第01章 医学统计中的基本概念
- 格式:ppt
- 大小:319.00 KB
- 文档页数:18
研究⽣-医学统计学基本概念医学统计学基本概念⼀.医学统计学运⽤概率论和数理统计等数学的原理和⽅法,研究医学领域中资料的搜集、整理、分析和推断的⼀门学科。
⼆、统计学中的基本概念总体和样本参数与统计量随机同质与变异抽样误差概率⼩概率原理1.变量(variable)(1)变量:收集资料中确定了的观察单位称为个体,在统计⼯作中反映个体的特征称为变量。
(2)随机变量:由于个体的特征或指标存在个体差异,观察结果在测量前不能准确预测,简称变量.变量的观察值(观察结果)可以是定量的也可以是定性的,可分为:数值变量:可以度量⼤⼩,如⾎压等分类变量:⽆序变量:⾎型、性别有序变量:如测定某⼈群⾎清反应分-、+、++、+++四级2.总体和样本(population and sample)总体(population):是根据研究⽬的确定的研究对象中所有同质观察单位某项指标取值的集合。
?样本(sample):是从总体中随机抽取的具有代表性的部分观察单位某项指标取值的集合。
个体:构成总体的最基本的观察单位。
样本含量:样本中所包含的最基本的个体数,常⽤n表⽰。
统计推断就是要从样本信息去推断总体特征样本要具代表性,须:①随机抽取②例数⾜够多。
3、参数与统计量( parameter and statistic )参数parameter:描述总体的统计指标或特征值,是事物本⾝固有的、不变的,为常数,常⽤希腊字母表⽰。
统计量statistic:描述某样本特征的统计指标或特征值,随试验不同⽽不同,其分布是有规律的、变化的,常⽤拉丁字母表⽰。
4. 同质与变异(homogeneity and variation)同⼀总体或其样本中的观察单位在所取指标⽅⾯必须具有相同的性质,称为同质性(homogeneity),与之相反的是异质性或间杂性(heterogeneity).同质(homogeneity):观察单位具有相的性质;异质(heterogeneity):性质不同。
医学统计学重点第一章绪论1.根本概念:总体:根据研究目确实定的性质相同或相近的研究对象的某个变量值的全体。
样本:从总体中随机抽取局部个体的某个变量值的集合。
总体参数:刻画总体特征的指标,简称参数。
是固定不变的常数,一般未知。
统计量:刻画样本特征的指标,由样本观察值计算得到,不包含任何未知参数。
抽样误差:由随机抽样造成的样本统计量与相应的总体参数之间的差异。
频率:假设事件A在n次独立重复试验中发生了m次,那么称m为频数。
称m/n为事件A在n 次试验中出现的频率或相对频率。
概率:频率所稳定的常数称为概率。
统计描述:选用适宜统计指标(样本统计量)、统计图、统计表对数据的数量特征及其分布规律进行刻画和描述。
统计推断:包括参数估计和假设检验。
用样本统计指标(统计量)来推断总体相应指标(参数),称为参数估计。
用样本差异或样本与总体差异推断总体之间是否可能存在差异,称为假设检验。
2.样本特点:足够的样本含量、可靠性、代表性。
3.资料类型:〔1〕定量资料:又称计量资料、数值变量或尺度资料。
是对观察对象测量指标的数值大小所得的资料,观察指标是定量的,表现为数值大小。
每个个体都能观察到一个观察指标的数值,有度量衡单位。
〔2〕分类资料:包括无序分类资料〔计数资料〕和有序分类资料〔等级资料〕①计数资料:是将观察单位按某种属性或类别分组,清点各组观察单位的个数(频数),由各分组标志及其频数构成。
包括二分类资料和多分类资料。
二分类:将观察对象按两种对立的属性分类,两类间相互对立,互不相容。
多分类:将观察对象按多种互斥的属性分类②等级资料:将观察单位按某种属性的不同程度、档次或等级顺序分组,清点各组观察单位的个数所得的资料。
4.统计工作根本步骤:统计设计、资料收集、资料整理、统计分析。
第二章实验研究的三要素1.实验设计三要素:被试因素、受试对象、实验效应2.误差分类:随机误差〔抽样误差、随机测量误差〕、系统误差、过失误差。
3.实验设计的三个根本原那么:对照原那么、随机化分组原那么、重复原那么。
第一章医学统计中的基本概念一、医学统计工作的内容:实验设计(experiment design)、收集资料(collecting data)、整理资料(sorting data)和分析资料(analyzing data)二、变异:医学研究的对象是有机的生命体,其功能十分复杂,不同的个体在相同的条件下,对外界环境因素可以发生不同的反应,这种现象称为个体差异或称为变异三、总体(population)和样本(sample):总体是同质的个体所构成的全体。
从总体中抽取部分个体的过程称为抽样,所抽的部分称为样本,在一个样本里含有的个体数可以不同,样本包含的个体数目称为样本容量。
四、样本的特性:代表性(representation)——要求样本能够充分反应总体的特征;随机性(randomization)——需要保证总体中的每个个体都有相同的几率被抽做样本;可靠性(reliability)——实验的结果要具有可重复性,即由科研课题的样本得出的结果所推测总体的结论有较大的可信度;可比性(comparability)——指处理组(临床设计中称为治疗组)与对照组之间,除处理因素不同外,其他可能影响实验结果的因素要求基本齐同,也称为齐同对比原则。
五、误差:①系统误差(system error)②③六、概率(probability):是描述某一件事发生的可能性大小的一个量度。
习惯将P≤0.05或P≤0.01的事件称为小概率事件第二章集中趋势的统计描述一、频数表(frequency table):①概念:一种格式的统计表,即同时列出观察指标的可能取值区间及其在各区间内出现的频数。
由于这种资料的表达方式较完整地体现了观察值的分布规律,所以也称为频数分布表。
②制作图标的步骤:确定组数、确定组距、确定组段、对各组段计数及手工编制划记表。
二、直方图(histogram):①概念:直方图是以垂直条段代表频数分布的一种图形,条段的高度代表各组的频数,由纵轴标度;各组的组限由横轴标度,条段的宽度表示组距。
《医学统计学》颜虹主编Fundamentals of Biostatistics (BernasrdRosner)孙尚拱译(2004第五版)SPSS统计分析张文彬主编一、绪论【统计学】应用数学的原理和方法,研究数据的搜集、整理与分析的科学,对不确定性数据做出科学的推断。
产生过程:随机现象→随机事件→样本空间→随机变量现象:确定现象随机现象:与确定现象相对的不确定现象,在一定的条件下,其有多种可能的结果,而究竟出现哪一种结果事先不可预言的现象。
≥2种结果。
特征:随机性、规律性两种阶段认识随机现象:1.通过观察或实验取得观测资料;2.通过分析所得资料来认识现象。
注:无论数据分析多么先进,都要以能够代表真实情况的数据为基础。
在偶然的背后发现必然【随机事件】随机现象的一个结果叫随机事件。
【样本空间】为了便于研究随机试验,我们将随机试验E的所有基本事件所组成的集合叫做样本空间,记为Ω。
每一个基本事件为样本点,基本事件也就是集合Ω的元素。
可以把样本空间中的基本事件映射成某个变量的取值,这样就引进了随机变量的概念。
【随机变量】在样本空间中,对不同事件指定有相应概率的数值函数,此函数成为一个随机变量。
P X泛指随机变量(X=x k)=p k,如抛掷硬币:正反1 0→随机事件的选项XkP0.5 0.5→对应概率,所有加起来=1k特征:与普通函数相比有两点不同:1.随机变量随着实验结果不同取不同的值,因此在实验之前只能知道取值的范围,而不能预先知道取什么值。
由于随机试验的各个结果出现有一定的概率,所以随机变量的出现也有一定的概率。
2.普通函数定义在实数轴上,而随机变量是定义在样本空间上,样本空间的元素不一定是实数二、统计学中的基本概念1.总体(Population)、样本(Sample)【总体】根据研究目的确定的、全体同质个体的某个(或某些)变量值。
比如:糖尿病的血红蛋白水平、高血压患者的血压分类:无限总体→新生儿体重有限总体→一所学校今年新生的身高【样本】:总体中的一部分,为了保证样本的代表性,在取样时我们要求X1、X2……Xn互相独立,并且与总体X有相同的概率分布。
医学统计学知识点整理第一节统计学中基本概念一、同质与变异同质:统计研究中,给观察单位规定一些相同的因素情况。
如儿童的生长发育,规定同性别、同年龄、健康的儿童即为同质的儿童。
变异:同质的基础上个体间的差异。
“同质”是相对的,是客观事物在特定条件下的相对一致性,而“变异”则是绝对的μ.δ.πX.S.p1.2.变量:确定总体之后,研究者应对每个观察单位的某项特征进行观察或测量,这种特征能表现观察单位的变异性,称为变量。
一、数值变量资料又称为计量资料、定量资料:观测每个观察单位某项指标的大小而获得的资料。
表现为数值大小,带有度、量、衡单位。
如身高(cm)、体重(kg)、血红蛋白(g)等。
二、无序分类变量资料又称为定性资料或计数资料:将观察对象按观察对象的某种类别或属性进行分组计数,分组汇总各组观察单位后得到的资料。
分类:二分类:+ -;有效,无效;多分类:ABO血型系统特点:没有度量衡单位,多为间断性资料【例题单选】某地A、B、O、AB血型人数分布的数据资料是( )A.定量资料B.计量资料C.计数资料D.等级资料分组统计描述:是利用统计指标、统计表和统计图相结合来描述样本资料的数量特征及分布规律。
统计推断:是使用样本信息来推断总体特征。
统计推断包括区间估计和假设检验。
第四节统计表与统计图★一、统计表统计表的基本结构与要求标题:高度概括表的主要内容,时间、地点、研究内容,位于表的上方,居中摆放,左侧加表的序号。
标目:横标目和纵标目。
线条:通常采用三线表和四线表的形式。
没有竖线或斜线。
数字:表内数字一律用阿拉伯数字。
同一指标,小数位数应一致,位次对齐。
无数字用“—”表示。
暂缺用“…”表示。
“0”为确切值。
备注:位于表的下面,通常是对表内数字的注解和说明,必要时可以用“*”等标出。
一张统计表的备注不宜太多。
二、制表原则1.(7理分布。
【例题填空】描述某地十年间结核病死亡率的变化趋势宜绘制_________图。
---------------------------------------------------------------最新资料推荐------------------------------------------------------医学统计学名词与简答题医学统计学重点第一章医学统计学基础 1 随机现象是指在一定条件下并不总是出现相同结果的现象。
2 概率 probability 即随机事件发生的可能性大小。
3 小概率事件 P0. 05 或0. 01 的事件。
4 总体 population:是根据研究目的所确定的同质观察单位的全体。
5 参数 parameter:描述总体特征的统计指标,一般用希腊字母表示。
6 样本 sample:从总体中抽出的供研究的观察单位。
7 统计量:根据样本观察值计算出的描述样本的特征值。
8 误差 error:使之研究结果与真实情况之间的差别。
根据原因分为:随机测量误差、系统误差和抽样误差。
系统误差对研究结果的影响较大,是可以控制和避免的。
9 抽样误差 sampling error:由于抽样所导致的样本均数与总体均数之差(在抽样研究中,即使没有随机测量误差和系统误差,在样本指标和总体指标间仍可能存在误差这种误差是由于抽样所致)。
1 / 1010 数值变量资料又称计量资料,是对某种随机变量进行定量测量所得的资料。
11 统计工作一般包括研究设计、资料收集、数据整理和统计分析四个基本步骤。
统计分析包括统计描述和统计推断。
12 同质:影响研究指标的主要因素易控制的因素基本上相同。
13 变量:观察指标在统计学上统称为指标变量,它反应的是生物个体间的变异情况,根据其性质可分为定性变量(分类)和定量变量(连续)。
第二章数据变量资料的统计描述 1 频数表的编制步骤:找全距(极差),定组距,写组段,划记,列频数表。
(重点具体看书) 2 集中趋势的描述有:算数均数,几何均数,中位数。
医学统计学第一章 医学统计中得基本概念1 医学统计工作得内容:设计,收集资料,整理资料,分析资料。
2 资料得类型:计量资料(数值变量),计数资料(无序分类),等变异(variation ):在同质得基础上被观察个体得差异。
级分组资料(有序分类)。
3 同质(homogeneity ):对研究指标有影响得非实验因素相同。
4 总体(population ):根据研究目得确定得同质得全部研究对象称总体 。
样本(sample ):根据随机化得原则从总体中抽出有代表性得一部分观察单位组成得子集称样本。
5 参数(parameter ):总体得设计指标称为参数。
统计量(statistic ):样本得统计指标称为统计量。
6 变量(variable ):观察对象得特征或指标称为变量,测量得结果即为变量值。
7 概率(probability):描述随机事件发生得可能性得大小得一个量度,其概率介于0与1之间。
第二章 集中趋势得统计描述一 算术均法(mean )简称为均数,适用于正态或近似正态分布资料(一)直接法 (二)加权法(针对频数表)nfx n x f f f X k k ∑=+++=...21 二 几何均数(geometic mean,G )适用于倍数关系变化,经对数转换后呈正态分布(如:抗体滴度,血清凝集效价,细菌计数,某些物质浓度等)G= 为了计算方便,常改用对数得形式计算,即lg()对于频数表资料,可用公式 G=lg()三 中位数(M )与百分位数中位数:适用于偏态分布资料,末端无确切数值得资料及分布情况不确定公式:M=L+() L,,分别为M 所在组段得下限,组距与频数,为M 所在组段之前各组数得累积频数。
百分位数:用符号表示,x 即百分位公式:=L+() 式中L,,分别为所在组段得下限,组距与频数,为所在组段之前各组段得累积频数第三章 变异程度得统计描述1.衡量、变异程度得指标有:极差,四分位数间距,方差,标准差,变异系数。
P表示。
,如总体均数μ,总体率л,总体标准差σ等。
(用拉丁字母代表)如相本均数x,样本率p,样本标准差s等。
,称为正偏态;若集中位置偏向数值大的一侧(右x表演示样本均数。
R表示。
极差大,说明变异程度大;反之,说明变异程度小。
x百分位置上的数值,用符号表示为P x。
CV),亦称离散系数,为标准差与均数之比。
写成公式为:CV=S/X×100%,常用于(1)比较计量单位不同的几组资料的离样本均数的标准差称为标准误,其计算公式为。
=0.05。
H0,即“弃真”的错误。
Ⅰ型错误的概率用а表示,若确立检验水准为а=0.05,则犯第一类错误的概率为H0,即“存伪”的错误。
Ⅱ型错误的概率用β表示。
H0所规定的总体中随机抽样,获得等于及大于(或等于及小于)现有样本统计量的概率。
N(u,б2),经变换后,u服从均数为0,标准差为1的正态分布,这种正态分布称为标准正态分布。
X,它的可能取值是0,1,……n,且相应的取值概率P 叫随机变量服从以n,л为参数的二项分布,记X,它的可能取值为0,1,……n,,且相应取值概率为称随机变量X服从μ为参数M-Friedman在符号检验的基础上提出来的,常称为Friedman检验,又称M检验。
SS e表示。
反映组间变异。
b表示,b的统计意义为自变量x改变一个单位时,应变量y平均变化b个单位。
x对y的线性影响外,其它所有因素对y变异的影响,即在总平方和中无法用x与y的线性关系所能解释的部分y的随机误差。
x,y间的相互关系。
Pearson积矩相关系数,说明具有直线关系的两变量间相关方向与密切程度。
以符号r表示样本相关系数,ρ表示总体相r2表示,它反映应变量y的总变异中,可用回归关系解释的比例,其公式为r2= 。
医学统计学课后习题答案第一章医学统计中的基本概念练习题一、单向选择题1. 医学统计学研究的对象是A. 医学中的小概率事件B. 各种类型的数据C. 动物和人的本质D. 疾病的预防与治疗E.有变异的医学事件2. 用样本推论总体,具有代表性的样本指的是A.总体中最容易获得的部分个体 B.在总体中随意抽取任意个体C.挑选总体中的有代表性的部分个体 D.用配对方法抽取的部分个体E.依照随机原则抽取总体中的部分个体3. 下列观测结果属于等级资料的是A.收缩压测量值 B.脉搏数C.住院天数 D.病情程度E.四种血型4. 随机误差指的是A. 测量不准引起的误差B. 由操作失误引起的误差C. 选择样本不当引起的误差D. 选择总体不当引起的误差E. 由偶然因素引起的误差5. 收集资料不可避免的误差是A. 随机误差B. 系统误差C. 过失误差D. 记录误差E.仪器故障误差答案: E E D E A二、简答题常见的三类误差是什么?应采取什么措施和方法加以控制?[参考答案]常见的三类误差是:(1)系统误差:在收集资料过程中,由于仪器初始状态未调整到零、标准试剂未经校正、医生掌握疗效标准偏高或偏低等原因,可造成观察结果倾向性的偏大或偏小,这叫系统误差。
要尽量查明其原因,必须克服。
(2)随机测量误差:在收集原始资料过程中,即使仪器初始状态及标准试剂已经校正,但是,由于各种偶然因素的影响也会造成同一对象多次测定的结果不完全一致。
譬如,实验操作员操作技术不稳定,不同实验操作员之间的操作差异,电压不稳及环境温度差异等因素造成测量结果的误差。
对于这种误差应采取相应的措施加以控制,至少应控制在一定的允许范围内。
一般可以用技术培训、指定固定实验操作员、加强责任感教育及购置一定精度的稳压器、恒温装置等措施,从而达到控制的目的。
(3)抽样误差:即使在消除了系统误差,并把随机测量误差控制在允许范围内,样本均数(或其它统计量)与总体均数(或其它参数)之间仍可能有差异。