地物电磁波特性数据综合反映了地球上许多自然、人文信息。
由于遥感的探测波段、成像方式、成像时间、数据记录、等均可按照要求设计,使获得的数据具有同一性或相似性。
同时考虑道新的传感器和信息记录都可以向下兼容,所以数据具有可比性。
与传统地面调查和考察相比较,遥感数据可以较大程度地排除人为干扰。
④经济性遥感的费用投入与所获得的效益,与传统的方法相比,可以大大的节省人力、物力、财力和时间、具有很高的经济效益和社会效益。
⑤局限性遥感技术所利用的电磁波有限,有待进一步开发,需要更高分辨率以及遥感以外的其他手段相配合,特别是地面调查和验证。
第二章:6.大气的散射现象有几种类型?根据不同散射类型的特点分析可见光遥感与微波遥感的区别,说明为什么微波具有穿云浮透雾能力而可见光不能。
①瑞利散射(大气中粒子的直径比波长小得多时发生的散射).②米氏散射(当大气中粒子的直径与辐射的波长相当时发生的散射)③无选择性散射(当大气中粒子的直径比波长大的多时发生的散射).大气散射类型是根据大气中分子或其他微粒的直径小于或相当于辐射波长时才发生。
微波遥感成像原理1.发射:微波遥感系统通过天线向地面发射一定频率和功率的微波信号。
发射的微波信号可以有不同的极化方式,如水平极化、垂直极化、圆极化等。
水平和垂直极化信号的能量传播性质与地面特性有关,可以用来探测地面物体的水平和垂直方向的散射特性。
圆极化信号包含水平和垂直极化的成分,可以综合反映地物的散射特性。
2.传播:发射的微波信号在大气中传播,受大气吸收、散射、折射等影响。
大气吸收主要是由于水汽分子、氧气分子和二氧化碳分子对微波的吸收作用。
大气散射主要是由于大气中的悬浮粒子对微波的散射作用。
大气折射是指微波信号在大气中传播会发生折射现象,使得地物观测位置发生偏移。
这些大气影响需要通过大气校正算法进行修正,以减小其对地物观测的干扰。
3.接收:接收器接收散射回来的微波信号,并将其转换为电信号。
接收信号的强度和极化状态受到地物的散射特性、地形高度的变化、大气吸收和散射等多种因素的影响。
接收器通常具有多通道的接收系统,用来接收不同频率的微波信号,以获取不同的地物信息。
4.信号处理:接收到的电信号经过增益调节、滤波、干扰抑制等处理后,通过信号处理技术获得地物的信息。
主要的信号处理技术包括功率谱分析、多普勒处理、图像重建等。
功率谱分析用于分析接收信号的频谱特征,以获得地物反射的频谱分布情况。
多普勒处理可以提取出目标物体的运动速度和方向等相关信息。
图像重建技术则通过合理的算法和模型将接收到的微波信号转换为图像,以实现对地物的成像。
综上所述,微波遥感成像原理是通过发射微波信号、大气传播、接收反射信号和信号处理等过程,获取地物的散射特性并进行成像分析。
这种技术在农业、环境监测、地质勘探等领域具有广泛的应用前景。
微波遥感和成像侧视雷达工作基本原理微波遥感和成像侧视雷达(SAR)是现代遥感技术中常用的两种手段。
微波遥感利用微波辐射与地球表面的相互作用来获取地表信息,而SAR则是通过侧视雷达传感器获取地表高分辨率的图像。
本文将重点介绍微波遥感和SAR的工作原理。
一、微波遥感的工作原理微波遥感利用微波辐射与地球表面的相互作用来获取地表信息。
微波辐射是一种电磁波辐射,它在遥感中起到传感和信息获取的作用。
微波辐射的频率通常处于0.1 GHz到100 GHz之间,波长在米到厘米量级。
微波遥感在地球观测中的应用非常广泛,包括农业、林业、海洋、城市规划、气象预报等领域。
微波遥感可以穿透云层和大气,不受光学遥感中云层、雾霾等因素的限制,因此在一些特殊气象条件下有着明显的优势。
微波遥感主要利用微波辐射与地表的反射、散射、发射等作用来获取地表信息。
反射是指微波辐射射到地表后一部分被地表反射回来;散射是指微波辐射经过地表后被地表非均匀分布的目标散射回来;发射是指地表目标吸收微波辐射后再发射出来。
通过微波辐射与地表的相互作用,可以获取地表的物理和化学性质的信息,如植被的水分含量、土壤的湿度、冰雪的厚度等。
二、成像侧视雷达(SAR)的工作原理成像侧视雷达(SAR)是一种利用雷达技术获取地表高分辨率图像的遥感手段。
与传统雷达不同,SAR可以利用飞行平台上的合成孔径雷达(Synthetic Aperture Radar)传感器进行高精度成像。
SAR的工作原理是通过向地表发射微波脉冲,然后接收并记录反射回来的微波信号。
SAR的传感器不仅可以测量微波信号的强度,还可以获取其相位信息。
通过记录不同时刻接收到的信号,可以对信号进行合成处理,从而形成一幅高分辨率的地表图像。
SAR的成像原理与光学相机类似,都是通过获取目标反射或散射的信号来获得图像。
不同的是,SAR利用微波辐射而不是可见光,在夜晚或云层密布的情况下仍然能够进行观测。
SAR在地表观测中具有很高的分辨率和穿透性能,可以获取地表物体的微小变化,如地表高度、地表形态等。
微波遥感MicrowaveRemoteSensing一、课程基本情况课程类别:专业主干课课程学分:3学分课程总学时:48学时,其中讲课:32学时,实验(含上机):16学时课程性质:必修开课学期:第5学期先修课程:遥感原理1适用专业:遥感科学与技术教材:微波遥感原理,武汉大学出版社;舒宁,2003。
开课单位:地理与遥感学院遥感科学与技术系二、课程性质、敕学目标和任务本课程是遥感科学与技术专业方向专业主干课,是本专业必修课程之一。
通过对本课程的学习,使学生了解与掌握微波遥感的基本理论、原理与应用,了解微波遥感应用领域的最新发展。
进一步加强学生的遥感专业技能素养,扩宽遥感应用知识与技能。
微波遥感课程需要学生掌握微波电磁辐射基本原理、典型地物微波辐射特征、微波遥感平台及特点、微波遥感影像处理与应用、雷达干涉测量原理与应用,在此基础上了解微波遥感在不同领域内的应用。
同时通过对微波遥感的实习实践,培养学生在主被动微波遥感数据处理及解译的能力,加强学生在应用微波遥感方式解决遥感问题的应用技能,为学生微波遥感应用能力及进一步深造奠定基础。
三、教学内容和要求第1章微波遥感基础(6学时)1.1引言(1学时)(1)微波遥感概念;(2)微波遥感的优势与不足;(3)了解微波遥感的发展历史重点:微波遥感的优势与不足;1.2电磁波理论与微波(2学时)(1)掌握微波电磁波基本特征;(2)理解微波电磁辐射定律重点:微波电磁波特征与辐射定律;难点:微波电磁波辐射定律;1.3微波与物质的相互作用(2学时)(1)理解微波与大气的相互作用;(2)理解微波与地物的相关作用难点:微波与地物的相互作用;1.4微波遥感波段(1学时)(1)掌握常用微波遥感波段及各自特点。
重点:微波遥感常用波段;第2章微波遥感系统(8学时)2.1非成像微波传感器(1学时)(1)掌握微波散射计工作原理及应用;(2)掌握雷达高度计工作原理及应用;(3)了解无线电地下探测器工作原理及应用;重点:微波散射计工作原理及主要应用;2.2成像微波传感器(3学时)(1)掌握微波辐射计工作原理;(2)理解并掌握真实孔径侧视雷达工作原理;(4)掌握合成孔径侧视雷达工作原理;重点:成像雷达工作原理;难点:合成孔径雷达原理;2.3天线与雷达方程(2学时)(1)掌握天线的概念及主要参数;(2)掌握雷达方程与灰度方程的推导重点:天线的主要参数与雷达方程;难点:雷达方程的推导;2.4空间微波遥感系统(2学时)(1)了解主要的机载微波遥感系统;(2)了解主要的航天飞机微波遥感系统;(3)了解主要的卫星微波遥感系统;第3章微波图像的特点(8学时)3.1侧视雷达图像参数(1学时)(1)理解并掌握侧视雷达系统的主要工作参数;(2)理解雷达图像质量参数重点:侧视雷达系统的主要工作参数3.2雷达图像的几何特点(2学时)(1)理解并掌握雷达图像的斜距投影;(2)理解雷达图像的透视收缩和叠掩;(3)理解雷达阴影重点:雷达图像的几何变形特点;难点:雷达图像的透视收缩与叠掩;3.3雷达图像的信息特点(2学时)(1)了解地物目标的类型;(2)掌握影响雷达图像色调的主要因素;(3)了解并掌握雷达图像的主要虚假现象;重点:雷达图像色调的主要影响因素;3.4典型地物的散射特性(1学时)(1)掌握主要典型地物的散射特性;(2)掌握主要典型地物的微波热辐射特性难点:典型地物的散射特性;第四章微波遥感图像的校准、定标与模拟(2学时)4.1雷达回波的校准(0.5学时)(1)了解雷达系统内部校准原理与方法;(2)了解雷达系统内部校准原理与方法重点:雷达系统校准的主要方法;4.2雷达图像定标(0.5学时)(1)了解雷达图像定标的一般原理与方法4.3雷达图像模拟(0.5学时)(1)了解雷达图像模拟的一般原理与方法;4.4辐射计的校准与定标(0.5学时)(1)了解微波辐射计图像校准与定标的一般原理与方法;重点:雷达与微波辐射计图像的校准与定标;难点:雷达图像的校准与定标方法;第5章微波图像的几何校正(4学时)5.1雷达图像的几何变形分析(1学时)(1)了解造成雷达图像几何变形的主要原因;5.2侧视雷达图像的构像方程(1学时)(1)掌握基于等效中心投影的构像方程;(2)了解并掌握基于成像矢量关系和多普勒频率方程的构像方程;重点:侧视雷达图像的构像方程难点:基于成像矢量关系和多普勒频率方程的构像方程构建;5.3侧视雷达图像的几何校正方法(1学时)(1)掌握利用多项式与模拟图像的几何校正方法;(2)理解基于构像方程的几何校正方法重点:基于构像方程的几何校正方法第6章雷达干涉测量(4学时)6.1雷达干涉测量基本原理(2学时)(1)掌握干涉测量的基本概念;(2)理解并掌握雷达干涉测量原理;(3)掌握雷达干涉测量的主要工作方式难点:雷达干涉测量基本原理;6.2雷达干涉测量的主要应用(2学时)(1)理解雷达干涉测量的一般流程;(2)了解雷达干涉测量的主要应用;难点:相位解缠的概念及算法;第7章微波遥感应用(2学时)(3)了解微波辐射计的主要应用领域(4)了解雷达遥感技术在测绘、农业、城市、海洋、气象等领域的应用;(2)通过实例,了解微波遥感在资源环境中的应用方法,如土壤湿度遥感;四、课程考核(1)作业和报告:作业:5次左右;(2)考核方式:闭卷考试;(3)总评成绩计算方式:平时成绩、实验成绩、期中考试成绩和期末考试成绩等综合计算; (4)在多媒体教室开展教学活动,力求传统教学手段与现代技术的有机统一;五、参考书目1、雷达影像干涉测量原理,武汉大学出版社,舒宁,2003;2、雷达成像技术,电子工业出版社,保铮等,2005;3、微波遥感导论,科学出版社,lainH.Woodhouse,2014;4、遥感相关期刊。
微波遥感一、微波遥感概述1、微波微波是指波长1mm——1m(即频率300MHz——300GHz)的电磁波,包括毫米波、厘米波、分米波,它比可见光-红外(0.38——15μm)波长要大的多。
最长的微波波长可以是最短的光学波长的250万倍。
常用的微波波长范围为0. 8~30厘米。
其中又细分为K、Ku、X、G、C、S、Ls、L等波段。
微波遥感用的是无线电技术。
微波遥感:是传感器的工作波长在微波波谱区的遥感技术,是利用某种传感器接受地理各种地物发射或者反射的微波信号,藉以识别、分析地物,提取地物所需的信息。
微波遥感系统有主动和被动之分。
所谓主动微波遥感系统,指遥感器自身发射能源。
“雷达”是一种主动微波遥感仪器。
雷达是用无线电波探测物体并测定物体距离的,这一过程中需要它主动发射某一频率的微波信号,再接收这些信号与地面相互作用后的回波反射信号,并对这两种信号的探测频率和极化位移等进行比较,生成地表的数字图像或者模拟图像。
微波辐射计是一种被动微波遥感仪器,记录的是在自然状况下,地面发射、反射的微弱的微波能量。
2、微波遥感的历史微波遥感的发展可以追溯到20世纪50年代早期,由于军事侦察的需求,美国军方发展了侧视机载雷达。
之后,侧视机载雷达SLAR 逐步用于非军事领域,成为获取自然资源与环境数据的有力工具。
1978年美国发射的Seasat海洋卫星以及随后发射的航天飞机成像雷达计划、苏联发射的Cosmos1870,标志着航天雷达遥感的开始。
20世纪90年代以来各国相继发射了一系列的星载雷达,单波段单极化雷达遥感得到了很大的发展。
进入21世纪以来另有一系列先进的雷达遥感计划得以实施,使得多波段多极化雷达遥感得到了很大的发展。
这一系列计划的实施大大地推动了极化雷达和干涉雷达等新型雷达的发展,使卫星雷达遥感进入了一个新时代。
我国的微波遥感事业起步于上世纪70年代。
在国家历次科技攻关中,遥感技术都作为重要项目列入。
经过若干阶段的发展,近年来已取得了技术、理论及应用研究的全面发展。
微波遥感一、微波遥感概述1、微波微波是指波长1mm——1m(即频率300MHz——300GHz)的电磁波,包括毫米波、厘米波、分米波,它比可见光-红外(0.38——15μm)波长要大的多。
最长的微波波长可以是最短的光学波长的250万倍。
常用的微波波长范围为0. 8~30厘米。
其中又细分为K、Ku、X、G、C、S、Ls、L等波段。
微波遥感用的是无线电技术。
微波遥感:是传感器的工作波长在微波波谱区的遥感技术,是利用某种传感器接受地理各种地物发射或者反射的微波信号,藉以识别、分析地物,提取地物所需的信息。
微波遥感系统有主动和被动之分。
所谓主动微波遥感系统,指遥感器自身发射能源。
“雷达”是一种主动微波遥感仪器。
雷达是用无线电波探测物体并测定物体距离的,这一过程中需要它主动发射某一频率的微波信号,再接收这些信号与地面相互作用后的回波反射信号,并对这两种信号的探测频率和极化位移等进行比较,生成地表的数字图像或者模拟图像。
微波辐射计是一种被动微波遥感仪器,记录的是在自然状况下,地面发射、反射的微弱的微波能量。
2、微波遥感的历史微波遥感的发展可以追溯到20世纪50年代早期,由于军事侦察的需求,美国军方发展了侧视机载雷达。
之后,侧视机载雷达SLAR 逐步用于非军事领域,成为获取自然资源与环境数据的有力工具。
1978年美国发射的Seasat海洋卫星以及随后发射的航天飞机成像雷达计划、苏联发射的Cosmos1870,标志着航天雷达遥感的开始。
20世纪90年代以来各国相继发射了一系列的星载雷达,单波段单极化雷达遥感得到了很大的发展。
进入21世纪以来另有一系列先进的雷达遥感计划得以实施,使得多波段多极化雷达遥感得到了很大的发展。
这一系列计划的实施大大地推动了极化雷达和干涉雷达等新型雷达的发展,使卫星雷达遥感进入了一个新时代。
我国的微波遥感事业起步于上世纪70年代。
在国家历次科技攻关中,遥感技术都作为重要项目列入。
经过若干阶段的发展,近年来已取得了技术、理论及应用研究的全面发展。